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ABSTRACT

The baroclinic instability characteristics of zonally inhomogeneous basic states are examined with the
intent of clarifying the factors governing the regional distribution of cyclogenesis. The vertical shear of the
basic state wind is allowed to vary gradually in the zonal direction, so as to permit the representation of
zonally localized regions of high baroclinicity. The resulting eigenvalue problem is solved directly by
numerical means and also analytically via a WKB analysis. It was established that flows with localized
baroclinicity can support two distinct classes of unstable modes, which we call “local” and “giobal.” The
local modes have peak amplitude downstream of the point of maximum baroclinicity, decay to zero
exponentially upstream and downstream of the peak and do not require zonally periodic boundary conditions
for their existence. The growth rate of a local mode is equal to the absolute growth rate (in the sense of
Merkine) determined locally at the point of maximum shear. The absolute growth rate decreases when the
vertically averaged zonal wind is increased, in contrast with the conventional locally determined maximum
growth rate. Further properties of the local modes are discussed. The global modes, on the other hand,
require periodic boundary conditions for their existence and have growth rates which are sensitive to the
average baroclinicity over the domain. Global modes take a much longer time than local modes to emerge
from random initial conditions.

On the basis of these results, it is suggested that the locally determined absolute growth rate is a useful
diagnostic for assessing the stability properties of inhomogeneous flow. In this connection, a tentative analysis
of the results of Frederiksen on planetary wave instabilities was found to be encouraging. Although only a
simple model of baroclinic instability was considered in the present work, the techniques developed can be
generalized to any kind of instability provided that there is a separation in spatial scale between the eddies
and the basic state. It is thus proposed that there is a general link between absolute instability and the

JOURNAL OF THE ATMOSPHERIC SCIENCES 15 JULY 1984

instability of nonparallel flow.

1. Introduction

The delineation of the factors governing the geo-
graphical distribution of cyclone occurrence is essential
to the understanding of a number of other atmospheric
phenomena of great importance. In the domain of
long-range weather forecasting, for example, it is
necessary to link the shifts in the storm tracks (which
determine much of the anomalous weather) to shifts
in the large-scale planetary wave pattern. Indeed, the
positions of the storm tracks and their associated
eddy fluxes of heat and vorticity may influence the
state of the planetary waves themselves (Hoskins et
al., 1983). Inhomogeneous eddy fluxes arising from
synoptic scale transients have also been implicated in
the maintenance of blocking patierns (Green, 1977;
fllari and Marshall, 1983). In connection with the
latter, the distribution of cyclones relative to regions
of high and low baroclinicity is particularly important.
Even a cursory examination of the literature would
reveal many other studies in which it was necessary
to deal with the regional character of cyclogenesis.

The earth’s atmosphere is characterized by localized
regions of high baroclinicity, and therein lies the

main difficulty: most of our understanding of cyclo-
genesis descends from studies of the instability of
zonally homogeneous parallel flows. A fruitful attack
on the problem of regional cyclogenesis has been
developed in a series of papers by Frederiksen, in
which the stability characteristics of stationary zonally
varying flows were numerically determined (see Fred-
eriksen, 1983 and references therein). Niehaus (1980,
1981) has pursued a parallel line of investigation for
the problem of instability of forced waves in the Eady
problem. In Frederiksen (1983) considerable agree-
ment was found between the observed geographical
distribution of synoptic scale eddy heat flux and the
distribution predicted by the most unstable modes of
the linear, zonally inhomogeneous stability problem.
Nevertheless, in trying to understand the results of
the stability calculation, one encounters a host of
theoretical issues which have not yet been addressed.

Notably, the January Northern Hemisphere flow
considered in Frederiksen (1983) yielded localized
Pacific and Atlantic storm tracks, whereas the July
pattern yielded a single unstable wave train which
extended almost around the globe. Similarly, the
idealized flow treated in Frederiksen (1979) yielded a
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single weakly modulated wave train rather than lo-
calized storm tracks. What feature of the basic-state
flow determines the degree of zonal localization?
What is the physical mechanism responsible for the
localization? What can be said about the effects of
nonlinearity on the local character of the modes? The
maximum amplitude of the mode is generally found
downstream of the region of highest baroclinicity.
Why is this the case? What determines how far
downstream the maximum amplitude occurs? The
most unstable mode for the January flow consists of
an isolated Atlantic storm track, whereas the Pacific
storm track appears only in a mode that exhibits an
accompanying Atlantic storm track. Does this mean
that cyclogenesis in the Pacific should in some way
be correlated with cyclogenesis in the Atlantic? Finally,
the growth rate of the most unstable mode found in
Frederiksen (1979) was essentially unaffected by the
presence of the idealized planetary wave, in contrast
with the results on the effects of realistic waves
reported in Frederiksen (1983). Can we derive a
quantity that provides an a priori estimate of the
degree of instability of such nonzonal flows?

The. separation in spatial scale between stationary
waves and the rapid instabilities that are found to
develop on them suggests that the above issues can
be approached through the consideration of some
suitable local characteristics of the nonzonal basic-
state flow. Specifically, one can define a local disper-
sion relation at each longitude by solving the stability
problem relating complex frequency to zonal wave-
number as if the zonal flow at that particular longitude
were extended uniformly around the globe. Under
the assumption of slow zonal variation of the basic
state, it would then be expected that the local disper-
sion relations would contain all the information
necessary to determine the stability of the nonzonal
state and the structure of the eigenmodes. But what
property of the local dispersion relation characterizes
the degree of instability of the nonzonal state and the
degree of localization of the unstable modes? A
reasonable first guess would be the growth rate of the
fastest growing normal mode associated with each
local dispersion relation, which can be generally
measured by the local degree of supercriticality of the
flow. In the case of two-layer flow without horizontal
shear, for example, the Phillips criterion states that
instability occurs only when the vertical shear exceeds
a certain critical value; in this case, the amount by
which the shear at each longitude exceeds the critical
shear would seem to be of obvious importance.
Indeed, Frederiksen (1978, 1980) attempted to relate
the stability characteristics of idealized planetary waves
to the pattern of zonal variation of supercriticality,
making use of a heuristic generalization of the Phillips
criterion that incorporated some of the effects of
meridional shear. He established through numerical
experimentation that the eigenmodes attain maximum
amplitude downstream of the regions of maximum
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supercriticality, and that the ampl\litude of modulation
of the unstable wave train increases with increasing
zonal range of supercriticality. However, no attempt
was made to explain these relationships analytically
or physically. Moreover, no quantitative relation be-
tween the maximum supercriticality and the growth
rate of the instability was found. -

Further reflection reveals a serious problem with
the use of local -supercriticality as a guide to the
stability characteristics of nonparallel flow. When a
flow is zonally inhomogeneous, a wave packet has
the possibility of propagating out of an unstable
region before it has time to grow significantly; thus,
the degree of instability of the flow should be sensitive
to the joint effects of local propagation speed and
local growth rate. The Phillips’ criterion, like other
measures of the magnitude of local energy sources,
manifestly fails in this regard, as it is insensitive to
the addition of a- mean flow.! The importance of
propagation may also be arrived at through consid-
eration of the symmetry properties of the basic flow.
Consider, for example, synoptic scale quasi-geo-
strophic flow on the baroclinic beta-plane. In this
system, the stability problem for parallel flow is
invariant under the Galilean group, that is, the ad-
dition of constant zonal flow shifts the real parts of
the eigenvalues of the problem by a corresponding
amount without affecting the growth rates. If zonal
inhomogeneity of the basic state is introduced, though,
the Galilean invariance is broken, and the addition
of a constant zonal flow can have a nontrivial effect.
The fact that a wave packet can propagate out of an
unstable region is central to the understanding of the
instability of nonparallel flow. An analytical clarifi-
cation of the role of the phenomenon is therefore
essential. '

Fortunately, a convenient mathematical apparatus
is available for the analysis of the balance between
propagation and growth of unstable wave packets.
The answer lies in the concept of “absolute” versus
“convective™? instability, which was introduced into

'In a spherical geometry, the addition of a barotropic flow to
the basic state has two effects that cannot be isolated from each
other. First, the flow alters the speed of propagation of wave
packets. In addition, the meridional shear of the flow can stabilize
or destabilize the perturbations. On a beta-plane, we can eliminate
the latter effect by choosing a y~independent flow. On a sphere, the
closest analog to such a flow is uniform super-rotation. The
addition of such a flow changes the stability characteristics by
changing the basic state vorticity gradient, entirely apart from its
effects on wave propagation. The generalized Phillip criterion
discussed in Frederiksen (1980) reflects only the vorticity gradient
effect.

