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ABSTRACT

The solutions of Eady's 1949 model of baroclinic stability are extended numerically to include the non-
geostrophic perturbations which were not covered by the analysis in Part I. It is found that the largest
growth rates are never associated with these new perturbations, so the tentative conclusions of Part I are
verified. The more exact numerical solutions lead only to slight quantitative modifications of the results
of Part I. If we let Ri be the Richardson number, then the largest growth rates are associated with “geo-
strophic” haroclinic instability if Ri>0.950; with symmetric instability if $ <Ri<0.950; and with Kelvin-
Helmholtz instability if 0<Ri<%. Geostrophic baroclinic instability and symmetric instability can exist
simultaneously if 0.84 <Ri<1, and symmetric instability and Kelvin-Helmholtz instability can exist simul-

taneously if O<Ri<%,

1. Introduction

In an earlier study [ Stone (1966) hereinafter referred
to as Part I, Eady’s (1949) model of baroclinic flow
was uscd to determine the growth rates of non-geostro-
phic perturbations of a thermal wind. The nature of
the mathematical approximations used in Part I
restricted the horizontal scales of the perturbations, so
that not all non-geostrophic perturbations were included
in the analysis. In particular, growth rates were not
found for those perturbations whose horizontal scales
were such that the two Rossby numbers defined using
the zonal and meridional length scales were both of
order unity (see Fig. 5 in Part 1). The growth rates for
the other perturbations showed that there were three
different types of perturbations which could have the
largest growth rates. These three different types of
perturbations arc each associated with one of three
different typcs of instability well known from earlier
work; namely, geostrophic baroclinic instability (e.g.,
Fady, 1949), symmetric instability (e.g., Solberg,
1936), and Kelvin-Helmholtz instability (e.g., Chan-
drasekhar, 1961). Which type of instability has the
largest growth rates depends on the Richardson
number, Ri. The results of Part I indicated that the
largest growth rates are associated with baroclinic
instability if Ri>0.95; with symmetric instability if
1<Ri<0.95; and with Kelvin-Helmholtz instability
if 0O<Ri<E.

If there should be some values of Ri for which the
largest growth rates were associated with the perturba-
tions not covered by the analysis in Part I, then the
above picture would have to be modified. A more recent
analysis by Orlanski (1968) used a different model in
determining the growth rates of non-geostrophic
perturbations. In his model the vertical shear of the
flow was entirely concentrated in a frontal discontinuity,

in contrast to Eady’s model where the vertical shear is
uniform. Orlanski’s results did include perturbations of
the kind not included in Part I, but he did not find any
essentially different maxima in the growth rate. (His
results did include maxima corresponding to barotropic
instability because his frontal surface was not hori-
zontal; this type of instability, however, is automatic-
ally excluded in Eady’s model by the neglect of any
cross-stream variation in the unperturbed wind.) On
the other hand, Orlanski’s model automatically excluded
symmetric instability, because the motions associated
with this type of instability are parallel to the isotherms
of potential temperature, and such motions are not
resolved when all the isotherms are concentrated into a
single surface of discontinuity. However, it is just when
the growth rates of symmetric and baroclinic instabil-
ities are comparable, i.e., when Ri= 1, that the possibil-
ity of the maximum growth rate being associated with
the neglected perturbations is strongest. The growth
rate maxima found in Part I were not sharply peaked
in this range, and the selectivity of different perturba-
tions was very weak. Thus, Orlanski’s results leave
open the possibility of a different growth rate maximum,
associated with a basically different kind of perturba-
tion, in the baroclinic flow problem with uniform shear.
To resolve this possibility, in this paper we extend the
analysis of Part I to include the non-geostrophic
perturbations previously left out.

2. Mathematical model

As in Part I, we will use Eady’s model of baroclinic
stability. Let H be the depth of the fluid; %y the magni-
tude of the thermal wind; f the Coriolis parameter;
®, ¥ and z the dimensionless zonal, meridional and
vertical coordinates (x and y are measured in units of
uo/ f and z in units of H); u, v and w the corresponding
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dimensionless velocity components (# and v measured
in units of #, and w measured in units of fH); ¢ the
dimensionless time coordinate (measured in units of
1/f); and 6 the dimensionless potential temperature
(measured in units of the total vertical range A9 of
potential temperature).

