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Local baroclinic instability is studied in a two-layer quasi-geostrophic model. 
Variable meridional bottom slope controls the local supercriticality of a uniform 
zonal flow. Solutions are found by matching pressure, velocity, and upper-layer 
vorticity across longitudes where the bottom slope changes abruptly so as to 
destabilize the flow in a central interval of limited zonal extent. In contrast to 
previous results from heuristic models, an infinite number of modes exist for 
arbitrarily short intervals. For long intervals, modal growth rates and frequencies 
approach the numerical and WKB results for the most unstable mode. For intervals 
of length comparable to and smaller than the wavelengths of unstable waves in the 
homogeneous problem, the WKB results lose accuracy. The modes retain large 
growth rates (about half maximum) for intervals as short as the internal deformation 
radius. Evidently, the deformation radius and not the homogeneous instability 
determines the fundamental scale for local instability. Maximum amplitudes occur 
near the downstream edge of the unstable interval. Lower-layer amplitudes decay 
downstream more rapidly than upper-layer amplitudes. For short intervals, the 
instability couples motions with widely disparate horizontal scales in the upper and 
lower layers. Heat flux is more strictly confined than amplitude. Growth rates 
increase linearly with weak supercriticality . 

1. Introduction 
Cyclone scale disturbances in mid-latitude atmospheric flow arise owing to the 

baroclinic instability of the westerly winds found in mid-latitudes. Since the 
pioneering work of Charney (1947) and Eady (1949) a continuing development of the 
original analysis has sought to bring the early idealized models into closer 
correspondence with the complex nature of the observed atmospheric flow. An 
especially common idealization, used for technical simplicity, has been to represent 
the basic flow as independent of longitude (the downstream direction). In the 
classical problems cited above, the zonal flow was a function only of height. 
Observations (e.g. Holopainen 1983) emphasize the presence of regions of intensified 
shear in the mean winds along the major storm track off the eastern coasts of the 
American and Asian continents. The frequency of cyclone development is strongly 
enhanced in these regions. It seems clear that understanding the geographical 
distribution and structure of the disturbances requires a consideration of currents 
whose stability properties vary in the downstream direction. 

Previous attempts to treat zonally-varying flows (Gent & Leach 1976; Merkine & 
Shafranek 1980 ; Pierrehumbert 1984) have relied heavily on the assumption that the 
basic flow variations occur on a scale large relative to the disturbance wavelengths, 
so that WKB (Liouvill-Green) techniques may be used. These studies have revealed 
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FIGURE 1. The two-layer model. The basic zonal flow U is in the upper layer. The bottom slope is 
non-zero for 151 > a and locally stabilizes the flow outside the region Irl < a. The region marked u 
is locally unstable while the marked s is locally stable. 

the existence under certain conditions of local instabilities associated with relative 
maxima in the baroclinicity. The unstable modes are local or ‘trapped ’ in that they 
grow in time but decay in space away from a point downstream of the baroclinicity 
maximum. This approach, though fruitful, has been limited by the assumption that 
the basic state variations have much larger scale than. the disturbance wavelength. 
In  particular, when the downstream length of the interval of locally unstable flow is 
the same order as the characteristic wavelength of the instability, important 
questions arise as to the number, structure and growth rate of unstable modes 
(should any persist as the interval shrinks). These questions, by their very nature, are 
not appropriately dealt with by the WKB technique. Numerical methods (e.g. 
Frederiksen 1983) can circumvent the limitations and idealizations of the WKB 
approximation, but the complexity of the results and the limitations imposed by 
computing capacity produce complementary difficulties in understanding the basic 
processes involved in zonally varying unstable flow instabilities. 

In the present paper we pursue an alternative path. We focus on the downstream 
variation of the supercriticality of the basic flow rather than on the variation of the 
flow’s baroclinicity or shear. We consider a two-layer P-plane model of atmospheric 
flow in which, in the absence of disturbances, the flow is limited to the upper layer 
and independent of cross-stream and downstream coordinates. Were the bottom 
relief simply flat, the problem would reduce to the classical Phillips problem (Phillips 
1954). As is well known, instability in that model requires that a westerly shear 
exceed a critical value for which the potential vorticity gradient of the lower layer 
changes sign. In this study we add a meridional bottom slope in the lower layer, 
which enhances the ,&effect and renders the flow stable except in a central region of 
limited zonal extent, where the slope is absent and the flow may be locally unstable 
(see figure 1). This case is of natural physical interest, given the influence of 
topography on many atmospheric and oceanic flows. The technical advantage of this 
way of yielding downstream variation of the supercriticality is that a forced wave is 
not required (since the basic zonal flow is taken to be zero at  the lower boundary) 
and, more important, it is consistent to consider the basic state as a truly parallel 
flow. This avoids the confusion between the effects of downstream variations in 
supercriticality and the effects of curvature in the basic flow streamlines. The latter 
would inevitably occur were we to consider a flow. whose baroclinicity varied 
downstream. The zonal convergence of the flow would force a meridional velocity 
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which would become important precisely in the parameter region o f  interest, i.e. 
when the scale of downstream variation of supercriticality is of the same order as the 
scale of the instability. 