2 The unfortunate term “convective” was introduced by investi-
gators in the area of plasma physics, in which there is little risk of
confusion of the phenomenon with the thermally driven convection
familiar to fluid dynamicists. The term refers to wave packet
propagation rather than any sort of thermally driven instability. As
such, the terminology “advective” would be more congenial, though
the original nomenclature is rather entrenched.
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geophysical fluid dynamics by Merkine (1977). By
way of illustration, consider the evolution of an
initiaily lccalized disturbance in an unstable system
that is infinite in the zonal (x) direction. The wave
packet set up by the disturbance will grow, spread
and propagate, but not all parts of the wave packet
grow ai the same rate. Consequently, we can distin-
guish between the “absolute” growth rate, corre-
sponding to the growih rate at a fixed point x after a
very long time has passed, and the “peak” growth
rate, corresponding to the growth rate observed by
following along with the moving peak of the wave
packet. The latter is given by the most unstable
normal mode, and the absolute growth rate will
aiways be less than this value. Simply put, the absolute
growth rate is the growth rate of the part of the wave
packet that is left behind afier the peak moves away.
The absolute growth rate can be zero even when the
peak growth rate is substantial, a situation known as

“convective instability.” The converse situation, in°

which the absolute growih rate is nonzero, is known
as “absoclute instability.”

in connection with the zonally inhomogeneous
stability problem, we wish to use the absolute insta-
bility concept to differentiate “local” modes from
“global” modes. The former correspond to modes
that grow in situ after the transient pulse has moved
cut of the unstable zone, while the latter arise in a
cyclic domain when a wave packet passes repetitively
through the same unstable zone, acquiring more
energy on each pass. Given that real cyclones mature
and decay before completing even a single circuit of
the giobe, we believe the latter class of modes to be
nonphysical, in the sense that a given global mode is
unlikely to appear by itself. Of course, the global
modes may still be physical in the sense that a large
number of them could be superposed in order to
represent the transient evolution of a wave packet. It
is our hypothesis that the local modes, when they
exist, are characterized by the maximum absolute
growth rate obtaining around the globe.

The connection between absolute instability and
the instability of zonally inhomogeneous flow is the
central theme of this paper. The struciure of the
unstable eigenmodes will be seen to arise naturally
from this link. As the vehicle for exploring the
theoretical issues raised above, we make use of an
idealized model describing the baroclinic instability
of a zonally varying two-layer flow on the beta-plane.
This model is described in Section 2. In Section 3 we
review the salient features of the theory of absolute
instability of zonal flow and in Section 4 we present
the results of a numerical computation of the most
unstable eigenmodes for a family of zonally inho-
mogeneous basic states. These results clearly establish
the guantitative link between absolute instability and
focal instability of nonparallel flow. This link is put
on firm analytical footing through an asymptotic

analysis of the problem via WKB techniques in:
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Section 5. The requirements for localization and the
reason the modes attain maximum amplitude down-
stream of the baroclinic zone are explained there as
well. The general implications of our results are
discussed in Section 6, and the most important
conclusions are summarized in Section 7.

Gent and Leach (1976) and Niehaus (1981) per-
formed illuminating WKB analyses of the instability
of zonally varying flows. However, by neglecting the
possibility of WKB “turning points™ associated with
absolute instability, these authors were able to find
only global modes (in our terminology). The WKB
analysis of the global modes in the two-layer model
which we discuss briefly in Section 5¢ does not differ
greatly from the development followed by Gent and
Leach. We have nonetheless derived a few general
features of global modes which have not been previ-
ously discussed.

Although only a simple model of local baroclinic
instability is treated in the preseni work, the ideas
are quite general and extend readily to realistic baro-
clinic-barotropic flows (provided as always that the
requirement of gradual zonal variation is met). Indeed,
the eigenmodes of local barotropic instability emerging
in numerical simulations conducied by Merkine and
Balgovind (1983) have a spatial structure that is
strikingly similar to that of the baroclinic modes
described below; it thus seems possible that their
results could be explained by a similar analysis. The
barotropic theory would certainly be relevant to the
theory of monsoon depressions proposed by Lindzen
et al. (1983). In fact, these authors recognized the
importance of absolute instability in determining the
stability characteristics of local winds, though the
relation was not quantified or made precise. Nor are
the concepts restricted to quasi-geostrophic systems;
they could be applied equally well to, say, local
Kelvin~-Helmholz instability. Finally, one might be
tempted to analyze the intriguing results of Simmons
et al. (1983) in terms of the ideas presented herein.
However, owing to lack of clear separation of scales
between the basic state and the instability, such an
analysis would be unlikely to prove fruitful.

2. Mathematical formulation of the stability problem

We begin with the nondimensional equations de-
scribing quasi-geostrophic flow of a two-layer fluid
on the beta-plane. Let L; = (gAoD/pofo?)'? be the
deformation radius based on layer depth D, and let
U be an as yet unspecified velocity scale. If we
nondimensionalize lengths by L , velocities by U and
times by L;/U, the equations of motion become

6,q;+J(;, ¢)=0, j=1,2, 2.1

where j = 1 corresponds to the upper layer, j = 2
corresponds to the lower layer, y; is the streamfunction
and g; is the potential vorticity, which is given by

g =V — (1YW — ) + By.  (22)
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In 22) 8 = B,LdZ/U is the nondimensional beta- -

parameter, where @, is the dimensional planetary
vorticity gradient. Next, we linearize the equations of
motion about a stationary state np,(x y) with corre-
sponding potential vorticity

g% ¥) = VA — (=1)(J, -
Upon substituting
¢j = \Zj(xs J/) + 5(/}()6, Y t)}
4 = Gilx, Y) + @i(x, 3, )

into (2.1) and neglecting terms quadratic in the
~ perturbation quantities, the linearized equations of
motion are found to be

a.q; + I, @) + I}, §)) = 0,
a; = VA — (=15 — ). (2:6)

An arbitrarily chosen fbj generally will not be a
stationary solution to (2.1). However, any state can
be made stationary through the introduction of a
suitable stationary vorticity source, as was done in
Frederiksen (1983).

We now restrict attention to a special basic state
which describes a zonal flow in each layer whose
strength varies slowly in the zonal direction. To this
end we introduce a slow zonal scale X = ex, where
€ < 1, and set

v+ 8y (23)

24

2.5)
* where

\zj = —(]j(X)y’

in which y is to be regarded as an O(1) quantity. The
zonal wind described by (2.7) has no horizontal shear,
so that local barotropic instability is precluded. Nev-
ertheless, (2.7) is sufficiently general as to  allow
localized regions of high baroclinicity, which is the
configuration of primary interest. The general situation
we wish to treat is depicted in Fig. 1.

Upon substituting (2.7) into (2.3), the basic-state
potential vorticity becomes

0

—
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G = M)y + 0@, (2.8)

where ‘ N
4i(X) =B+ (—1Y(U, - 1), (2.9)

whence the second Jacobian in (2.5) bécomes
JW), @) = O¥)AX) — 8 ))(0x4))y + O(ed).

(2.10)

Likewise, the first Jacobian becomes

i, 47) = —e0xU))0,a))y + Uid g + O().  (2.11)

Combining these two results, the perturbation equa-

tion is ,

0, + Ujdx)g; + O))A;

= ey[(@,¥))0x4)) + OxU)9,4))].  (2.12)

In general, the O(e) term in (2.12) must be retained
if one wishes to follow the evolution of a wave packet
as it propagates through the inhomogeneous medium,
This is because the basic state varies appreciably only
over zonal distances of O(1/¢); hence, a wave packet
moving at O(1) speed requires a time of O(1/¢) to
traverse the inhomogeneous region. Consequently,
the approximate equations used must remain valid
out to ¢t = O(1/¢). This is also the time scale required
for the initial perturbation to ecvolve into an eigen-
mode. . .
If the initial perturbation is y-independent, though,
the O(e) term in (2.12) vanishes identically, and the
solution remains y-independent out to ¢t = O(1/e¢)
because the coefficients of the lhs of (2.12) are inde-
pendent of y. In this case, (2.12) takes the form

O + Uid)g) + (0:4A; =0,  (2.13a)
q; =¥ — (—1YWr—¥1),  (2.13b)

and the form of 4; given in (2.9) remains the same.
The remainder of this paper will deal primarily with
the properties of (2.13). Although the system is highly

where

X -

o
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>

U=, +U,)/2

FIG. 1. Plan view illustrating the general character of the basic states examined in the stability study. The
contours represent either upper level streamlines or contours of constant interface height (analogous to
potential temperature in a continuously stratified model). The zonal wind is independent of y and the vertical

mean of the zonal wind flows from left to right.
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idealized, it retains all the features necessary for the
investigation of the issues raised in the Introduction.
It is important to note that (2.13) has precisely the
same form as the conventional system describing
instability of zonally homogeneous two-layer flow,
save that the coefficients U,, U,, A, and A, are
allowed to vary slowly in x.

The system (2.13) describes a one-dimensional
marching problem which is readily integrated forward
in time by numerical means. Of course, the integration
must be carried out in a zonal domain finite in X,
with appropriate boundary conditions at the endpoints
of the domain. It is most convenient to impose cyclic
boundary conditions, so that all quantities are assumed
periodic with period L, where L is the width of the
domain. This choice enables us to investigate global
modes, in which the wave packet passes repeatedly
through the baroclinic zone. In order to simulate the
effects of a zonally infinite domain, we have provided
for a sponge region occupying the first third of the
computational domain. Within the sponge region, an
artificial damping is introduced, with damping coef-
ficient increasing from zero at the edges of the sponge
region to 2 maximum value at its center. The sponge
region absorbs virtually all energy leaving the right-
hand boundary of the domain, thereby suppressing
global modes. Most of the local modes we will
consider, however, have infinitesimal amplitude at
the computational boundaries and are therefore es-
sentially unaffected by the cyclic boundary conditions.
In such cases, we have found the inclusion of the
sponge region tc have virtually no effect on the
modes.