In Eady’s model, effects of dissipation and curvature
are neglected, and the Boussinesq approximation is used
for compressibility effects. The unperturbed wind and
temperature fields satisfy the thermal wind relation and
have the forms

u=s
1=w=0
, 2.1)
1 B
f=z——y+——3
Ri Ad
where
¢H A8
Ri=——, (2.2)
MOZ 90

g is the gravitational acceleration, and 6, the average
potential temperature. The perturbations of the above
flow field are assumed to be small and to have x, ¥ and ¢
dependences of the form exp[i(ot+kx+Ay)], where o
is a complex frequency, and & and \ are the zonal and
meridional wavenumbers, respectively. If we use a bar
to denote the same quantities with dimensions, then

i,
ok
k=—%. (2.3)
/
u();\
/

Therefore, £ and A can be interpreted directly as the
zonal and meridional Rossby numbers of the perturba-
tion. The resulting eigenvalue problem is [see Eady
(1949, Eq. (11), Section II)]

(L~ () s [ N
(otke? T o+kz l]dz
2iEN
—[Ri(/c2+>\2)+—-——]w=0, (2.4)
o+kz

with
(2.5)

w=0, when 2z=0,1,

2 being the z-dependent part of the perturbation
vertical velocity.
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Perturbations such that £, A= 1 were not included in
the analysis of Part I. Growth rates for the other
perturbations were found by expanding the solution to
(2.4) and (2.5) in power series of 2 and A or their
inverses. In the more difficult case when %, A=1 we
shall have to use numerical techniques. For this purpose
it is convenient to rewrite Eq. (2.4) in normal form. Let

}l 1 _h N/ (2Kk)
D o,
\/1——;?<1+h>

where s =o-+ks. Substituting (2.6) into (2.4) and (2.5),
we obtain

w=

(2.6)

d*¢
Ez;+a(2)¢=0, 2.7)
¢=0, on 3z=0,1, (2.8)
where
k[ Rik*4-(3—Ri)h?—2]+N[Rikt4 (1 —Ri)A2]
a(z)= () .
(2.9)

3. Method of solution

Eq. (2.7) was replaced by a set of simple difference
equations

A2
¢n+1—2(1——2—an>¢n+¢n_1=0, n=1,2,3,--- /N, (3.1)
where

1 -
A=—ur
N+1
¢n=¢(zn) (

an=2a(2,)

(3.2)

Zn=nlA

Large values of NV were relied on to obtain sufficient
accuracy. In general, N =100 was used, a value more
than ample to obtain 0.1%, accuracy.

The eigenvalue ¢ was determined by an iterative
procedure, using a CDC 6400 computer. For given values
of &, A, Ri, an initial guess for ¢ was made. Because of
the boundary conditions (2.8), ¢o=0, and the amplitude
of the eigenfunction was set by choosing ¢;=1. Thus,
it was possible to solve Egs. (3.1) successively for
o2, @3, - -+, ¢n41. In general, the guess for ¢ is incorrect
and the calculated value for ¢n., will not be Zero,
although it should be according to boundary condition
(2.8). Consequently, the calculation of ¢y,.; was
repeated, using a value of ¢ which differed from the
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initial guess by a small quantity e. The two values of
¢n+1 were then used to perform a linear extrapolation
from the two values of ¢ to a new value of ¢ which would
make ¢xy1 zero if it depended on ¢ in a linear fashion.
The new value of ¢ was then used to reiterate the whole
procedure, and as many iterations were performed as
was necessary to get a final value of ¢ accurate to 0.1%.

A numerical integration such as the above will not
work if onc is interested in finding the real values of o,
since then the coefficient a(z) is, in gencral, singular
within the range of integration. This was not a problem
for this study, since the complex, unstable values of ¢
were sought. For small values of %, the initial guesses
for o were taken from the approximate results of Part I.
For larger values of % the initial guess was taken to be
the value of o for the nearest value of & available. For
k<1 three or four iterations were generally sufficient
to obtain o with 0.19, accuracy. The number of
iterations necessary increased for larger values of %,
and in fact for 2210 the iterations gave diverging
values for ¢. This divergence was due to the extreme
sensitivity of the calculation of ¢x..1 to small changes in
o when k1. Conscquently, round-off error was suf-
ficient to give random fluctuations in the calculated
values of ¢xy1. In any case the values for k2 10 were
not of prime interest since the asymptotic solutions as
k— o were found in Part I. Comparison of the
numerical solutions with the asymptotic solutions when
their regions of validity overlapped showed agreement
within the limits of the approximations.