Since the basic flow is independent of the zonal coordinate in each subregion of the 
flow, solutions may be found by elementary methods. Matching constant-slope 
solutions across the edges of the central interval (where the slope changes abruptly) 
yields an eigenvalue problem for the unstable modes that is analogous to the 
potential well problems of quantum mechanics. This approach was originally 
proposed for the baroclinic instability problem by Pedlosky (1989), who restricted 
attention to a pair of heuristicslly-derived model equations. Here, we pursue this 
investigation with a quasi-geostrophia model. 

2. Formulation 
The model we will use is the two-layer, quasi-geoatrophic model and requires that 

the timescale of the motion be long enough for the primary momentum balance to 
be geostrophic. Each layer has a uniform density and the horizontal velocities are 
independent of depth within each layer. The layers have equal mean depth. The 
governing equations are the quasi-geostrophic potential vorticity equations, The 
reader is referred to Pedlosky (1979) for a complete derivstion. 

The equations in non-dimensional form are 

Here @ j  is the streamfunction in layer j,j = 1,2 where 1 refers to the upper layer 
and Q, is the corresponding potential vorticity 

The terms Va@, represent the relative vorticity while the terms - @ 2  are the scaled 
interface displacements and represent vortex stretching. The Cartesian coordinates 
x and y are positive eastward and northward, respeotively. The Jacobian J is defined 
as 

Horizontal distance has been non-dimensionalized by the internal radius of 
deformation L R  = (g’D)a/f, (the scale of developing instabilitiea in the zonally 
uniform problem, which have wavelengths about 27t&), and the rigid-lid 
approximation has been made. D is the depth of each layer, andf, is the value of the 
Coriolis parameter at the central latitude on the /3-plane. Velocities are scaled by U,, 
the magnitude of the upper-layer mean flow, which is taken to be uniform. Time is 
scaled by the adjective time LR/U,.  A parameter of particular importance is 
/3 = /3,Lk/U,, where b* is the (dimensional) northward gradient of the Coriolis 
parameter. The non-dimensional parameter /3 measures the relative size of the 
potential vorticity gradient due to the earth’s sphericity compared to the potential 
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vorticity gradient associated with the vertical shear of the zonal current. For zonally 
uniform vertical shear U,, P must be less than 1 for instability (in the absence of 
topographic relief). The friction coefficient r is the ratio of the adjective timescale 
divided by the spin-up time due to Ekman-layer friction. 

The presence of bottom topography will contribute to the potential vorticity of the 
lower layer. If h, is the dimensional amplitude of the bottom relief, this additional 
potential vorticity is represented by the term h(x, y) in (2 b )  where 

JL*LRfO h(x, y) = -- 
D u* 

Since the quasi-geostrophic approximation requires UJL,  f,, 4 1, this means that 
h, 4 D is required so that h be of order one. We consider topography of the form 

h = ya(x), (4b) 

where the x-dependent slope 01 will be such as to stabilize flow for all 1x1 > a. Since the 
bottom depth varies zonally the basic state must have no flow in the lower layer. The 
model geometry is illustrated in figure 1. 

For simplicity, and because the gravest meridional mode is typically the most 
unstable one, we restrict our attention to disturbances which are independent of the 
meridional coordinate. This is a consistent local approximation to a flow that is 
nearly uniform meridionally in a sufficiently large region (as in the centre of a 
meridionally-bounded zonal channel such as is often used to represent the mid- 
latitude atmosphere). Since the perturbation velocities are then only in the y- 
direction, no flow in the lower layer traverses the sharp changes in the bottom 
topography in the x-direction. 

The streamfunctions for the flow may be written 

where $,(x, t )  represents the perturbation streamfunction in the j t h  layer. (Uhas been 
scaled out of the problem, except for a choice of sign, by the choice of velocity scale 
U,. It is convenient to take U ,  positive, so that /3 remains positive for westward flow, 
In  the following, we consider only U = 1 or U = - 1.) 