With cyclic boundary conditions, the system is
most easily solved using spectral transform techniques.
All results to be presented below were computed
using 512 Fourier modes in a domain extending from

= —20x to x = 20wx. In all cases, we show only the
lower-level streamfunction perturbation ¥5(x, ?).

3. A review of the theory of absolute and convective
instability

Because the concept of absolute instability figures
so prominently in the subsequent discussion, it is
necessary to digress for a review of the rudiments of
the theory. We follow the development of Merkine
angd Shafranek (1980) quite closely, and the reader is
referred to that work for a more complete review.
Consider the evolution of one-dimensional linear
waves in the domain —o0 < X < co. Suppose that
the dispersion relation for the system is

w = w(k), 3.1)

where  is the frequency corresponding to wavenum-
ber k. We allow w to be complex, so that unstable
waves can be treated. The evolution of a general
wave packet is then given by

R. T. PIERREHUMBERT
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Wx, 1) = f_@ A(k)e e ®ndk, (3.2)

where A(k) is determined by initial conditions. It can
be shown that the asymptotic form attained by the
wave packet as t — oo with x/f bounded is

il o lx/Dks=wlks)lt
‘#(x, t) ~ A(ks)me i(w/4) (dzw/dkzlk )l/2t|/2 ’ (33)
where k,(x/1) is determined by the equation
dw x
dkl,, (3.4)
ks

Equations (3.3) and (3.4) represent a generalization
of the well-known stationary phase approximation to
the case of complex w, corresponding t0 an unstable
system. According to these formulae, Im[w(k;)
— (x/t)k,] gives the growth rate following the ray x/t
= const. Two rays are of particular interest. The first
is the ray associated with the value of k where

dw,- )
p 0. 3.5)
Recalling that w; is the growth rate of the disturbance,
we see that this k corresponds to the real wavenumber
at which the maximum growth rate is attained; it is
the “most unstable wavenumber” as conventionally
defined and will therefore be designated k,,. Appealing
to (3.4), the ray along which the maximum growth
rate is attained is defined by

x dw,

i (3.6)
Thus, the peak of the wave packet grows with the
growth rate of the most unstable normal mode and
moves with the speed of the group velocity evaluated
at the most unstable wavenumber.

The second ray of special interest is that corre-
sponding to the behavior at fixed x as t — oo, SO
x/t — 0. From (3.4) the value of k; for this ray is
determined by solving the equation

do| _ 0 3.7
dk ks - ( . )
Henceforth, we shall denote this special k; by kp. It
is important to note that, since w(k) is complex, kg
must generally be complex as well. According to
(3.4), the form of disturbance remaining in a fixed
range of x after a sufficiently long time is

e—iw(ko)l eikox

_ iy _C ¢
W ) ~ Alko)V2me™ ™" o=

(3.8)
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Thus, the disturbance at fixed x grows with growth
rate w;(ky), which may be called the “absolute”
growth rate. The absolute growth rate can be zero or
negative even when w;(k,,) is positive. When w;(k,)
is positive, the system is said to be absolutely unstable.
If wi(ky) is negative or zero while w;(k,,) is positive,
the system is said to be convectively unstable. Another
noteworthy feature of (3.8) is that, because k, is
complex, the disturbance grows exponentially in space
in some direction (presumably toward the peak of
the wave packet). What we see here is essentially the
structure of the tail of the wave packet that has been
left behind after the peak has moved away.

It may be helpful at this point to show how these
ideas manifest themselves in the evolution of some
actual unstable wave packets. To this end, we discuss
two simulations performed with the two-layer model
described in Section 2. For these examples, the basic-
state flow is taken to be zonally uniform. Units of
velocity are chosen such that the shear U; — U, = 1.
The sponge region was not included in these simu-
lations, so that a wave packet leaving the right-hand
boundary of the domain will reenter the domain
from the left; calculations were terminated before this
effect could contaminate the results. Both cases were
carried out with 8 = 0.25. In the first case, we set
U= (U, + U,)/2 = 0.2, which can be shown to
result in absolute instability for the aforementioned
B. In the second case, we set U = 1.5, which can be
shown to result in a convectively unstable system. In
each case, the initial perturbation consisted of a
Gaussian disturbance of the lower-level streamfunc-
tion field centered on x = 0. The wave packets shown
are plotted with a logarithmically transformed ordi-
nate, in order to make the structure of the tails
visible. :

In Fig. 2 we show the time evolution of the wave
packet for the case U = 0.2. The peak grows expo-
" nentially and moves downstream, but leaves behind
in its wake a tail that also grows exponentially, albeit
at a slower rate. The point to be emphasized is that
the disturbance at x = 0, the site of the initial exci-
tation, grows in time. This state of affairs may be
contrasted with the case U = 1.5, shown in Fig. 3.
‘Here the peak grows at the same rate, but moves
downstream more rapidly. In this case, though, the
wake left at x = 0 does not grow with time.

These zonally homogeneous examples reveal a
certain triviality of the notion of absolute instability
from a physical standpoint. Regardless of whether
the disturbance grows at fixed x, the peak grows with
the usual normal-mode growth rate. In any zonally
homogeneous physical situation, the rapidly growing
peak will soon come to dominate the evolution of
- the flow. In a zonally inhomogeneous flow, however,
the concept of absolute instability is more powerful.
Here, what would have been the peak can move out
of the unstable region into a region of lesser instability
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where its growth rate is reduced. If the reduction in
growth rate is sufficient, the growth rate of the
erstwhile tail can come to dominate the growth rate
of the former peak, whereupon the “tail” becomes
the site of maximum amplitude of the mode. It is in

‘this situation that we expect a locally confined eigen-

mode to evolve. In a sense, then, it can be said that
considerations of zonal inhomogeneity lend physical
importance to the concept of absolute instability.
This idea will be made more precise later in this
paper.

4. Eigenmodes for zonally inhomogeneous flow: Nu-
merical results

In this section, the system described in Section 2
is used to numerically compute the eigenmodes and
eigenvalues of two families of zonally inhomogeneous
flow. For each flow under consideration, we integrated
the perturbed system forward in time until the most
unstable eigenmode emerged. This technique restricts
us to considering only the most unstable mode for
each flow, but has the virtue of making it practical
to use very high resolutions in the computation of
the eigenmodes. After a sufficiently long time, the
fastest growing mode (if there is a single such mode)
dominates the evolution, and the perturbation field
assumes the form '

V) = [49(x) cosw,t — A(x) sinw, fle*”, (4.1)

where A4,(x) and A;(x) are the real and. imaginary
parts of the eigenmode. The growth rate w; was
determined by computing a long-term average of the
growth of the perturbation kinetic energy. Indepen-
dently, A4,, A; and w, were determined at each x by
performing an exact fit to the local time evolution;
the consistency of w, from one point to another was
used as a check on the assumption that the time
evolution had achieved the form of an eigenmode.
The velocity profiles were taken to be of the form

= U+ DUx)/2
Ux) = U+ U(X)/J’ @2)

Uy(x) = U — DU(x)/2

where the mean flow U is independent of x. In each
series of experiments we keep the vertical shear profile
DU(x) fixed and examine the stability properties of
the flow as a function of mean flow U. Of course, for
zonally homogeneous flow this dependence is trivial.
We will see that the effect of U in the zonally
inhomogeneous case is far more interesting.

We consider profiles which are symmetric about
the middle of the domain, so that DU(—x) = DU(x).
We assume further that the maximum shear, and
hence the maximum baroclinicity, is attained at
x = 0. All velocities are nondimensionalized by the
maximum shear, so that DU(0) = 1. In these units,
the Phillips criterion for conventional normal mode .
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FIG. 2. Time sequence of wave packet evolution in zonally uniform flow in the absolutely unstable case U = 0.2, 8 = 0.25. (a)
T=00)T=12 (c) T = 20, (d) T = 28. The horizontal axis is the zonal coordinate x and the vertical axis is the lower layer

streamfunction. Note the logarithmically transformed ordinate.

instability of a parallel flow with nondimensional
shear DU is simply
DU > 8. 4.3)

All the calculations to be discussed in this section
were performed with 8 = 0.25. The maximum shear
in the domain is then four times the critical shear;
this is not atypical of actual shears observed locally
in the atmosphere. In any event, we have found that
other values of 8 yield qualitatively similar results.
The iwo profiles of DU(x) studied are shown in
Fig. 4. Both are chosen to be slowly varying with
respect to the characteristic length scale of the unstable
eddies, which is ~1 in the nondimensional units
used here. For Profile 1 DU(x) — O for large |x|; in
this profile there is no energy source at large |x| and
the flow there can support only a spectrum of neutral
Rossby waves. For Profile 2 DU(x) — 0.5 at large

Ix]; this profile is unstable at large |x| according to
the local Phillips criterion. It will be seen that Profile
2 can nevertheless support localized baroclinic insta-
bility modes that decay to zero at large |x|.

