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Non-geostropic Baroclinic Stability
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The background state is in thermal 
wind balance

x

y

z
dense

light

U(z)

f
dU

dz
=

g

⇢0

@⇢̄

@y
= �M2

U = �M2z

f

M2 = � g

⇢0

@⇢̄

@y
= b̄y

N2 = � g

⇢0

@⇢̄

@z
= b̄z



Primitive equations (not QG!), 
linearized around the background state
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Background + perturbations:

Linearized set of equations:



Primitive equations (not QG!), 
linearized around the background state
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Assume a solution like: ei(kx+ly+�t)
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Instabilities of the non-geostropic 
eigenvalue equation
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• Gravitational (Ri < 0)!
• Kelvin-helmholtz (0 < Ri < 0.25)!
• Symmetric (k=0, Ri < 1)!
• Baroclinic (l=0, Ri > 1)!
• Also allows inertia-gravity waves!



No zonal derivatives: !
symmetric instability
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Symmetric instability:!
 growth rates
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There are stable and unstable 
solutions
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Symmetric instability: growth 
rates
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Symmetric instability: eigenmodes
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 , n = 1, Ri = 0.5
 = Re[(eim+z � eim�z)eil0y]

Instability forms as rolls aligned with the background flow



Symmetric instability:!
 a mixed gravitational-centrifugal instability

Haine & Marshall, JPO 1998

1. Gravitational instability: source is PE
APRIL 1998 635H A I N E A N D M A R S H A L L

FIG. 1. (a) A traditional mixed layer model where a layer with zero vertical stratification is developed by
gravitational overturning and surface buoyancy loss. (b) In the presence of a lateral density gradient in a
rotating frame, symmetric instability sets the potential vorticity to zero, leaving weak stratification. This layer
is unstable to baroclinic waves, which results in lateral buoyancy transfer in the mixed layer.

by buoyancy loss from the sea surface. The latter pro-
cess dominates in mixed layers deeper than O(100 m)
and is a consequence of the familiar gravitational over-
turning (or upright convection) associated with denser
fluid overlying lighter fluid (represented schematically
in Fig. 1a).
The upper ocean is not horizontally homogeneous,

however, as is clearly revealed by any high-resolution
survey (e.g., Samelson and Paulson 1988). For ex-
ample, Fig. 2 is a section from the northeast Atlantic
(obtained in April 1991 by a SeaSoar—a towed, un-
dulating CTD; Cunningham et al. 1992; Pollard 1986)
revealing density gradients from the smallest resolved
scales [O(5 km) horizontally: O(5 m) vertically] to the
length and depth of the survey. One frequently ob-
serves unstable regions adjacent to stratified fluid. At
the northern end of the section the upper 250 m is
homogeneous, or slightly unstable, a signature that ac-
tive overturning is under way. A warmer layer is seen
to the south that has large regions of very weak strat-
ification despite a surface cap of lighter fluid in the
upper 20–30 m. At 45.48N, near the southern end of
the section, an anticyclonic eddy is apparent. This fea-
ture occupies the upper 300 m of the water column
and has a characteristic diameter of 25 km. The core,
and the surrounding fluid, is weakly stratified with stat-
ically unstable patches. A shallower (upper 100 m)
feature is present at 46.58N and is almost detached from
the less dense water to the south. These observations
give no obvious indication of a vertically homogeneous
mixed layer separated from stratified water below. In-
deed, it is very difficult to define the mixed layer in

an unambiguous way. The mixed layer depth, diag-
nosed as the depth at which the density exceeds the
surface value by 0.05 kg m23 , is shown, but does not
correspond to any clear mixed layer base. In fact, the
mixed layer depth determined in this way is very sen-
sitive to the exact criterion used. Nevertheless, there
are significant lateral gradients within the convectively
stirred layer, caused by a variety of hydrodynamical
processes induced by surface buoyancy and momentum
fluxes. Clearly, if these hydrodynamical processes are
sufficiently slow and large scale, the earth’s rotation
will influence them.
In this paper we review and investigate some of the

