
Energy partition in the large-scale ocean circulation and the 
production of mid-ocean eddies

by Gill, Green and Simmons

Catherine Jones



Energy in the ocean

Wunsch & Ferrari (2004)



Observations of eddies

Dynamic topography at the 
ocean surface

Eddies, with transient velocities unrelated to the mean flow were a new thing 
when this paper came out
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totally different. On the other hand, the average current over the whole 6-month 
period of the experiment was similar to that deduced by Defant from temperature and 
salinity data. 

An impression of how the eddies may be distributed in the horizontal at a particular 
time comes from measurements (Fig. 3) of  sound velocity at 800 m made by BECKERLE 
(1972) (see also BECKERLE and La CASCE, 1973). The sound velocity is related to density 
so the contours indicate vertical shear. The arrows indicate the direction of  motion for 
the layers above 800 m relative to those below. 
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Fig. 2. A progressive vector diagram of currents at 1000 m obtained in the POLYGON 
experiment (from BREKHOVSrdKH, FEDEROV, FOMIN, KOSHLYAKOV and YAMI'OLSKY, 1971, Fig. 4). 

Dynamic topography at 100db

Eddy from POLYGON 
experiment is superimposed
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Sound velocity at 800m in the 
Sargasso Sea (Beckerle, 1972)
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from Wunsch (1972) 
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The temperature spectrum q~f) at a depth of 500-600 m at the Panulirus station near 
Bermuda (from WVNSCH, 1972b, Fig. 2b). The temperature variancef~,(f) is plotted as a function 

of frequency f 

We will examine the partition of energy in the main oceanic gyres and show that most 
of the energy is stored as potential energy. Further, there is sufficient energy available 
to produce eddies of the observed strength if the potential energy of the mean flow is 
converted into eddy energy. Conversion of energy can take place by baroclinic 
instability, and a model of this process is examined. For the examples considered, 
substantial transfer of energy is found to occur only in the top 400 m. The most unstable 
disturbances are confined to the surface layers and have wavelengths of 100-250 km and 
e-folding times of 80-100 days. Longer waves (wavelength 300-500 kin) are also 
unstable but with e-folding times of 120-200 days. These waves have vertical structure 
similar to that of the first baroclinic mode and their stability properties arc strongly 
affected by bottom topography. The unstable disturbances examined were found to 
travel westwards with propagation speeds close to the maximum mean velocity, i.e. 
4-5 km days -1. This corresponds to periods of 25-60 days for the short waves and 
60-100 days for the long waves. 

2.  E N E R G Y  P A R T I T I O N  IN T H E  M A I N  O C E A N I C  G Y R E S  

The purpose of this section is to show, for a simple two-layer model of the ocean, 
that the potential energy stored in the main ocean gyres exceeds the kinetic energy by the 
large factor (B/a) ~, where B is the horizontal scale of the gyre and a is the (internal) radius 
of deformation. This is, in fact, a rather general property of quasi-gvostrophic flows 
(see Appendix). For the main oceanic gyres, B is of order 1000 km while a (at mid 
latitudes) is of order 30 kin, so the potential energy is of order 1000 times the kinetic. 
In particular, as STOMMEL (1965, p. 148) remarks, 'there is an immense store of available 
potential energy in the deep warm-water mass in the Sargasso Sea, more than a thousand 
times the kinetic energy of all the currents in the North Atlantic'. This fact is of great 
importance when considering possible sources of energy for the energetic eddies referred 
to in the introduction. 

Temperature spectrum: most 
variance is at timescales of 40 
to 100 days (Wunsch,1972b)

How is energy partitioned between the eddies and the mean flow? 
Is there enough energy in the mean flow to drive the eddies? 

Are the eddies generated locally or at a distance?
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Energy partition in a gyre
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Energy input by the wind

(hu)
x

+ (hv)
y

+ w
Ek

= 0
�fv =

�p
x

⇢1
= �g0h

x

fu =
�py
⇢1

= �g0hy

Continuity
Geostrophy



Energy input by the wind
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Energy budget

104 J/m2a 1m high sea state contains



Eddy strength

If all the APE were converted into eddy energy, 

Eeddy = APE



Eddy strength

If all the APE were converted into eddy energy, 

Eeddy = APE

APEeddy = APE

And for eddies larger than the deformation radius,  

APEeddy

KEeddy
⇠ k�2

a2

because the eddies are smaller than the gyre scale, the eddy kinetic energy can be 
much larger than the mean kinetic energy. 

KEeddy = (ka)2APE = (kB)2KE



Eddy strength

If all the APE were converted into eddy energy, 

Eeddy = APE

APEeddy = APE

And for eddies larger than the deformation radius,  
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KEeddy = (ka)2APE = (kB)2KE

KEeddy = (ka)2APE ⇡ APE

105 J/m2 =
1

2
mv2

v = 0.2m/sassume 
barotropic 

eddies  



How much energy is actually in eddies?