We will deal with both local and global instabilities,
though the emphasis will be on the former. Local
instabilities are distinguished by the fact that they do
not require periodic recycling of energy through the
baroclinic zone for their existence. Therefore, it is a
convenient idealization to think of them as existing
in a zonally infinite domain, in which the stream-
functions satisfy the boundary condition

¥;—0 as x| — oo. (4.9)

As stated in Section 2, the numerical computation
was actually carried out subject to periodic boundary
conditions. Therefore, in order to reproduce the
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effects of a zonally infinite domain, it is necessary to
suppress the spurious recycling of energy leaving the
right-hand boundary of the computational domain.
This was achieved by introducing a sponge region
between x = —20x and x = —6.6667 designed to
absorb essentially all energy entering the domain
from the left. It is important to note that the sponge
region is a computational device, and that a dissipating
region is not really necessary for the existence of local
modes in a periodic domain of sufficiently large
period. In particular, if the mode is sufficiently local-
ized that its amplitude decays to essentially zero
before the computational boundaries are reached,
then the periodic boundary conditions will have little
effect on its structure or eigenvalue. The sponge
region, then, serves iwo computational purposes.
Firstly, it eliminates the global modes and allows the
most unstable local mode to emerge in cases where
a globa! mode would otherwise be dominant. Sec-
ondly, it eliminates “wraparound” of local modes
that are too weakly localized to decay to zero at the
right-hand boundary. Because of the large computa-
tional domain chosen, the latter situation was rarely
encountered. Finally, in parameter ranges where global
modes were dominant, they were computed by setting
the sponge dissipation to zero, to allow the recycling
of energy. _

It is our inteni in the following to make use of
idealized flows, in order to develop some general
principles concerning growth rate and modal structure
which may then be applied to somewhat more realistic
circumstances. The zonal scale within which modes
are localized is of particular interest, as it determines
the circumstances in which local modes can occur in
the real atmosphere. Specifically, for the modes to be
physically significant, the scale of localization must
be less than the zonal separation between consecutive
regions of high baroclinicity in the atmosphere. The
localization scale can suggest, for example, when
distinct Atlantic and Pacific storm tracks can exist.
Similarly, the global mode computation serves to
illustrate the general effects of global recycling of
energy on growth rate and modal structure, although
the period of the domain (dimensionally 40 radii of
deformation) is considerably greater than any plausible
zonal scale that can exist on the earth.

With these preliminaries behind us, we first turn

to the numerical results for Profile 1, which has
vanishing baroclinicity at infinity. The sponge region
was inciuded, and eigenmodes and eigenvalues were
computed for several different values of the mean
flow U. In Fig. 5a we show the growth rates as u
function of U. The most important feature is that the
growth rate is greatest-at U = 0 and falls off rather
sharply as U is increased. This result stands in contrast
to the situation obtaining in the more familiar case
of baroclinic instability of zonally homogeneous flow,
in which the growth rate is independent of the mean
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RG. 5. Eigenvalues for Profile 1. The solid curves give the values
associated with absolute instability at the point of maximum
baroclinicity, while the triangles give the numerically computed
results for the zonally inhomogeneous flow. (a) growth rate w;, (b)
frequency w,.

flow. It also demonstrates that the local supercriticality
with regard to the Phillips criterion is not a useful
measure of the degree of instability of zonally inho-
mogeneous flow, as this quantity [DU(0) — B8 in our
units] is insensitive to the mean flow. The falloff of
growth rate with U is, however, suggestive of the
behavior of absolute growth rate, as defined in Section
3. In order to make the comparison quantitative, we
calculated as a function of U the absolute growth rate
of a zonally homogeneous flow with vertical shear
DU(0). The absolute growth rate was calculated by
substituting the two-layer dispersion relation into
(3.7) and solving for ky, as was done by Merkine and
Shafranek (1980). The shear at x = 0 was selected
because for fixed U, the maximum absolute growth
rate occurs where DU (and hence baroclinicity) is
greatest. The curve of absolute growth rate wis s a
function of U is plotted along with the numerical
results in Fig. 5a. It is seen that the numerical results
for the zonally inhomogeneous flow follow the curve
of maximum locally determined absolute growth rate
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very closely. In Fig. 5b we show the frequency w, of also show the curve w,(0) whickh gives the frequency
the dominant eigenmode for Profile 1 as a function of the absolute mode associated with DU(0). The
of U, as revealed by the numerical computation. We agreement between the numerical results for zonally
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inhomogeneous flow and the results of absolute in-
stability theory applied locally at the point of maxi-
mum baroclinicity is almost perfect. These compari-
sons strongly suggest that the instability of the non-
paralle! flow is controlled by the occurrence of absolute
instability at the site of maximum baroclinicity. Tt
should be noted that the sponge region is not essential
to the existence of the modes described above. When
the calculations were repeated without a sponge region,
the results were almost identical except when U was
made greater than approximately 0.55, whereupon a
formerly suppressed global mode began to dominate
the evolution.

in Fig. 6a-f we show the dominant eigenmodes of
Profile 1 for U ranging from 0 to 0.5. Only the real
parts of the lower layer perturbation streamfunctions
are shown; in each case, the imaginary part has a
large-scale envelope similar to that visible in the real
part and differs only in a phase shift of the short
waves within the envelope. The vertical dotted lines
in each graph give the outer boundary of the domain
within which the flow is absolutely unstable according
to the local dispersion relation. The first feature to
note is that the modes are indeed local; each has a
well-defined peak and decays both upstream and
downstream of the peak. The upstream decay is not
an ariifact of the sponge region; calculations without
a sponge region produced essentially indentical results.
For positive U, the peak occurs downstream of the
poini of maximum baroclinicity, as in Frederiksen
(1978, 1980, 1983). We see also that the downstream
distance at which the peak occurs is sensitive to U,
increasing when U is increased; this phenomenon
was not explored in Frederiksen’s work. It is note-
worthy that the modes for larger U shown here bear
a strong resemblance to the eigenmodes of local
barotropic instability computed by Merkine and Bal-
govind (1983). This suggests that the nonparallel
baroclinic and barotropic systems may share a com-
mon mathematical foundation. Finally, we point out
that there is no obvious relation between the domain
of localization of the eigenmodes and the domain
within which the flow is locally absolutely unstable.
In fact, for U = 0.5, the peak amplitude occurs
outside the absolutely unstable region. The actual
local property determining the position of the peak
will be discussed in Section 5.

The same series of calculations was repeated for
Profile 2, which is baroclinically unstable at large |x|.
The growth rate as a function of U is shown in Fig.
72 and the frequency is shown in Fig. 7b. For reasons
that will become clear shortly, results for U > 0.5 are
not shown. Note that the local absolute instability
curves are identical to those in Fig. 5, as DU(0) is
unchanged. Using these curves as a reference point,
it is evident that the numerically determined growth
rates and frequencies are much the same for Profile
2 as for Profile 1, and likewise follow the locally
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FIG. 7. As in Fig. 5, but for Profile 2.

determined absolute instability curves. This shows
that the eigenvalues for these modes are determined
locally by the flow properties near the point of
maximum baroclinicity, and are relatively insensitive
to the baroclinicity away from this point. This feature
is very important, as it implies that the growth rate
of a local mode is determined by the maximum
baroclinicity in the domain, and not by the average
baroclinicity.

The eigenmodes for Profile 2 are shown in Fig.
8a-f,_in the same format as for Profile 1. Note that
for U < 0.3 the flow is not only unstable in the
normal mode sense throughout the domain, but is
actually absolutely unstable throughout the domain;
nevertheless, localized modes exist. Hence, vanishing
absolute growth rate at infinity is not necessary for
localization. 1t is only necessary for the absolute
growth at x = 0 to, in some sense, dominate the rate
at which perturbations grow at infinity. The peaks
shift downstream with increasing U, as for Profile 1.
In the Profile 2 cases, however, it can be clearly seen
that as U increases and growth rate decreases, the
spatial decay scale downstream of the peak becomes
progressively greater. This phenomenon occurs in
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Profile 1 as well, but is not as evident in that case in the barotropic case by Merkine and Balgovind
because the mode always decays so rapidly down- (1983); they were able to explain the phenomenon
stream of the peak that differences are difficult to simply in terms of the Rossby wave dispersion relation
detect by eye. The tendency for more weakly growing for the case in which the flow is unsheared at infinity.
modes to extend further downstream was noted also We see here that the same feature occurs even when
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the flow has an energy source at infinity. A general
discussion of the local properties determining the
downstream decay scale will be given in Section 5.
For U = 0.4, the downstream decay scale becomes
great enough that the sponge region plays a small
role in preventing energy from reentering the domain
from the left. At U = 0.5, the downstream decay
scale becomes essentially infinite; this mode is the
“marginally localized mode” for Profile 2. Modes
with larger U grow exponentially downstream until
the sponge region is reached; such modes are artifi-
cially localized by the sponge region, and could not
exist as local modes in a truly infinite domain. In an
infinite domain, one would see the peak of the wave
packet leaving the highly baroclinic zone grow more
rapidly than the absolutely growing tail left behind;
eventually, the propagating peak would come to
dominate the evolution of the flow. This situation
cannot occur for Profile 1, since wave packets leaving
the baroclinic region in that case lose their energy
source and stop growing. In general, upon comparing
the results for Profile 1 and Profile 2, we find that
the modes for Profile 2 decay more gradually down-
stream of the peak. Thus, the contrast between max-
imum and minimum baroclinicity, in the flow deter-
mines the extent of localization of the eigenmodes,
with high contrast favoring localization.