The linearized problem for the evolution of the disturbances now follows from (l), 
(2) and (5 )  as, 

41t + UQlS + (P + u) 91s = 0, (6 a)  

( 6 b )  Pat + ( P 2  - u) $22 = - ~ $ m z ,  

It is clear from (6)-(8) that the disturbances will remain independent of y if they are 
so initially. Since only horizontal derivatives (and not the local value) of the 
barotropic streamfunction $B = q51 + $2 enter the potential vorticity balance, it  is 
convenient to rewrite (6) and (7) in terms of the barotropic velocity vB and the 
thermal streamfunction &, where 
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In  these variables, (6) and (7) become 

qBt +iu(qBx + QTx) +pvB +u$TX +%(') ('B- $Tz) = -$('Bx-&CZX), 

where q B  = 'Bx, (10c) 

qT = $ T x x -  '$T. (104 

We consider only local instability, and so require the disturbances to decay for 
large 1x1, 

vB,$T+O asx+ fa. (11) 

The simplified problem (lo)-( 11) retains the essential physics of the local instability, 
while filtering out the effects of meridional confinement. Further, the perturbation 
velocities are purely meridional, so that the local meridional topographic slope enters 
the vorticity balance (10) but the zonal slope does not. 

After the solution of (10)-(11) has been obtained in terms of vB and $T, the 
streamfunctions $1 and $z may be computed by integrating (9a )  over x, 

Note that the barotropic streamfunction 

$B = vB dx' 

need not vanish as x + - 00, though vB must by (1 1). Physically, this is because long 
barotropic waves propagate westward arbitrarily fast for arbitrarily small meridional 
wavenumber, so that a barotropic disturbance 'at infinity' (the limit x+- co) must 
be allowed in the meridionally uniform case we consider. (The westward propagation 
determines the constant of integration (12).) Integrating (10a) over x and using (9) 
and (1 1)  yields 

J y m a $ z x d x + p r  -m VBdX = 0, (13) 

an integral statement of potential vorticity conservation for meridional motion in 
the ambient (topographic and planetary) potential vorticity gradients. Note that 
(13) is a potential vorticity balance and not a statement of mass conservation, which 
is itself guaranteed in the quasi-geostrophic approximation by the streamfunction 
representation of the flow field and the restriction to small-amplitude topography. 
The net barotropic meridional flow in the planetary potential vorticity gradient is 
diagnostically related by (13) to the net lower-layer meridional flow in the 
topographic potential vorticity gradient. 

Before proceeding with the instability problem, it is useful to review the plane 
wave solutions of (10) for constant bottom slope 01, and their stability properties. 
These are of the form 

9 (14) - A ei(kx-wt) $ - AT ei(kz-wt) 
'B- B T -  
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FIGURE 2. Critical slope a, versus wavenumber k for plane waves over constant slope, T = 0, 

k 

/9=0.25.-, U =  1;- , u=-1. 

where k and w are in general complex and satisfy the dispersion relation 

G(w,  k )  = 0 ,  ( 1 5 a )  

where C ( w ,  k )  = k(k2  + 2 )  w2 + [ - Uk2(k2 + 2 )  + (p+ p2 + irk) (k2  + l)] w 

+(p , -U+irk )  ( P - t J k 2 ) k .  (155) 

(These plane waves do not, of course, satisfy (ll).) The complex amplitudes A ,  and 
A ,  satisfy 

[ ( u - k U )  k+ (p+ U)]A,+i [ ( w -  kU) (k2  + 2 )  + (@+ U) k ] A ,  = 0 .  (16) 

Equations (6) have the additional degenerate solution k = 0,  = q52, w arbitrary, 
for which v, = q5T = 0 identically. The allowed barotropic disturbance ‘at infinity’ 
(see above) has this character locally. The critical slope a, for instability of the plane 
waves may be obtained from (15), regarded as a quadratic polynomial in w ,  by 
setting the discriminant equal to zero, which in turn yields a quadratic in a,. The 
result is shown in figure 2 for r = 0, @ = 0.25, and U = { - 1, l}. (The value of p was 
chosen for comparison with Pierrehumbert 1984.) Inside the tongue-shaped critical 
curves, waves are unstable. Outside, they are stable. Thus for U = 1, there is 
stability for a > U-/3 = 0.75 for all wavenumbers, while there is a band of unstable 
waves for a < 0.75. For U = - 1, the inequalities are reversed, with stability for 
a < U-/3 = - 1.25 and a band of instability for a > - 1.25. 