key processes that control the flux of buoyancy ver-
tically and horizontally in the upper ocean. We argue,
and illustrate by numerical experiment, that in the pres-
ence of lateral density gradients upright convection can
be modified by thermal wind shear so that overturning
occurs along paths that slant to the vertical. This slant-
wise convection rapidly (typically over a few hours)
restores the Ertel potential vorticity of the convecting
layer to zero and maintains a layer with weak vertical
stratification. But of equal importance is that this state
is susceptible to nonhydrostatic baroclinic instability,
which quickly develops causing vertical and lateral
transfer of buoyancy in the mixed layer (Fig. 1b) on
geostrophic scales. Numerical experiments show that
baroclinic instability in the mixed layer can result in
lateral buoyancy fluxes that significantly modify the
shoaling and deepening of the layer and are so efficient
that the convective process all but vanishes.
Finally, scaling laws are deduced, and tested against
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
2. Centrifugal instability: source is KE
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
3. Symmetric instability
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
3. Symmetric instability
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
3. Symmetric instability
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
3. Symmetric instability
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Symmetric instability:!
 a mixed gravitational-centrifugal instability
3. Symmetric instability
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• Slopes of absolute momentum can be less then isopycnal slopes in 
regions of weak vertical stratification and strong horizontal stratification.!

• Also known as “isentropic inertial instability”.



Non-geostrophic baroclinic instability is qualitatively 
similar to Eady instability: l=0
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FIG. 4. A snapshot of the temperature perturbation for the fastest-
growing mode.

5. Nonlinear equilibration and the statistical
steady state
We now numerically simulate the process model for-

mulated in (12) and (13) using the surface condition
T 5 2DT cos(2py/L). We expect the eddies to transport
heat latitudinally, to release the available potential en-
ergy, and to rearrange the zonally and time-averaged
density field by establishing a zonally averaged ther-
mocline whose properties depend on the statististics of
the eddy field. Our approach is to perform eddy-re-
solving numerical simulations of the primitive equations
(12) described in section 2. We employ a variable-grid,
finite-difference model with N 3 N grid points in the
horizontal plane (N is either 128 or 256) and enough
vertical points to resolve the top and bottom Ekman
layers (the details are in appendix A).
The f -plane domain has horizontal dimensions

L 5 1000 km in both directions and all variables are
periodic in x and y. At the rigid surface, z 5 H, we
specify the temperature and require no stress. At the
rigid bottom, z 5 0, we impose no flux of heat and no
slip. The diffusivity k and the viscosity n are isotropic
in all three dimensions. Our choice of isotropic diffu-
sivity is unconventional, but it ensures that no hidden
diapycnal fluxes occur except at the very small scales
where hyperdiffusion is active. Furthermore, when eddy
processes are directly resolved, there is no need for an
augmented diffusivity in the isopycnal direction. With
isotropic viscosity, lateral friction is generally negligi-
ble, and dissipation occurs through the vertical com-
ponent of viscosity and the hyperviscosity (more details
are given in appendix A).
No convective adjustment is applied because this

choice is the only one that guarantees an unambiguous
dependence of the results on the diffusivity. However,
unstable stratification develops below the regions where
the coldest temperatures are prescribed. In general, an

unstable mean stratification below the cooled regions is
not surprising since convective plumes entrain warmer
surrounding fluid as they descend. When convective
plumes are well resolved, the entrainment occurs over
localized regions and the time-averaged bottom tem-
perature is close to the minimum surface temperature.
With the limited resolution used in the model the un-
stably stratified regions are substantial, but we feel this
is a small price to pay in exchange for knowing the
value of the vertical diffusivity everywhere and for hav-
ing a well-defined energy balance. Also, as discussed
in section 9, the bottom temperature decreases as hor-
izontal resolution is increased, reassuring us that hy-
drostatic convection is occurring, albeit limited by the
discretization.
The goal of the simulations is to establish the de-

pendence on the external parameters of various quan-
tities characterizing the statistically steady fields. Spe-
cifically, we wish to examine the depth of penetration
of the surface temperature gradients as a function of the
diffusivity k, of the viscosity n, of the temperature dif-
ference DT, and of the oceanic depth H or, alternatively,
in terms of the four nondimensional parameters, Ro, Pr,
Ek, and H/L.
A typical snapshot (Fig. 5) of the instantaneous tem-