The conirol of the growth rates of local modes by
local absolute growth rate at x = 0 may seem odd in
light of the fact that the peak amplitude of the
eigenmodes occurs well downstream of x = 0. Our
interpretation of this state of affairs is as follows. The
absolute instability at x = 0 may be regarded as a
“wavemaker” which introduces a sequence of wave
packets, each of which has greater amplitude than
the last. The peak of each wave packet grows in
amplitude as it moves downstream, much as can be
seen in the uniform flow case shown in Fig. 2. In the
zonally inhomogeneous case, though, the growth rate
of the peak decreases as it moves downstream. Past
the point x; where the peak growth rate falls below
the growth rate of successive disturbances released by
the wavemaker (to be thought of as the local absolute
growth rate at x = 0), the amplitude of the peak
arising from the packet released at time #, becomes
less than the amplitude at x; of a packet released at
an earlier time f,.,. In this manner, the eigenmode
attains a form that grows exponentially in space up
0 x; and thereafter decays. Admittedly, this argument
is lacking in rigor. It does, however, predict the
qualitative dependence of the peak position on U.
When U = 0, the absolute growth rate is about the
same as the normai-mode (peak) growth rate; hence,
the normal-mode growth rate at x = 0 coincides with
the absolute growth rate at x = 0, and the peak
occurs there. When U is increased, the absolute
growth rate at x = 0 decreases, but the local normal-
mode growth rate at each x does not; hence, one
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must go to smaller values of DU (larger x) before the
local normal-mode growth rate drops below the ab-
solute growth rate found at x = 0. Accordingly, the
peak shifts downstream. In this fashion, the absolute
instability occurring at x = 0 may be regarded as the
“seed” for instabilities which grow subsequently
downstream. A more rigorous link between absolute
instability, growth rate and position of peak amplitude
will be presented in Section 5.

What happens when U is made so large that the
flow becomes absolutely stable at the site of maximum
baroclinicity? The answer depends on whether 2
sponge region is included. We have found numerically
that when the sponge is included, the initial pertur-
bation grows for a time, while it is still in the
baroclinic zone, but eventually moves out into the
sponge region leaving nothing behind. The wave
packet then decays to zero, leaving an undisturbed
basic state. Thus, with a sponge included the system
becomes stable when the flow at the site of maximum
baroclinicity becomes absolutely stable. This situation
is nonphysical, unless one posits the existence of a
strongly dissipative region in the real atmosphere. In
an infinite zonal domain, in which no sponge would
be necessary, the packet would move away to x = oo
and the perturbation in any fixed range of x would
eventually decay to zero; it is this sort of behavior
that the sponge region is reproducing. What would
happen in the real atmosphere depends on the pos-
tulated fate of the wave packet after it leaves the
highly baroclinic zone. If it moves into a region of
sufficiently weak baroclinicity, natural frictional effects
may indeed be strong enough to cause it to decay,
whence the results would be similar to our results
including the sponge region. Otherwise, the wave
packet continues to grow as it moves away from the
highly baroclinic zone. In the real atmosphere, such
a situation is likely to be governed by nonlinear
processes of equilibration and decay. In a linearized
model such as used in Frederiksen (1983), the wave
packet can survive a circuit of the globe and reenter
the original baroclinic zone, whereupon it commences
a new period of rapid growth. Under these circum-
stances, we expect a global eigenmode to eventually
evolve. We may say that the global modes are “self-
seeded,” whereas the local modes are seeded by in
situ absolute instability.

In order to illustrate the nature of the global mode,
we will discuss the results of an integration for the
Profile 2 case with U = 1 and the sponge dissipation
set to zero. In Fig. 9 we show the state the stream-
function has attained at nondimensional time 7
= 320. This time is sufficient to allow a wave packet
to complete roughly three circuits of the domain.
Even at such a long time after the initial localized
perturbation, the streamfunction has not yet attained
the form of an eigenmode; while the frequency and
growth rate have reached fairly steady values of 0.73
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FIG. 9. Lower layer streamfunction at time 7" = 320 after initial
perturbation of Profile 2 for convectively unstable case U = 1. The
sponge region is not included in this calculation. The perturbation
at this time has not yet attained the form of an eigenmode.

and 0.16, respectively, the relative amplitude of the
peak and the tail continue to undergo a slow oscilla-
tion (not shown). Indeed, the time scale of the
oscillation is comparable to the time required for a
packet to complete a circuit of the domain, and the
overall pattern retains something of the character of
a wave packet passing repeatedly through the baro-
clinic zone. Similar results were obtained for Profile
1 and for other absolutely stable values of U. Nev-
ertheless, the pattern in Fig. 9 clearly reveals the role
of recycling of energy in maintaining the global mode;
the tail of the mode extends far downstream of the
peak and reenters the domain from the left, whereafter
it enters the baroclinic zone and commences growing
spatially toward the peak. The peak occurs down-
stream of the baroclinic zone, as it does for the local
modes.

The difficulty in isolating an eigenmode by time-
integration suggests that the system has two or more
eigenmodes with very similar growth rates. Because
of this difficulty, we defer further discussion of the
global modes to Section 5, where we will see that this
is, indeed, the case. The fact that a global eigenmode
does not clearly emerge even after sufficient time for

“three circuits of the domain clearly indicates that the
spatial structure of an individual global mode is of
dubious relevance to the behavior of the real atmo-
sphere. Reduced to the more familiar case of a
zonally uniform basic state, this amounts to the
statement that we would never expect baroclinic
instability in the atmosphere to take the form of a
single sinusoidal wave extending around the globe.
In either case, the set of global modes is still useful
in superposition for the representation of the transient
evolution of a wave packet. In interpreting the results
of zonally inhomogeneous stability calculations on
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the sphere, one must be wary oi:" the possibility that
some of the modes with sizable growth rates may be
global modes which are likely to have different physical
consequences than local modes.

5. Eigenmodes for zonally inhomogeneous flow: WKB
analysis
a. Derivation of WKB equations

We wish to find the eigenv:alueé of (2.13) subject
to suitable boundary conditions to be specified later.
Substituting

V= e, j=1,2, G.1)

into (2.13), we obtain the eigenvalue problem
(—iw + Uid,)g; + (@4,)4, = 0, (5.2a)
g = 3y — (= 1YVd2 — 1), (5.2b)

where U; and A; vary slowly in x, as before. We now
make use of the slow variation of these coefficients
to find an approximate solution to (5.2) which,
together with boundary conditions, will determine
the eigenvalue w.

As in Section 2, we introduce the slow variable
X = ex and write U; = Uj(X) and A; = Aj(X). Next,
we seek a solution of the form .

¥ = A;(X)e e, (5.3)

where S is allowed to be complex. The factor 1/¢ in
the exponential allows the phase and amplitude to
vary by order unity amounts over order unity distances
while keeping the rate of variation ¢ 'dS/dx = dS/
dX a function of the slow variable alone. This is the
fundamental tenet of the WKB approximation, and
must be checked a posteriori.

Equation (5.2) involves first, second and third
derivatives of the streamfunctions. For modes of the
form (5.3), these derivatives become

8; = (iS'4; + ed))e™/e, (5.42)
axx@j = [—S74; + ie(S"4; + 25'4))1e" + O(e?),
(5.4b)
Ol = [—iSP4; — 3eS'(S"4; + S'4))]e™S + O(e?),

(5.4¢)

where S’ = dS/dX, S" = d*S/dX? etc. It is presumed
that S, S” and A’ are order unity quantities. Upon
substituting (5.3) into (5.2) and making use of (5.4),
the lowest order approximation to the system becomes

(- &+ u)s7 - s - 4 + 40 5= 0

j=1,2. (5.5)

Note that at each X this equation is identical in form
to the conventional two-layer stability equations
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[Pedlosky, 1979, Eq. (7.11.4)] except that S’ appears
where we would ordinarily have the wavenumber k.
The approximation was constructed to assure that
this would be the case. To emphasize the similarity,
we define the local wavenumber

k = 8'(X), (5.6)

and henceforth refer to k in place of .S’. S is obtained
by integration; in terms of the untransformed variable
x, (5.3) attains the familiar WKB form

b= Aj(X)eiL - (5.7)

where Xg is a constant of integration. The next order
correction to S would alter only the slowly varying
amplitude factor multiplying the exponential. All that
remains is to determine k(X). ]

We may apply the conventional two-layer disper-
sion relation [(Pedlosky, 1979, Eq. (7.11.13)] at each
X to relate k and w. Thus,