We now proceed with the local instability problem. For various bottom-slope 
configurations a(x) ,  chosen such that the flow satisfies the plane wave criterion for 
instability in a central region of limited zonal extent, we obtain unstable eigenmodes 
of (10)-(11) in three ways. Our primary approach is a matching technique. We 
consider a situation in which the bottom slope has a constant value a = a, in the 
interior region 1x1 < a and a different constant value a = a, in the exterior region 
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1x1 > a. Values of a, and a, are considered such that plane waves are unstable for 
a = a, and stable for a = as (see figures 1 and 2). For given a and w ,  the dispersion 
relation (15) may be solved for its four roots k5 , j  = 1, ... ,4. In each of the three 
regions x < -a, 1x1 < a ,  and x > a, solutions are sought in the form of linear 
combinations of these four waves, 

4 4 

(17) vB = x A,,, eWX-wt), $ - - x A,, ei(*jx-4 
3-1 ,-1 

The coefficients A, and 4 5 .  will differ in different regions, but we make this 
dependence implicit for notational convenience. 

The boundary conditions (11) require that the modes decay for 1x1 9 a, so only 
waves with imaginary part of k, negative can contribute for x < -a, and waves with 
imaginary part of k, positive for x > a. These conditions must be supplemented by 
matching ('jump') conditions at the points x = +_a. Four of these are continuity of 
pressure, 

(18) 

The other six are obtained from the dynamical equations by a method that is 
standard for problems of this type : the equations (6) are integrated across regions of 
width E around x = a or x = --a in which the rapid variation in slope is smooth, and 
then E is allowed to approach zero under the condition that (18) hold. The result is 
that meridional velocity and upper-layer vorticity must also be continuous, 

(19) 

$2 continuous at x = fa. 

$ l x ,  q52x, $ l x x  continuous at x = fa. 

There is no mean flow advection of perturbation vorticity in the lower layer, so the 
lower-layer equation ( 6 b )  is of reduced order in x and continuity of $ 2 x x  at x = +a 
is not required. Since the barotropic streamfunction is obtained by the integration 
(12), it is sufficient to require the eight matching conditions 

&, vB, # T x ,  vBX+ $Txz continuous at  x = +a. (20 ) 

Alternatively, these may be obtained directly from (10) and (18) by the above 
procedure. 

Applying (11) and (20) to the linear combinations (17) of plane wave solutions in 
the interior and exterior regions yields a nonlinear 8 x 8 matrix eigenvalue problem 
for the complex frequency w = w, + iw, and the coefficients 4 B 5 ,  A, in each region. The 
spatial structure of the modes is represented by @iB and $T, where 

and the coefficients A, and A ,  may (will) be different in each of the three regions. 
The eigenmodes are then 

vB = Re{BBe-'"t}, #T = Re{&e-i"t}, (23) 

where now (21) and (22) may be multiplied by a single complex number to give a 
particular initial amplitude and phase of the disturbance. The eigenvalue problem is 
solved numerically by finding zeros of the determinant, which is efficiently done 
using Gaussian elimination to simplify the evaluation of the determinant at  each 
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iteration. For small w ,  a perturbation theory is also given, which yields a more 
detailed physical picture of the mode structure and a check on the numerics. 

In  summary, the matching technique yields solutions (unstable eigenmodes) of the 
local instability problem in which the meridional slope a has abrupt zonal variations. 
These solutions depend on the half-length a of the unstable interval as well as on the 
parameters U,  p, and r and the slopes a, and a,. The frequencies and growth rates 
or and wi of these modes are the real and imaginary parts, respectively, of the 
eigenvalues w .  These are the special values of w for which the linear combinations (17) 
of locally-plane waves can satisfy the boundary and matching conditions (11) and 
(20) to form eigenmodes. A similar approach in quantum mechanics leads to 
quantization of modes in a potential well, as only half-integral wavelengths can 
satisfy the appropriate boundary conditions. Quantization of modes can be 
anticipated by analogy here as well, although the physics is obviously quite different. 

We supplement the matching approach with two other methods that yield the 
most unstable mode for smoothly varying slope a. Our second method is to 
numerically timestep ( 10) from random or Gaussian wave-packet initial conditions 
until the most unstable mode emerges. We use a leapfrog marching scheme with 512 
Fourier modes and a non-aliasing spectral transform method to efficiently evaluate 
the topographic term a(x).[w,(z, t )  - &.(x, t ) ] .  The horizontally averaged barotropic 
velocity is obtained from (13) a t  each timestep. Growth rate and frequency are 
determined from total perturbation kinetic energy and zero crossings of the 
perturbation streamfunction, respectively. Finally, we use WKB techniques to 
analyse the timestepping solutions, following Pierrehumbert (1984). 

3. Matching solutions 
We have used the matching technique described above to find unstable eigenmodes 

as a function of the interval half-length a of the interval of instability ($1 < a ,  holding 
other parameters fixed. We discuss results for both eastward and westward basic 
state velocity U. In  this and the next section, we consider only inviscid instabilities 
( r  = 0) ,  deferring a discussion of frictional effects to $5.  

