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Abstract

The main points that the authors aim to prove are:

I Mixed layer instabilities (or MLIs) are a leading-order
process in the oceanic mixed layer (ML) temperature,
salinity, and momentum budgets

I These MLIs manifest themselves as baroclinic instabilities
that develop on the submesoscale, and act to continuously
restratify the surface ML

I MLIs can occur at a fast enough timescale to restratify
between mixing events

I The release of PE and subsequent restratification is strong
enough to compete with turbulent processes that work to
mix the ML
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Imagine a storm...

I Storm mixes the first 100 m of
the ocean surface over a patch
of a few hundred km2

I Result is a homogenized layer
with lateral variation in T and
S

Jon Nash, OSU

I Adjustment process
1. Slumping of nearly vertical isopycnals via gravity
2. Rotation modifies/slows down the slumping process, leading

to geostrophic adjustment
3. System is unstable to submesoscale eddies, and baroclinic

instabilities set in

I System is restratified → another storm hits → repeat
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Fundamental characteristics

CTD data from SeaSoar section - subtropical N.
Pacific Ocean

Background states used in QG stability analysis,
N =

√
−gρz/ρ0 & Uz = gρy/fρ0

I Horizontally inhomogeneous ML in upper 100 m

I Stratification & shear are weak in ML, increase suddenly across ML base, then decrease
exponentially through thermocline

I In order to study whether this stratification can lead to baroclinic instability, a QG
stability analysis is performed on background state
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QG stability analysis results

Two classes of instabilities:

1. Deep mesoscale instabilities: Scales > 20 km & near 1 mo

I Vertical structure penetrates to ocean bottom
I Source of oceanic mesoscale eddy field

2. Shallow MLIs:

I 200 m - 20 km, & growth scales ∼ 1 day
I Trapped in surface ML
I Energize by slumping ML density fronts

TAKE-AWAY: QG analysis shows that the mixed layer can host MLIs, which are smaller and
faster than mesoscale instabilities
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Geostrophy vs. ageostrophy

Consider baroclinic instability characterized by U and L, associated with disturbance
developing along the front. In terms of Rossby number, Ro = U/fL

L ∼
U

fRo
and T ∼

1

fRo

Baroclinic instabilities grow near local Rossby radius of deformation,

NH

fL
∼ 1

where H is the vertical scale of mode under consideration
Rewrite in terms of Ro and Ri:

N2H2

f2L2
= Ro

2
Ri ∼ 1

where Ri = N2H2/U2 is the bulk Richardson number
This determines the scale of most unstable modes for a given stratification

I Strongly stratified: Ri� 1 & Ro� 1 → QG limit

I Weakly stratified: Ri = O(1) & Ro = O(1) → fast ageostrophic flows
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An ageostrophic model

I Assume Boussinesq adiabatic
inviscid fluid

I Moving interface at z = −H(y)

I Jump in stratification and
velocity at interface, ∆B &
∆U

I Assume ∆B at ML base is >
buoyancy variations in ML

Dimensional scaling for variables:
(x∗, y∗) = Uf−1(x, y)
(u∗, v∗) = U(u, v)

(b∗, B∗,∆B∗) = N2H0(b, B,∆B)
z∗ = H0z
w∗ = H0fw
p∗ = N2H2

0p

t∗ = f−1t

H∗ = H−1
0 H

→

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

Du

Dt
= v − Ri

∂P

∂x

Dv

Dt
= −u− Ri

∂P

∂y

Riδ
2
[
Dw

Dt

]
= −Ri

∂P

∂z
+ Rib

Db

Dt
= 0

where δ = f/N
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An ageostrophic model cont.

Nondimensional basic state:

U(z) = z + 1 and B(y, z) = z −
y

Ri

Assume perturbations of the form eikx

Linearized equations for basic state:

iku +
∂v

∂y
+
∂w

∂z
= 0

[
∂

∂t
+ ikU(z)

]
u + w − v + ikRip = 0

[
∂

∂t
+ ikU(z)

]
v + u + Ri

∂P

∂y
= 0

Riδ
2
[
∂

∂t
+ ikU(z)

]
w − Rib + Ri

∂P

∂z
= 0

[
∂

∂t
+ ikU(z)

]
b−

1

Ri
v + w = 0

Boundary conditions:
w = 0 at z = 0
w = −∂η/∂t− v(dH/dy) and p = ∆Bη at
z = −1
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Stone (1970) solution

Stone (1970) solved equations with rigid lid at top and bottom
boundary; looked for solutions of the form ei(ly+σt)

Found 4 types of instability:

1. Baroclinic mode: most unstable wavenumber has a zonal
wavenumber and vanishing meridional wavenumber
(k → 0, l = 0)

2. Convective mode: for Ri ≤ 0, smooths out vertical
stratification

3. Symmetric mode: (k → 0, l→∞) grows until Ri→ 1, then
baroclinic mode takes over

4. Inertial critical layer mode: arises for ML-base slopes
steeper than allowed by approximations which are used to
derive BCs

For Ri < 1, convective and symmetric instabilities develop,
bring Ri to unity; for Ri > 1, baroclinic mode takes over
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Stone (1970) solution cont.