5 Bk + 1) . [48% — k*DU?- (4 — k%)

PR 22 (k2 + 2)

(5.8)

Recall that U and DU vary with X. This equation, is
not in a very suitable form for our purposes, as we
wish to specify a constant (X-independent) w and
find k(X). To this end, we write (5.8) as a polynomial
in k with X-dependent coeflicients:

[02 — ‘-‘s DU2]k7‘ — [20w]k® + [o? + 402 — 2801K°

— 80w + 2Bwlk* + [4w® + 4U?
— 68U + 82 + DU?Ik® + [-8Uw + 6Bw]k?
+ [4w? — 48U + 282}k + [48w] = 0. (5.9)

Except when U = +DU/2, this is a seventh-order
equation, and therefore has seven complex roots k.
Hence, within each region in which WKB is valid,
(5.7) should be replaced by a sum of seven indepen-
dent solutions, corresponding to the seven branches
of k. We will see in Sections 5b and ¢ that only a
very few of these branches are physically meaningful.
For any w we can now find a WKB solution; the
eigenvalue problem is completed by imposing bound-
ary conditions on this solution. _

Even if the coefficients DU and U are slowly
varying, there are two ways the WKB approximation
can break down. Firstly, if k = $' — 0 at some X,
then the leading term in, say, (5.4b) becomes com-
parable to the O(¢) term. This is the sort of breakdown
encountered at a “classical turning point” in the
familiar quantum mechanical applications of WKB
theory. This cannot happen for unstable modes in
the current problem though, since S’ = 0 in (5.8)
implies @ = 0. Alternately, the ordering can break
down if §” = dk/dX becomes infinite at some point
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while S’ = k remains finite; this can occur in the
present problem.

b. Anatomy of the local modes

In order to study the local modes, we consider a
zonally infinite domain x € [—o0, co] and impose
the boundary conditions

(5.10)

We will consider profiles such that DU and U are
asymptotic to constant values DU, and U, as x| —
0. Since k depends on X through DU and U alone,
this implies that for any given branch of k, k(+o0)
= k(—o). Consequently, if the solution does not
switch branches somewhere in the domain, the
boundary condition (5.10) cannot be satisfied: If we
make k;(+00) > 0 so as to assure decay at positive X,
then the mode will grow toward negative x, and,
conversely, if we make k;(—0) < 0.

When can the WKB solution switch branches?
Under circumstances where WKB remains valid near
the switching point, branch switching can occur only
near a point X, where the two branches merge. More
precisely, we require the existence of a point X, such
that

Y(x)—0 as |x = co.

KOX) — kD(X) as X—X,. (5.11)

If this condition were not met, the derivatives of ¥;
would be discontinuous at the switching point even
at leading order [see (5.4)]. Alternately, switching can
occur at a point where dk/dX — oo and WKB breaks
down. We will see shortly that coalescence must
generally occur in this case as well.

The situation near the coalescence point can be
investigated for a general dispersion relation

Fk,\) =0 (5.12)

of which (5.9) is a special case. Here A representis any
parameter of the problem; with regard to (5.9) it
could be U, DU or w. All we require of F is that it
be a differentiable function of its arguments, a re-
quirement which is met by (5.9).

Now suppose there are two roots k‘V(A) and k®(\)
that approach a common limit k. as A — A.. Then,

. kM, N) — F(k®, X
akl“(k’ >‘c)lk¢ = }l\l_l‘.l;lc {F( k(l)) _ k((z) )} = 0)

(5.13)

where the numerator on the rhs vanishes identically
because k) and k@ are roots of (5.12). Consequently,
(5.12) has the form

% [BucF(ke, X)Wk — ko) + [0 Flke, MY — ) =0
(5.14)

near A., whence the roots have the local behavior
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k= kc + [ZaxF(kc, Ac)/akkF(kc, )\c)]lﬂ()‘ - >\c)l/2:
(5.15)

provided that 8°F/dk? does not vanish. Hence, viewed
as a-function of any parameter, the roots generally
have a square-root branch point near the coalescence
point.

. For the problem at hand, this result has two
important consequences. Suppose the dispersion re-
lation has a coalescence pomt for some (U,, DU,)
= [U(X,), DU(X,)] occurring in the domain. Then,
from (5.15) k also has a square-root branch point
when viewed as a function of w. This implies that

do
okl

With reference to (3.7), we see that the wavenumber
at coalescence k. is also the complex wavenumber of
absolute instability corresponding to the local wind
(U., DU,) at the coalescence point, and w,(k.) and
w;(k.) are the associated frequency and growth rate.
Thus, for unstable modes the condition for the exis-
tence of branch switching is identical to the condition
Jor the existence of absolute instability at some point
in the flow, as determined by the local winds, and the
eigenvalue is determined by the characteristics of the
absolute instability at that point. The existence of
branch switching is only a necessary condition for
local instability; it remains to be seen whether local
modes can be built up, even when the branch switch-
ing is allowed.

The second noteworthy result is that a coalescence
point will, in general, be a WKB breakdown point.
This is because dk/dX = (dk/dN)(dN/dX) and dk/d\
become infinite at the coalescence point according to
(5.15). In this case, a different local analysis must be
used to continue the solutions across the coalescence
‘point; we have not attempted to solve the general
connection -problem for the two-layer model. In the
special case in which d\/dX = 0 at the coalescence

=0. (5.16)

point for all X-varying parameters in the problem, -

the difficulty is avoided and WKB remains valid
through the coalescence point.

In the two-layer problem, WKB remains valid
through the coalescence point if dDU/dX and dU/dX
vanish there. The first condition is satisfied at the
point of maximum baroclinicity. The second condi-
tion is trivially satisfied for the profiles studied in
Section 4, where U is constant. More generally, for
physically plausible profiles, U will have a maximum
at the same place as DU, since surface friction holds
the low-level winds near zero, making U a roughly
monotonic function of DU. Except when U falls off
very sharply from its maximum, the maximum ab-
solute growth rate occurs at the point of maximum
baroclinicity; this point is, therefore, the candidate
coalescence point that determines the growth rate of
the fastest growing mode.

!
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We are now equipped to construct WKB approxi-
mations to the fastest growing local modes. Assuming
that DU and U are maximized at x =0, we seek a
solution of the form

ika"dx
J = Aje , for :x>O (5.17)
' A eif" o r x<0
J AT )
where k*[DU(X), U(X), w] and ):cI[DU(X ), U(X), w]

represent two branches of the solution to (5.9) with
the properties :

Im{k*[DU(c0), U(w), w]} > 0,
Im{k"[DU(—), U(—w), w]} <O.

(5.18a)
(5.18b)

The eigenvalue w must be chosen to correspond to
the absolute instability associated with [U(0), DU(0)]
so that the two branches coalesce at x = 0. Whether
or not the two modes satisfy (5.18) must be checked
by solving (5.9). The results are best explained in
terms of an example. Figure 10 shows how the two

-14

-16-

-18-

FIG. 10. Dependence of a complex wavenumber on vertical shear
DU for two branches of the dispersion relation. In this calculation,
B =0.25, U = 0.3 and w is set equal to the value associated with
absolute instability at DU = 1. The two modes are denoted k* and
k. Dashed line with circles, k;; solid line with circles, k; dashed
line with crosses, k; ; solid line with crosses, k; .
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roots vary as DU is varied between unity and zero,
in the case U = 0.3 and 8 = 0.25. Here w is chosen
so that coalescence occurs at DU = 1. For one root
(call it k*), the imaginary part ki is negative near
DU = 1, but becomes positive for DU < 0.8; thus
(5.18a) is satisfied provided DU(w0) < 0.8. The mode
grows downstream of x = 0 until the value of x is
reached where DU falls below 0.8. The peak amplitude
occurs there, and the mode decays to zero with larger
x. The spatial decay rate becomes greater as DU(o0)
is made smaller, in accordance with the numerical
results of Section 4. This example illustrates the point
that DU{o0) must fall below a certain critical value
(0.8 in this case) in order for local modes to exist.
Note also that the point where ki crosses zero is an
ordinary WKB point, because k; remains finite there.
The branch switching occurs at x = 0 and not at the
peak. Finally, Fig. 10 shows that k7 is negative for
all DU. In fact, it becomes very negative as DU is
decreased from unity, indicating that the upstream
decay is rapid. Apart from consistency with the
assumption that DU(0) be the maximum baroclinicity,
localization imposes no constraint on the upstream
baroclinicity DU(—c0).