Consider a uniform eastward upper-flow U = 1 over a flat bottom (a = 0)  with 
/3=0.25. According to figure 2, this homogeneous flow will be unstable to 
perturbations with wavenumbers k x 1. Suppose instead that the bottom slopes up 
northward uniformly, with a = 2. This changes the sign of the potential vorticity 
gradient in the lower layer, and stabilizes the flow (figure 2). We now examine the 
local instability problem in which the bottom is flat in the interval of instability 
(a = a, = 0 for 1x1 < a )  and slopes up northward to stabilize the flow outside this 
interval (a = as = 2 for 1x1 > a).  

Figure 3 shows the eigenvalues w = w, + iw, obtained for the first three modes for 
U = 1, /3 = 0.25, a, = 0, a, = 2, as a function of interval half-length a. The modes are 
ordered by decreasing growth rate w,, so that the first mode is the most unstable. All 
three modes have eigenvalues with positive imaginary parts, and so, by (23), are 
indeed unstable modes that grow exponentially with time. The growth rates (and 
frequencies) of all three modes decrease monotonically as the interval half-length a 
decreases to zero. For large a,  the values approach the WKB results for slowly 
varying slope, whose derivation will be discussed below. For small a,  the basic state 
approaches the homogeneous case with uniform stabilizing slope, and the growth 
rates vanish when a reaches zero. Remarkably, all three modes have non-zero growth 
rates for arbitrarily small a. This is in marked contrast to the model problems of 
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FIQURE 3. Frequency 0, and growth rate wi versus interval half-length a for local instability 
eigenmodes U = 1, /3 = 0.25, a, = 0, u, = 2.  -, Mode 1; -, mode 2;  --, mode 3; horizontal 
__ , WKB result. 
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Pedlosky (1989), in which the growth rates of successively higher modes first become 
non-zero a t  successively longer intervals of instability. A perturbation theory given 
below indicates that an infinite number of unstable modes exist for arbitrarily 
small a. 

There are two regions of relatively rapid change in growth rate in figure 3. The 
model growth rates and frequencies first begin to deviate significantly from the WKB 
values near a = 3, where the interval length 2a roughly equals the wavelengths of the 
homogeneous unstable waves. (From figure 2, the unstable waves in the homogeneous 
case have wavenumbers k x 1 and wavelengths h x 2n.) Substantial growth rates 
are maintained even for interval lengths an order of magnitude smaller than those 
wavelengths. For a = 0.5, where the interval length equals the deformation radius, 
the growth rate for mode 1 is still roughly half its maximum value. In comparison, 
the shortest unstable wave in the homogeneous flat-bottom flow has a wavelength 
greater than four deformation radii. This is an unexpected result: an interval of 
instability that is short relative to the wavelengths of the instabilities in the 
homogeneous problem can support rapidly growing modes. For smaller intervals, the 
growth rate rapidly decreases. Evidently, the fundamental cutoff scale for the 
instability is the deformation radius, not the wavelengths of the homogeneous 
instabilities. 

The spatial structure of the modes changes with the interval length, becoming 
increasingly depth-dependent as the length decreases. Figure 4 (a) shows velocities 
in layers 1 and 2 for mode 1 for a = 10, an interval of instability 20 deformation radii 
in extent. The solid lines are wl = & and v 2  = $2z (from (12) and (23) a t  t = 0 ) ,  while 
the dashed lines are lBll and - (G21, where G1 and 8, represent the spatial structure of 
the eigenmodes (from (21) and (22)). The disturbances attain maximum amplitude 
near the ‘exit point’, the downstream edge of the interval of instability. Here 
‘downstream ’ is meant with respect to both the upper-layer velocity U and the phase 
and group velocities of the unstable waves in the homogeneous case, which can be 
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shown to be co-directional for basic flows over a flat bottom with zero lower-layer 
velocity. Physical reasoning and the model problem of Pedlosky (1989) suggest that 
the sign of the group velocity (the velocity at which energy propagates) should in 
general determine the location of the exit point. In  the interval of instability, the 
disturbance grows downstream rapidly enough that it is negligible in the upstream 
third and small in the middle third, relative to the downstream third. This 
downstream intensification in the interval, with disturbance maximum near the exit 
point, was observed in the model problems of Pedlosky (1989) and by Pierrehumbert 
(1984). Downstream of the exit point, the modes decay in space (while growing in 
time). In the interval, upper- and lower-layer velocities are nearly equal in 
magnitude (compare [all and I'UJ in figure 4a). Downstream of the exit point, the 
velocity is much larger in the upper layer, as the lower-layer disturbance (which is 
in direct contact with the stabilizing bottom slope) decays rapidly near the exit 
point. Crest-to-crest wavelengths for the oscillations in the amplitude envelope are 
of order 2a, comparable to the wavelengths of the unstable homogeneous waves. The 
downstream decay scale in the upper layer is also comparable to these wavelengths. 