I Bulk of restratification is associated with instabilities that
occur for Ri ≥ 1

I Full ageostrophic analysis confirms that ML baroclinic
mode resembles the shallow baroclinic instabilities → ML
ageostrophic baroclinic instabilities are MLIs

Growth rate vs. wavenumber, Ri = 2, l = 0
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The effect of a deformable ML base
I The authors solve the eigenvalue problem with deformable

bottom boundary and plot solutions for different values of
Hy

Ri = 2 & 0.5, ML base tilts -0.05-0.05

I Main effect of a tilt is to suppress instabilities at small
wavenumber, and thus suppress long-wave MLIs

I TAKE-AWAY: Tilts in the ML base can explain separation
of scales between mesoscale and ML instabilities
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MITgcm model
I Investigate finite-amplitude development of MLIs - simulation of the adjustment of an

ML front in a reentrant channel on the f plane
I Channel is 100 km × 200 km × 300 m; ML is 200 m deep
I Horizontal temperature gradient of 2.5◦C across 50 km

I Vertical isopycnals oscillate around geostrophically adjusted state, N2 ≈ B2
y/f

2

I Bulk of restratification begins after day 10, when MLIs reach finite amplitude
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Potential vorticity budget

Main question now is: How can MLIs achieve restratification?

Full Ertel vorticity budget is given by

P = ωa · ∇b

where ωa = f ẑ +∇× u is absolute vorticity
Changes in PV:

∂P

∂t
= −∇ · J, where J = uP +∇b× F− ωa

∂B

∂z

Advective processes like MLIs can restratify a flow by
rearranging the PV in such a way that fbz increases in the ML
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Potential vorticity budget cont.
Integrate PV equation over full horizontal domain & between
two vertical levels zt and zb, and for times 0 to t,∫ zt

zb

(
P̄ |t − P̄ |t=0

)
dz = −

∫ (
J̄z|z=zt − J̄z|z=zb

)
dt

I During first 10 days, PV increases in upper & lower layers
I After day 10, fully developed eddies generate circulation in

the ML, that advects high PV from surroundings → ML
restratification
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Potential energy budget

What controls the eddy-driven circulation?
Baroclinic eddies in a channel drive an overturning circulation in the (y,z) plane that
transports PV,

ψ =
w′b′

b̄y

Strength of circulation ∝ eddy release of mean PE, w′b′

PE Extraction with fronts 5× 10−3 ◦C/km

(light) and 5× 10−2 ◦C/km (dark) across 20
km

I PE extraction is always positive

I Release of PE by MLIs is O(1) with
other ML processes for fronts
> 1× 10−3 ◦C/km

I TAKE-AWAY: Release of PE by MLIs
is strong enough to compete with
turbulent processes that homogenize
the ML
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Potential energy budget cont.
Baroclinic eddies achieve maximum release of PE by fluxing
buoyancy at 1/2 the angle of the mean isopycnals (Pedlosky
1987),

w′b′

v′b′
= −1

2

b̄y

b̄z

−w′b′ b̄z/v′b′ b̄y vs. time

I The eddy flux slope
oscillates around 1/2 the
isopycnal slope for most
of the simulation
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Potential energy budget cont.

I In all simulations, ψ tracks evolution of w′b′

I ψ is not affected by diurnal forcing, because vertical mixing
due to surface heating/cooling does not affect either w′b′ or
by → eddy-driven circulation is independent of frictional
and diabatic processes

I Rate of restratification is affected by external forcing,
because frictional/diabatic processes are the only ones that
can modify the PV state on which ψ acts
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Conclusion

I Lateral buoyancy gradients are created through surface
fluxes or mesoscale straining

I These gradients will slump under the action of gravity

I Rotation constrains the efficiency of the slumping, because
thermal wind balance is established

I Ageostrophic baroclinic instabilities (MLIs) allow for
restratification by creating wavelike disturbances that
upset the balance

I MLIs rapidly reach finite amplitude and tilt isopycnals
from vertical to horizontal

I MLIs develop on the submesoscale and work fast enough to
restratify between mixing events

I Finite-amplitude MLIs inject high PV waters into ML by
driving large vertical velocities that cause entrainment
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