Meridional temperature section at 50W 

15-20% of APE is in eddies 

Fuglister (1960)



Linear stability analysis

 (x, y, t) = Re{�(z)eik(x�ct)}

(U � c){[(f2/N2)�z]z � k2�}+Qy� = 0

Qy = � � [(f2/N2)Uz]z

�z

�
=

Uz

(U � c)

�z

�
=

Uz +N2Hy/f

(U � c)

z = 0

z = �H

•      changes sign 
• Sign of       is opposite to sign of        at 
• Sign of       is same as sign of                         at

Qy

Qy

Qy

Uz z = 0
z = �H

Necessary conditions for instability: any of

Uz +
N2Hy

f

Perturbation 

Eigenvalue problem 

Boundary conditions 



Linear stability analysis
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How is growth rate affected by the bottom slope?

          is negative when the 
bottom slopes in the same 
direction as the isopycnals. 

s = Hy

Most favorable conditions for instability when the bottom slopes upwards 
towards the equator
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How is growth rate affected by the velocity profile?

Reducing the slope of the isopycnals near the surface reduces the growth rate and 
the reversal of isopycnals near the surface reduces the growth rate still further. 

Therefore, seasonal changes can have a large effect on the growth of disturbances. 
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Most rapidly changing disturbances

Perturbation velocity 
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Second most rapidly changing disturbances

(Similar to the first baroclinic mode) 

Perturbation velocity 
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Rate of Conversion of APE to eddy energy

• Nearly all energy transfer takes place in the top 400m.  

• Large eddies transfer 2-3 times as much energy as small eddies. 

• Large eddies dominate at depth, small eddies at the surface.  

• Eddies can remove APE from the circulation as fast as it is supplied by the wind. 
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Energy in the ocean

Wunsch & Ferrari (2004)



How do we identify baroclinic instability?

• Phase increases downwards in the top 400m.  
• Phase velocity is upwards

Most rapidly growing 

Second most rapidly growing



Failures of the two-layer model
• Only Phillips-type instability is possible 
• Needs tuning to give reasonable answers 
• Range of wave numbers is too small

Phase speed c, 
wavenumber k and 
growth rate �

Growth rate for 2-layer model

Growth rate for continuous model



Conclusions

• Most of the energy of the mean flow is in the APE 

• Energy from eddies comes from the large-scale mean wind field, 
via the large-scale mean circulation 

• Smaller, faster eddies can be found in the surface field, and larger 
slower eddies are found at depth.   

• Eddies can remove APE from the circulation as fast as it is 
supplied by the wind. 

APE

KE
⇡ 1000



\overline{\mbox{KE}}=\frac{1}{2}\rho_1 \overline{h(u^2+v^2)}=\frac{1}{2}\rho_1 g' \overline{h(h_x^2+h_y^2)/f^2}

\overline{\mbox{KE}}\sim \frac{\rho_1 g'^2 \overline{h}\, \overline{h'^2}}{B^2f^2}

\overline{\mbox{APE}}\sim\rho_1 g'^2 \overline{h'^2}

\overline{\mbox{APE}}=\frac{1}{2}\rho_1 g'(\overline{h^2}-(\overline{h})^2)

a=\frac{g'h^{\frac{1}{2}}}{f}\approx 30 \mbox{km}

p=\rho_1 g (\eta+h)-\rho_2 g(h+z)

(hu)_x+(hv)_y+w_{Ek}=0

-\rho_1 g' \left[ \int uh^2 \, \mbox{d}y \right]_{x=0} - \rho_1 g' \int \int h w_{Ek} \, \mbox{d}x \mbox{d}y=0

-\rho_1 g' (uh^2)_x - \rho_1 g' (vh^2)_y-\rho_1 g' h w_{Ek}=0

\overline{R}=\rho_1 g' \overline{h w_{Ek}}

\frac{\overline{APE}}{\overline{R}}=\frac{L}{3 \beta a^2}=3 \, \mbox{yrs}

\overline{E_{eddy}}=\overline{\mbox{APE}}

\frac{\overline{\mbox{APE}_{eddy}}}{\overline{\mbox{KE}_{eddy}}} \sim \frac{k^{-2}}{a^2}

\frac{\overline{\mbox{APE}}}{\overline{\mbox{KE}}} \sim \frac{B^2}{a^2}\approx \left(\frac{1000 \mbox{km}}{30\mbox{km}}\right)^2 \approx 
1000

g \eta = F_1(z)+g'h



\psi(x,y,t)=Re\{ \phi(z) e^{ik(x-ct)}\}

(\overline{U}-c)\{[(f^2/N^2)\phi_z]_z-k^2 \phi\} +Q_y \phi=0

Q_y=\beta-[(f^2/N^2) \overline{U}_z]_z

\frac{\phi_z}{\phi}=\frac{\overline{U}_z}{(\overline{U}-c)}

\frac{\phi_z}{\phi}=\frac{\overline{U}_z+N^2H_y/f}{(\overline{U}-c)}

\mbox{Depth Scale}=\frac{f^2 \overline{U}_z}{N^2 \beta}

\overline{\mbox{KE}_{eddy}}=(k a)^2 \overline{\mbox{APE}}=(k B)^2 \overline{\mbox{KE}}

E=\frac{1}{2} \left( \rho_0 \left( \psi_x^2+\frac{f^2 \psi_z^2}{N^2}\right) \right)

\overline{\mbox{APE}} \sim \frac{\rho_0 f^2 \psi^2}{N^2H^2}\sim \frac{\psi^2 \rho_0}{a^2}