The phase shift with height characteristic of baroclinic instabilities is westward in 
the unstable interval in figure 4 (a), as it must be for northward heat flux. Outside the 
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FIGURE 4 (c,d). For caption see next page. 

interval, the phase shift decays rapidly to zero, so the heat flux will be confined near 
the unstable interval. Heat flux in the two-layer model is represented by advection 
of the interface height 7 = q5T = #1 - q52. The zonally integrated heat flux is equal in 
the two layers, since 7 + 0 as x + f co : 

J -w J -w 

where v1 = #lz and v2 = # 2 x  are the meridional velocities in layers 1 and 2, 
respectively . 

The heat flux in layer j may be written 

V ,  $T = $Re (6,&) e2"ft +$Re (6, 6T e-2i"rt) e2mit, (25) 
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FIGURE 4. Layer velocities and heat fluxes versus x for mode 1, U =, 1, a, = 0, us = 2; (a) ,  (c), 
(4 7, vl; ~ v 2 ;  --- , PlI; ---, -lg2l. ( b ) ,  (4, (f) -, $e(B,M; - aRe(B, 4:) ; ---, 
#,$,1; ---, -#,qLJ. (a) ,  ( b )  a = 10, (c), (d )  a = 1.0, (e), (f) a = 0.1. 

where asterisk means complex conjugate. The phase-dependent (second) term does 
not vanish on averaging over an oscillation period 2n/w, because of the exponential 
growth, but it may be removed by ensemble-averaging over phase or normalizing by 
the growth before averaging over the oscillation period. The remaining first term 
may be called the ‘phase-averaged’ heat flux. 

Figure 4 ( b )  thows the phase-averaged heat flux ;Re(G,(f;$) (solid lines) and the 
amplitude ;lGj&l of the phase-dependent heat flux in each layer for the mode of 
figure 4 (a) .  The phase-averaged heat fluxes are nearly identical in the two layers, and 
are confined to a narrow region near the exit point. The phase-dependent heat flux 
has an oscillatory structure, with wavelength and downstream decay scale roughly 
half those of the velocities. As is the case for the velocities, the downstream decay of 
the phase-dependent heat flux is much more rapid in the lower layer than in the 
upper. 

Figures 4 (c) and 4 ( d )  show the velocities and heat fluxes for mode 1 for a = 1, an 
interval of instability 2L, in length. In and near the interval, the horizontal scale of 
the disturbance is now much smaller in the lower layer than in the upper, where it 
is nearly unchanged. Peak lower-layer velocities are twice peak upper-layer velocities. 

R .  M .  Xamelson and J .  Pedlosky 
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FIGURE 5 (a ,b) .  For caption see next page. 

The vertical structure of the heat flux is similar, with shorter horizontal scales and 
larger peak values in the lower layer. The peak values tend to be at the exit point, 
though for upper-layer velocity the peak is several deformation radii downstream. 

Figure 5 ( a d )  shows mode 1 for a = 1 f o r t  = n/(4wr), 7c/(2wr), 3n/(4wr), R/o,, for the 
initial amplitude and phase as in figure 4(c ) .  The evolution of the spatial structure 
is complex, as it includes both phase propagation and growth. Note that at any fixed 
point, the observed signal will be a simple growing oscillation proportional to 
exp ( - i d ) .  Thus a t  t = n/wr, the velocities are equal to -exp (wIn/wr) times their 
values at t = 0. 

Figures 4 ( e )  and 4(f)  show the velocities and heat fluxes for mode 1 for a = 0.1, 
an interval of instability 0.2~5, in length. This short interval is roughly one-thirtieth 
the wavelength of an unstable wave in the homogeneous case, and less than one- 
twentieth the wavelength of the shortest such unstable wave. The evolution in the 
lower layer toward short horizontal scale with short interval length has proceeded to 
an extreme, with the lower-layer disturbance confined to a narrow jet with velocity 
maximum at the exit point. The jet fluctuates in direction (and grows) with time. The 
upper-layer disturbance is dominated by a quasi-stationary Rossby wave (wave- 
number k w (P/U)i) that decays downstream and has negligible lower-layer 
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FIGURE 5. Layer velocities -, v1 and -, vp for mode 1 from figure 3 ( c )  at (a) t = a/(4w,),  
( b )  t = x / (2w, ) ,  (c) t = 3x/(4wr), (d )  t = x/w, .  

amplitude. The heat fluxes have similar structure, with the wavelength of the upper- 
layer flux half that of the velocity. The coupling of upper- and lower-layer 
disturbances of such disparate horizontal scales in a single unstable mode is dramatic 
and unexpected. 