4, Numerical results

Fig. 1 shows the growth rates of the perturbations as
functions of the zonal wavenumber for various values
of A\, when Ri=2. The behavior of the eigenvalues for
this valuc of Ri is typical of the behavior for all larger
values of Ri, and is qualitatively the same behavior as
in Eady’s solution for Ri>>1. The maximum growth
rate occurs when A=0, and corresponds to “geostrophic”
baroclinic instability, although the most rapidly growing
perturbations are non-geostrophic when Ris1. The
perturbations are stable when X\ or k are sufficiently
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T16. 2. Growth rates when Ri=1.

large, and the unstable perturbations all have phase

speeds ¢ (= —Reo/k) equal to 3.

Fig. 2 shows the growth rates for the critical value
Ri=1. This is the largest value of Ri for which unstable
perturbations exist for all values of A. In addition,
for a given value of X\, there are now two sets of
unstable perturbations. Those for small values of k
(given by the solid curves in Fig. 2) are the analytic
continuation of the geostrophic baroclinic instabilities.
Those for large values of k (given by the dashed curves
in Fig. 2) have smaller growth rates. These latter, small-
scale perturbations have growth rates which decrease
as Ri increases, and may in fact still be unstable for
Ri>2, but if so the growth rates were too small to be
found by our numerical method, because of the near
singular behavior of the coefficients of the differential
equation when Ime is very small.

When Ri< 1, there is more than one unstable eigen-
mode [see Part I, Eq. (2.27)]. The most unstable one is
the analytic continuation of the single unstable mode
when Ri>1, and it is illustrated in Fig. 3 for Ri=0.92.
Now the maximum growth rate corresponding to
symmetric instability (k=0, A>>1) is apparent. At the
same time the maximum corresponding to geostrophic
baroclinic instability is still present. The numerical
computations showed that the two maxima have equal
growth rates when Ri=0.950. (This may be contrasted
with the approximate value Ri=0.95 found in Part I.)
For smaller values of Ri the symmetric maximum is
greater.

In Fig. 3 we also see that the unstable perturbations
for large & (again indicated by the dashed curves) in
fact join on to the unstable perturbations for small &.
Only for some values of Ri and X is there an intermediate
range of £ which is stable, and this tends to obscure the
fact that the solid and dashed curves in the figures are
really analytic continuations of the same eigenvalue.
The maximum growth rate associated with these smaller
scale perturbations is still smaller than those associated
with the other perturbations.

The numerical results confirm the conclusion of Part
I that the first mode (the one with the fewest zeros
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F16. 3. Growth rates for the most unstable mode when Ri=0.92.

between z=0 and z=1) is always the most unstable.
They also show that the set of unstable modes, found in
Part I when £<1 and X is sufficiently large, join together
in pairs when 2= 1. For example, the two most unstable
modes when 21 join together when £~1 as shown by
the curve for A=20 in Fig. 3. Similarly, the third and
fourth most unstable modes join together when k=1,
etc., for the higher modes. There can also be more than
one unstable eigenmode for intermediate values of Z,
even though there is not for small 2 (see the curve for
A=16 in Fig. 3).

Figs. 4 and 5 show the growth rates for the most
unstable mode when Ri=0.5 and 0.1. Now the only
growth rate maximum is that corresponding to the
symmetric perturbations. (The Kelvin-Helmholtz max-
imum when Ri<% occurs when £>>1—see Part I,
Section 5.) There are no longer any values of X for which
there exists an intermediate range of k2 where the
perturbations are stable. Computations for intermediate
values of Ri show that the maximum corresponding
to geostrophic baroclinic instability disappears when
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F16. 5. Growth rates for the most unstable mode when Ri=0.1.