perature below the thermocline reveals that at depth
the stirring by the eddy field alters qualitatively the
structure imposed at the surface. Although the surface
temperature gradients are concentrated near the lati-
tudes y 5 250 km and y 5 750 km, the fluctuations
are approximately uniformly distributed throughout the
domain.
Hereinafter, we indicate with an overbar the zonal

average, for example,
L

21T(y, z, t) [ L T(x, y, z, t) dx, (46)E
0

and with angle brackets the horizontal average, for ex-
ample,

L L
22

^T& [ L T dx dy. (47)E E
0 0

The hallmark of the statistically steady state estab-
lished by the eddy fluxes is a zonally averaged tem-
perature , with a shallow thermocline as illustrated inT
Fig. 6. The parameter values are as in Table 1 except
that Pr 5 50 and k 5 8 3 1024. The zonally averaged
temperature field differs qualitatively from that of the
steady symmetric solution described in section 3 and
shown in Fig. 2: here the horizontal temperature gra-
dients are confined to a distinctive thermocline region,
much shallower than the depth of the domain.
The zonally averaged temperature is maintained by a

balance between vertical diffusion and convergence of
eddy heat transport:

(y9T9) 1 (w9T9) ¯ kT . (48)y z zz

Cessi & Fantini, JPO 2004
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Stone, JAS 1966

[1� (� + kU(z))2]w00 � 2


k

� + kU(z)
� il

�
w0 �


Ri(k2 + l2)� 2ikl

� + kU(z)

�
w = 0

w(0) = w(1) = 0Boundary conditions
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in 2 directions



6.6 The Eady Problem 283
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Fig. 6.12 Left column: Vertical structure of the most unstable Eady mode. Top: con-
tours of streamfunction. Middle: temperature, proportional to @ =@z . Bottom: merid-
ional velocity, proportional to @ =@y . Negative contours are dashed, and two complete
wavelengths are present in the horizontal. Poleward flowing (positive v) air is generally
warmer than equatorward flowing air. Right column: Same, but now for a wave just be-
yond the short-wave cut-off. There is no phase-tilt in the vertical, and the temperature
perturbations at the upper and lower boundaries are no longer able to interact.

Scale of maximum instability: Lmax ⇡ 3:9Ld ⇡ 4000 km; (6.96)

Growth Rate: � ⇡ 0:3
U
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⇡
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For the ocean

For the main thermocline in the ocean let us choose

H ⇠ 1 km U ⇡ 0:1 m s�1 N ⇠ 10�2 s�1: (6.98)

Symmetric, 
k=0: Ri < 1

Baroclinic, 
l=0: Ri >1

Stone: Non-geostrophic stability with perturbations 
in 2 directions

Stone, JAS 1966



Non-geostrophic instabilities arising from 2D 
perturbations

Ri = 2:!
~Baroclinic. Max 

growth rate at l=0. 
Single unstable mode.

!
Stable 

perturbations 
for large k,l!

~ Eady case (l=0)
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Decreasing 
growth rates



Ri = 0.92:!
More than one vertical 

mode unstable. Symmetric 
instability appears.

Non-geostrophic instabilities arising from 2D 
perturbations

similar growth 
rates for 

symmetric and 
baroclinic

Secondary 
unstable modes 

have smaller 
growth rates and 

smaller scales!

Stone, JAS 1966

~Baroclinic 
instability

~Symmetric 
instability



Ri = 0.5:!
Symmetric has 

largest growth rate

Non-geostrophic instabilities arising from 2D 
perturbations

Increasing 
growth rates

Stone, JAS 1966



Summary
• A flow in thermal wind balance is subject to a range of 

instabilities when the full primitive equations are 
considered!

• 0 < Ri < 0.25 -> Kelvin Helmholtz!
• 0.25 < Ri < 0.95 -> Symmetric!
• 0.95 < Ri -> Baroclinic!

• Baroclinic instability is not significantly modified in full 
equations compared to QG for Ri >> 1!

• Symmetric instability can be thought of as a combined 
centrifugal and gravitational instability