Higher modes have successively shorter horizontal scales, though the difference 
between modes becomes small for long intervals, and show a similar progression 
toward disparate upper- and lower-layer horizontal scales for shorter intervals. 
Figure 6 ( a )  shows the lower-layer velocity wz, a t  the phase at which it attains its peak 
northward value, for each of the first three modes. (The peak value has been 
normalized to unity). The ‘quantization’ of the modes is evident, as higher modes 
have successively more relative extrema in a decay length. The corresponding phase- 
averaged heat fluxes (figure 6 b )  are similarly quantized. (Note the different structure 
for the higher modes, with two relative maxima near the exit point.) A given net 
northward heat flux can thus be expected to require more kinetic energy for 
successively higher modes, yielding a physical explanation for the successive 
decrease in growth rates. The heat fluxes for the modes normalized as in figure 6 (a )  
decreases with mode number, as shown in figure 6 ( b ) .  
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FIGURE 6. (a)  v2 ( b )  ~Re( ' ;z$~)  versus 5 for a = 0.1. -, Mode 1; -, mode 2;  ---, mode 3. 

Further insight into the structure and dynamics of the unstable modes can be 
gained from approximations to the plane waves (la)-( 16) for low frequencies, 
IwI 4 1. The vertical structure of the plane waves is more apparent if layer 
streamfunctions are considered, with 

, (26)  $ - A ,  &("z-wt) $, = A ,  eiWz-wt) 
1 -  

instead of (14). Substitution of (26)  into ( 6 )  yields the dispersion relation (15) plus the 
additional long barotropic wave solution k = 0, A ,  = A,, w arbitrary. The amplitudes 
obey 

Along with the k = 0 wave, the approximate solutions of (15) and (27)  for low 
frequencies are a long baroclinic wave, 

[ (W - kU) ( k2 + 1) + (P + U)k] A - (O - kU) A , = 0. (27)  

k x -  P+P2 o, A ,  x --Al, P 
P(P2 - u) P 2  

two surface-trapped quasi-stationary resonant waves, 
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and a short bottom-trapped wave, 

Substitution of /3 = 0.25, U = 1, a, = 2 into (28)-(30) indicates that for a growing 
mode the long baroclinic wave will decay upstream, while the latter three decay 
downstream. The signatures of these waves are evident in the velocity structure of 
mode 1 for a = 0.1 (figure 4e). Upstream the baroclinic wave dominates. Near the 
exit point, the short bottom-trapped wave allows a narrow jet in the lower layer. 
Downstream, the resonant waves decay slowly in the upper layer, while lower-layer 
fluctuations are minimal. The short bottom-trapped wave, which balances time rate 
of change of relative vorticity with motion in the ambient potential vorticity 
gradient, evidently plays a crucial role in maintaining the instability for short 
unstable intervals. As the interval shortens, the instability weakens and its 
frequency and growth rate decrease. This shortens the wavelength of the relative 
vorticity-ambient gradient balance in the lower layer, allowing the instability to 
occur for successively shorter unstable intervals. As the unstable interval increases 
in length, the resonant waves (29) begin to propagate and their wavelength 
decreases, eventually approaching that of the homogeneous unstable waves. The 
short wave continues to support rapid variations in the lower-layer velocity near the 
exit point. 

The approximations (28)-(30) may be used to formulate a perturbation theory 
that yields an approximate analytic eigenvalue equation for all modes for small a and 
101. For this analysis, the matching problem is most conveniently formulated in terms 
of the layer streamfunctions and q52, using the ten matching conditions (18) and 
(19), and allowing long barotropic ( k  = 0) fluctuations only in the interval and 
westward, according to (12). (This formulation is equivalent to that using (12), (17) 
and (20) . )  The long barotropic ( k  = 0) and baroclinic (28) waves are retained in both 
layers, both upstream and in the unstable interval, as in the full problem. The 
surface-trapped waves (29) are retained in the interval and downstream, but only in 
the upper layer. The bottom-trapped wave (30) is also retained in the interval and 
downstream, but only in the lower layer. The a priori neglect of the lower-layer part 
of the surface-trapped wave and the upper-layer part of the bottom-trapped wave, 
motivated by the strong trapping for small IwI indicated by (29) and (30), allows 
considerable algebraic simplification. (The perturbation theory may be motivated 
more formally by a multiple-scaling procedure, not repeated here.) The solutions 
satisfy all the boundary and matching conditions, and the resulting determinant is 
10 x 10, but it can be reduced to 4 x 4 by relatively few Gaussian elimination steps. 