Ri decreases to 0.84. (This value may be compared
with the approximate value 0.75 found in PartI.)
When Ri<0.84, this latter maximum is replaced by a
saddle point in the &, A plane.

Figs. 6 and 7 show the typical behavior of the real
part of ¢ when Ri<1. Both the real and imaginary
parts, o, and o, are plotted for comparison. These values
may be combined with any sign to form an eigenvalue,
i.e.,, =ko,3i0; are all eigenvalues for the problem.
Aside from the choice of signs, there are, in general, an
infinite number of distinct eigenvalues. The most
unstable pair, i.e., the same pair as is illustrated in
Figs. 4 and 5, is shown in Figs. 6 and 7 for particular
values of Ri and \. For small values of % the pair have
the same phase speed (c=%) but different growth rates.
For large values of k2 they have the same growth rate
but different phase speeds. As & — oo, this pair joins
onto the asymptotic pair of eigenvalues ¢=0, & (see
Section 5 of Part I).

Figs. 8 and 9 illustrate the growth rates for the
second most unstable pair of eigenvalues. The two
distinct growth rates apparent for a given value of A
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¥16. 4. Growth rates for the most unstable mode when Ri=0.5.
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Fic. 6. Real and imaginary parts of ¢ when A=15, Ri=0.5.
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when k<1 correspond to the third and fourth most
unstable eigenmodes found in Part I, but here we refer
to them collectively as the second mode since they join
together when k=~1. The dependence of the growth
rates on &, A and Ri is similar to that for the first mode,
except that the growth rates go to zero for sufficiently
small values of A, and there is never a maximum
analogous to the geostrophic baroclinic maximum. The
eigenvalues of the sccond and higher modes join on to
the other asymptotic solutions found in Part I [Eq.
(5.4)] when £>>1.

Finally, we can compare the approximate expression
for the growth rates of the geostrophic baroclinic
instabilities found in Part I [Eq. (4.25)] with the
exact numerical results. The approximate formula,

when A =0, 1s
k 2k?
a,-=———l:1———(1+Ri)].

4.1
2V3 15 &b

According to this formula the most unstable zonal

ltmef
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FF16. 8. Growth rates for the second most
unstable mode when Ri=0.5.

wavenumber is

5/2 \}
k= <— > , 4.2)
14-Ri
and it has a growth rate
5/54 \}
=) @3)
14-Ri

Eq. (4.1) is plotted in Fig. 10 along with the exact
numerical results for the large-scale perturbations. The
curves are plotted for Ri=%, 1 and 2. [The error in
Eq. (4.1) is largest when Ri=1.] The agreement
between the two sets of curves is quite good. The error
in Eq. (4.2) is never more than 79, and that in Eq.
(4.3) never more than 6%.

Eq. (4.2) leads to a simple relation between the zonal
scale of the most unstable geostrophic baroclinic
perturbation and the internal scales in Eady’s model.
There are two internal scales: first, the scale we used
to put the equations in dimensionless form, i.e.,
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F1c. 10. Comparison of growth rates from
the exact and approximate solutions.
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and second, the radius of deformation,
gH Ay}
(% =)
1 o

The Richardson number [Eq.
expressed as

4.5)
(2.2)] can be simply

L2

Ri=—.
L02

(4.6)

Thus, if we let L be the most unstable zonal wavelength
with dimensions

2r
L=L0—, (4.7)
k
from Egs. (4.2), (4.6) and (4.7), we obtain
27
L=————(L®+L2*=4.0(L2+ L2t  (4.8)

V32

The zonal scale is simply the root mean square of the
two internal scales.

5. Conclusions

The numerical solutions show that the largest growth
rates are never associated with the perturbations left
out of the analysis of Part I. Therefore, the tentative
conclusions of Part I as to which kinds of instability
will dominate are verified. The largest growth rates are
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associated with geostrophic baroclinic instability if
Ri>0.950; with symmetric instability if $+<<Ri<0.950;
and with Kelvin-Helmholtz instability if 0<Ri<%,
The first two types of instability exist simultaneously if
0.834<Ri<1, and thelast two types exist simultaneously
if O<Ri<i. A recent laboratory experiment (Stone,
et al., 1969) showed qualitative behavior very similar to
these theoretical results.
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