DU/DUmax -

-U/DUmax

FIG. 11. Contours of constant k* in the (U, DU) plane for 8

= 0.25. DU, refers to the maximum baroclinicity occurring in
the domain and w is set equal to the value associated with absolute

instability at DUp,,. Dashed contours indicate negative k7, which
corresponds to exponential downstream growth.
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We have found the situation to be qualitatively
similar in every respect for other values of 8 and U
for which DU(0) is absolutely unstable. In short,
WKB theory predicts that local modes having growth
rate and frequency determined by absolute instability
at the point of maximum baroclinicity exist whenever
the downstream baroclinicity falls below a certain
critical value that is a function of U and B. The term
kf(DU, U, w) carries most of the interesting quanti-
tative information about the structure of the modes.
In Fig. 11 we show contours of ki in the (DU, U)
plane for 8 = 0.25. For each DU and U, of course,
we set @ = wap{DUmax, U) Which is the theoretically
determined eigenvalue of the corresponding mcde.
The curve k} = 0 determines the value of DU/DUpax
at which the peak occurs. We see that as U is
increased, the position of the peak shifts to smalier
DU, ie., downstream. The theoretically predicied
peak positions are shown as vertical dashed lines in
Figs. 6 and 8; it is evident that the agreement with
the numerical results is excellent. From Fig. 11 we
see also that (DU/DUpax, U/DUpg,) must fall below
the kX = 0 curve at large x for the mode to be
localized. For Profile 2 (which has DU(00)/DUgax
= 0.5), the mode loses its localization for U/DUpax
> 0.5, in accord with the numerical results. Also in
agreement with the numerical results is the fact that
the decay scale downstream of the peak becomes
shorter when either U or DU(c0) is decreased. Fig.
11 can also be used to analyze the structure of modes
on profiles for which both U and DU vary in x.

The anatomy of the local modes is summarized
pictorially in Fig. 12a. In a discussion of local baro-
tropic instabilities, Merkine and Balgovind (1983)
also pointed out the necessity of branch switching,
though without the use of a formal WKB approxi-
mation. They speculated that the opportunity for
branch switching may be provided in some way by
the mathematically intricate features of the nonparallel
critical line where phase speed ~ equals zonal velocity.
However, the generality of our argument leading to
the connection between coalescence and absolute
instability leads us to suspect that a similarly simple
explanation may exist in the barotropic case.

¢. Anatomy of the global modes
For global modes the appropriate boundary con-

dition is . _
Vi(—L/2) = Y;(L/2), (5.19)

where L is the period of the domain. The structure
of the global modes is much simpler than that of the
local modes, as branch switching need not occur.
Consider first a solution

x

b= Aje'IL/zk"* (5.20)

in which k(DU, U, w) is a particular branch of the
dispersion relation; k will be periodic in x because of
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FiG. 12. Summary of structure of (a) local modes
"and (b) global modes.

the periodicity of DU and U. Then (5.19) requires

that
. L/2

kidx =0, (5.21a)
-L2
L2

k,dx = 2nm=, (5.21b)
—L2

in which n may be any integer. It is easy to show
that if the solution were a sum over seven terms of
the form (5.20) corresponding to the seven roots of
(5.9), then periodicity requires that each term indi-
vidually must satisfy (5.21). Equation (5.21) deter-
mines the eigenvalue w.
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In contrast with the conditions determining w for
local instability, (5.21) is sensmve to the profile of
DU and U throughout the dom: am Eq. (5.21a) 1mphes
that k; must vanish for some (I/, DU) appearing in
the flow; this fact leads to a reliable procedure for
finding the roots of (5.21), wlnch for simplicity, we
will describe for the case wherf- U is constant and
DU has a single maximum at x=0. In these
circumstances, k; vanishes at the'two points on either
side of x = 0 where DU attains an as yet unknown
value we shall call DU,. At these points, k has an as
yet unknown real value which we shall call k,. Here
w is determined by DU, and k, via (5.8). Given w, k
can be found for the rest of the:domain using (5.9),
and the integrals in (5.21) can be carried out. Our
task, then, is to find real values DU, and k, such that
(5.21) is satisfied.

For each k, we use Newton’s method to find a
value DU, between DUp, and DUp, such that
(5.21a) is satisfied. This gives us a family of eigenvalues
[k,, DU,(k,)] for which (5. 21a) is satisfied. To satisfy
(5.21b) we compute

L/2

@(kp) =— k [DU(x), wldx, (5.22)

where w = w[k,, DU,(k,)] on the rhs. By determining
where ®(k,) attains integral values, we find the discrete
set of k, for which both (5.21a) and (5.21b) are
satisfied; this in turn yields the corresponding discrete
set of eigenvalues w. Note that, by assumption, L is
large while k and k, are order unity quantities. Hence,

P is a very rapldly varying function of k,, and only
a very small O (1/L) change of k, is needed to change
® by unity. In consequence, the eigenvalues will be
closely spaced as was suggested by numerical results
described in Section 4.

The above procedure was carned out for Profile 1
and Profile 2 with 8 = 0.25 and a range of values of
U. For all unstable modes we found that k; < O
where DU > DU, so that the positive value x, where
DU(x) = DU, is the location of the peak and —Xx, is
the location of the valley. The general structure is
depicted in Fig. 12b. In Fig. 13 we show the global
mode growth rate and peak position as a function of
U for Profile 1 and Profile 2. Only the most unstable
mode is plotted. For U = 1 in the Profile 2 case, the
most unstable mode has w = 0.80 + 0.1642i, which
occurs with ® = 12. The next most unstable mode
was found to have ® = 13 and w = 0.89 + 0.1635i.
Both of these compare reasonably with the numeri-
cally determined value w = 0.74 + 0.16i.

As revealed in Fig. 13, the global mode growth
rate is lower for Profile 1 than for Profile 2, in
contrast with the behavior of the local mode. This
underscores that the global mode is sensitive to the
average baroclinicity of the domain rather than to
the peak baroclinicity. In fact, we can show that
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FIG. 13. Theoretical growth rate and peak position for global modes on Profile 1 and Profile 2 as a
function of U. Solid line with ones, growth rate, Profile 1; dashed line with ones, peak position, Profile
1; solid line with twos, growth rate, Profile 2; dashed line with twos, peak position, Profile 2.

when the zonal variations of the basic state are not
too strong, the eigenvalue is the same as that for the
zonally averaged flow. Let

DU = DU, + DU(x)
} , (5.23)

0= Uo + 01(X)

where DU, < DU()_, U < Uo, Uo and DU() are x-
independent, and U; and DU, have vanishing zonal
means. Next set @ equal to the eigenvalue for the
zonal flow (U,, DU,) at some real k, so that k;(w,
Up, DUy) = 0. Then, to leading order,

k; ok;

ki(w, U, DU) = <ﬁ _ )U, N (ﬁ]
Uo

>DU1,

DUp:

(5.24)

and (5.21a) is automatically satisfied by virtue of the
vanishing zonal means of U, and DU,; hence, w is
aiso an eigenvalue for the zonally varying flow, to
leading order. For Profile 2, the zonal average of DU
is 0.5922, and the corresponding growth rate is 0.1493.
The growth rate corresponding to the zonally averaged
flow in this case is a good estimate of the global
mode growth rate, even though the excursions of
baroclinicity are not strictly small.

Returning to Fig. 13, we see that the global mode
growth rate is relatively insensitive to U. This is
sensible, as the average growth experienced by a wave
packet crossing the domain is indépendent of the
time taken to complete a traverse. Also note that the
position of peak amplitude occurs downstream of the
maximum baroclinicity as for the local modes but
that this position is relatively insensitive to U.

6. Discussion

It is instructive to begin our discussion with an
analysis of the resulis of Frederiksen (1979, 1983) in
terms of the concepts developed above. Given the
number of simplifying assumptions we have made,
this must be regarded as a speculative endeavor,
particularly when one considers the difference between
absolute instability in the two-layer model and the
Charney model (Farrell, 1983). A more quantitative
comparison must await further refinements of the
local analysis.

In Frederiksen (1979) the stability of an idealized
wavenumber 3 pattern in a two-layer fluid was con-
sidered. The basic state lower level wind was set
identically to zero, so U = 0.5DU at each point. Here
DUp.. = 50 m s™! for the chosen flow, which yields
B = 0.2 if we take L; ~ 1000 km. This value of 8 is
reasonably close to the case 8 = 0.25, analyzed in
Section 5. The. largest value of DU,,;,/DU,,.. that
permits localization is given by the intersection of
the line U = 0.5DU with the curve k; = 0 in Fig. 11;
the critical value is thus found to be 0.725. In the
idealized flow, DU, /DU, = 0.66, which just barely
meets the localization criterion. Under these circum-
stances, the peak of a local mode would occur near
the point of minimum DU, which for a wavenumber
3 pattern is 60° of latitude upstream of the next
maximum of DU. With DUpin/DUpax = 0.66, the
dimensionless downsiream decay rate is 0.06, which
corresponds to 200° of longitude. Clearly, 2 local
mode cannot exist on the idealized profile because
the successive baroclinic zones are too close together.
This suggests that the mode found by Frederiksen is
a global mode. For a global mode, the peak should
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occur roughly midway between DU, and DU,
50 as to satisfy (5.21a); consistently, the actual peaks
occur about 20° downstream of the points of maxi-
mum DU. It was also found that the maximum
growth rate for the wavy flow is essentially the same
as that for the corresponding zonally averaged flow.
This, too, is consistent with the propemes of a global
mode. As discussed in Section 4 and in Section 5c,
global modes are built of wave packets which must
traverse regions of both enhanced and depressed
baroclinicity, and the net effect of the zonal inho-
mogeneities on the growth rate is nil when the range
of baroclinicity is not too great.

We turn next to the January 1978 monthly mean
flow considered in Frederiksen (1983). In order to
make use of two-layer results in this case, we estimate
DU as the difference between the 500 mb zonal wind

in the jet core and the surface wind, and consider the -

surface wind to be essentially zero. The estimates of
DU in the Atlantic and Pacific baroclinic zones are
again consistent with the parameter setting 8 = 0.25.
Also, DUpin/DUpmax =~ 0.5 for both zones, where
DU,,;, is defined as the first minimum in DU down-
stream of each region of maximum DU. Estimates
based on the nine-winter average data given in Fig.
6a of Blackmon et al. (1977) are very similar. Thus,
for -the realistic winter flow, DUyin/DUpax is well
below the critical value of 0.725 needed for localiza-
tion. In this case, then, local mode peaks would occur
rather upstream of the points of minimum baroclin-
icity; this is in qualitative agreement with Frederiksen’s
results. From Fig. 11 the downstream decay rate
corresponding to DU, is k; = 0.2, which corresponds
to a dimensional e-folding distance ‘of 65° at mid-
latitudes. The entrance of the Pacific baroclinic zone
is more than 180° downstream of the exit of the
Atlantic baroclinic zone. Thus, we expect the existence
of an isolated Atlantic mode, in accord with Fig. 9a
of Frederiksen (1983). By contrast, the entrance of
the Atlantic zone is, at best, 90° downstream of the
exit of the Pacific zone. There is enough room for
the local Pacific mode to decay by perhaps a factor
of 1/e before the Atlantic baroclinic zone is encoun-
tered; at that point k; becomes negative again, and
the mode begins growing in the downstream direction.
Because the amplitude has not decayed greatly at the
"entrance of the Atlantic zone, we expect a prominent
secondary maximum to occur in the Atlantic. The
resulting structure is in accord with that shown in
Frederiksen’s Fig. 9b. Frederiksen reports a growth
rate of 0.4318 day™! for the most unstable mode on
the wavy January flow, as opposed to 0.35 day™! for
the corresponding zonally averaged flow. This is also
suggestive of a local mode for which the growth rate
is sensitive to the maximum baroclinicity rather than
the average. In fact, with DU = 50 m s™' the dimen-
sional growth rate at § = 0.25 and DU = 0.5U in
the idealized case we have treated is 0.5 day™!, in
good agreement with Frederiksen’s calculation.
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Frederiksen (1983) also consxdered the instability
of the July 1978 monthly mean flow. However,
because the July results are dormnated by internal
baroclinic-barotropic instabiliti 1es which are not even
qualitatively reproduced by two-l‘;yer models, we will
not attempt an exegesis of this case.

In interpreting our results, or indeed the results of
any eigenvalue calculation, it should be kept in mind
that the eigenmodes do not tell the whole story. This
is so because it takes time for an initial perturbation
to evolve into an eigenmode, and the growth char-
acteristics in the transient stage may differ substantially
from those of the eigenmodes. It is thus possible for
nonlinear effects to become important before a modal
form can be attained, as was discussed by Farrell
(1982) in the parallel flow case. In the case we have
treated, an initial perturbation localized in a region
of high baroclinicity will grow at the local maximum
growth rate until the transients have had time to
move away; thereafter, the perturbation attains the
form of a local eigenmode and the growth rate falls
to the lower (and possible vanishing) absolute growth
rate. For a baroclinic zone of length 6000 km the
local mode setup time would be 2.4 days if the
transient peak moved at a speed of 25 m s™!. Under
these circumstances it is plausible that the form of a
local eignmode would be attained before nonlinearity
began to dominate the evolution, provided that the
amplitude of the initial perturbation was not too
great. On the other hand, the coupling of the Atlantic
to the Pacific storm track discussed above requires
that a perturbation leaving the Pacific storm track
survive long enough to enter the Atlantic baroclinic
zone, which would require perhaps two to three days
beyond the time needed to set up the Pacific mode.
It is not clear whether the lifetime of a baroclinic
disturbance can be long enough to permit the cou-
pling. To set up a global mode from a spatially -
random or localized initial condition would require
at least one global traverse time (about 15 days at 25
m s7'); it is thus unlikely that the most unstable
global mode would ever appear in the atmosphere.
The global modes are only physically relevant when
used in superposition to represent the transient evo-
lution of wave packets. The same comment applies
to the conventional zonally homogeneous stability
problem, for which all modes are global modes.

- We have seen that the local modes derive their
localization from the fact that the part of the initial
perturbation left behind in the baroclinic zone grows
faster than the part that moves away. This mechanism
is a purely linear phenomenon, Nonlinearity will
become important first near the region of peak am-
plitude of the linear mode; if the amplitude saturates
there and stops growing, the continued exponential
growth of the downstream tdil will eventually lead to
a substantial increase in the downstream penetration.
At this stage, the spatial scale of localization will be
determined by nonlinear processes governing the
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distances baroclinic disturbances can propagate before
they mature and decay. In this connection, it is
significant that the observed 300 mb bandpass geo-
potential height standard deviation shown in Fig. 3b
of Blackmon er al. (1977) shows considerably less
zonal localization than the corresponding result based
on lirear theory. [Frederiksen (1983) shows only the
90C mb paiterns, but states that the patterns at higher
levels are very similar.] The situation is entirely
analogous ¢o that which arises in connection with the
vertical penetration of baroclinic disturbances growing
on a zonal fiow. Charney and Pedlosky (1963) have
shown that in linear theory, such disturbances decay
with height; a similar interpretation to that we have
given for horizontal decay could be attached to this
result. On the other hand, Simmons and Hoskins
{1978) have shown that the perturbation equilibrates
first near the ground, whereafter the pattern aloft
takes the form of a vertically propagating Rossby
wave pulse which extends the depth of penetration.
By analogy, we expect a complete understanding of
the horizontal distribution of eddy energy and mo-
menium flux in the zonally inhomogeneous case to
require consideration of the full nonlinear life cycle
of the disturbance.

7. Ceaclusions

Within the context of a simplified model, we have
shown that a zonally varying steady flow can possess
two distinci classes of baroclinically unstable eigen-
modes, which we have referred to as “local” and
“global”. Local modes have a peak downstream of
the point of maximum baroclinicity of the basic state
flow, and decay to zero both downstream and up-
siream of the peak. The growth rate of a local mode
i1s approximately equal to the absolute growth rate
(defined in Section 3) at the point of maximum
baroclinicity, This growth rate increases with the
maximum barcclinicity obtaining in the flow, and
decreases with increasing vertically averaged zonal
flow. The latter property contrasts with the conven-
tional local maximum growth rate, which is insensitive
to addition of a mean flow. In order for a local mode
to exist, two conditions besides absolute instability
must be satisifed: 1) the ratio of maximum baroclin-
icity to the minimum baroclinicity appearing down-
siream of the maximum must be sufficiently large
and 2) successive peaks in baroclinicity must be
sufficiently separated to allow the mode associated
with each peak to decay appreciably before the next
downstream peak is reached. Global modes, on the
other hand, require cyclic zonal boundary conditions
for their existence. Their growth rate is sensitive to
the baroclinicity throughout the domain, and is equal
to that of the most unstable mode for the correspond-
ing zonaily averaged flow when the zonal range of
baroclinicity is not too great. The peak of a global
mode also occurs downstream of the point of maxi-
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mum baroclinicity, but neither the peak position nor
the growth rate is very sensitive to the vertical mean
flow. The global modes form a near continuum, and
owing to the large time required for a single mode to
emerge from random initial conditions, it is suggesied
that they are only physically relevant insofar as they
can be used in combination to represent the evolution
of transient wave packets. The above results have
been established quantitatively both in numerical
simulations and via a WKB asymptotic analysis of
the model problem.

We have pointed out that even in situations in
which a local mode eventually dominates, the transient
growth rate occurring during the time required for
the modal form to be attained can be considerably
greater than the ultimate local mode growth rate.
The net transient growth is dependent on the residence
time of a transient disturbance in the highly baroclinic
zone (roughly the length of the zone divided by the
vertical mean flow); for large residence times, nonlin-
ear effects would be likely to set in before the modal
form is attained. The scales characterizing the winter
Northern Hemisphere baroclinic zones in the Atlantic
and Pacific are such that the emergence of local
modes is plausible. We have also argued that nonlinear
effects may act to delocalize the disturbance in the
zonal direction, much as they are known to extend
the depth of baroclinic eddies in the zonally homo-
geneous case.

A tentative comparison with the results of Freder-
iksen (1979, 1983) was found to be encouraging,
though a precise comparison would require the exten-
sion of our results to basic states with continuous
vertical and horizontal shear. The nature of the
theory, though, offers good possibilities for such a
generalization, provided that the main assumption of
separation in scales between eddies and the zonal
variation of the basic state is retained. While we do
not believe that a local analysis along these lines can
ever supplant calculations of the sort described by
Frederiksen, we suggest that the diagnosis of local
absolute growth rate can assist the physical under-
standing of the connection between the inhomogene-
ities of a basic state and the preferred regions of
synoptic eddy activity associated with that state.
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