The result of the perturbation analysis is the approximate eigenvalue equation, 

where 

K2p2 
exp (2ip) = -+ a2 0 (:) , 

and p, = a, + p, /3, = a, -t $. Let 
p = Pe-ix 
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FIUURE 7. Frequency w, and growth rate w, versus interval half-length a. Perturbation result : 
- , mode 1 ; --- mode 2. Full matching solution : 0,  mode 1 ; X , mode 2. 

in (31a) to obtain the two relations 
KP 

a 
P sin x = ln-, 

P cos x = -x. (336) 

These may be used to solve the transcendental equation (31a) parametrically for t t ~  

w = (U-pu)Ke-xtanxeix, (34a) 
as a function of a, 

a = - Kx sec x e-XtanX eix. (34b) 

Solutions with w ,  a Q 1 and w, > 0 are found near negative half-integer multiples of 
a, that is, for x = ( i -m)z-~ ,  E > 0, m = 1,2, ... , where m then corresponds to the 
mode number. Figure 7 shows the eigenvalues versus a for the first two modes from 
(34) and from the full matching solution. The perturbation theory is remarkably 
accurate up to a x 1 for mode 1 and beyond for mode 2. The growth rate prediction 
is slightly better than the frequency prediction. 

As a+O, solutions of (33a) obey 

K 
P = In-cosecx+O(lnPcosecx), 

a 

which may be substituted into (33b) to yield the transcendental equation 

K 
a 

This has the approximate solutions 

x = -In - cot x + O(ln P cosec 2). 
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_- 

From (31 b ) ,  the corresponding approximate eigenvalue relation for mode m is, 

-0.1 y 

(m - k) x + i InE] a (ln:)2 ( U -  p,) a. 

_- 

For constant a ,  then, 3 ( m o d e m )  - m%(mode 1). 
wi wi 

-0.2 

-0.3 

-0.4 

(37 a) 

-- 3- 

_ _  
T; 

I I 

(37 b)  
k* k 

By (30), this means -(modem) - m'(mode l),  

for the short bottom-trapped wave, so the lower-layer streamfunction for mode m 
will have roughly m relative extrema near the exit point where the short wave 
dominates. From (36), wi is independent of mode number, so that all modes grow at  
an equal rate in the limit a + 0. For In (K/a)  - 1, the approximation (35) rapidly loses 
accuracy, as the numerical solutions in figure 3 are consistent with the estimate 

ki k, 

-0.2 

-0.3 

-0.4 

cosx 1 191 (modem) N I T /  - m - 

-- 3- 

_ _  
T; 

I I 

(374 
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obtained from (34) for (x - (a-m) x( - 1, indicating that growth rates will decrease as 
1/m for constant u. The results (37a, b) evidently hold also for finite a, as they are 
consistent with the numerical solutions in figure 6 ( a ) ,  for which a = 0.1. 

For U = - 1 (westward flow), there are no resonant waves, so the modal structure 
changes qualitatively. Referring to figure 2, we choose a, = 0, a, = -2  for local 
instability. By (28), the long baroclinic wave still decays toward negative x, but this 
is now downstream. The ‘resonant’ wave (29) does not resonate but decays both 
upstream and downstream, with decay scale (--/?/@. The short wave again decays 
downstream. The velocities and heat fluxes for mode 1 with U = - 1 are shown in 
figure 8 for the same set of interval lengths as in figure 4, a = {10,1,0.1}. Maximum 
velocities are greater in the lower layer than the upper even for a = 10. The 
downstream decay is more rapid in the upper layer than for U = 1, and less rapid in 
the lower layer. This difference is due to the decay of the ‘resonant’ waves (29) for 
U = - 1, and the presence of the long baroclinic wave (28) downstream. As a 
decreases, w decreases and the downstream decay scale lengthens according to  (28). 
For u = 0.1, the velocities and heat fluxes show the same dramatic confinement in the 
lower layer and diffuse structure in the upper layer as for U = 1, with the long 
baroclinic wave rather than the quasi-stationary resonant waves now determining 

FIUURE 8 (c ,  d) .  For caption see next page. 
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FIGURE 8. As figure 4, but for U = - 1, a, = 0, a, = - 2 .  

the upper-layer horizontal structure. The dependence of the eigenvalues on a for 
U = - 1 (figure 9) is qualitatively very similar to that for U = 1, in spite of the 
difference in mode structure. This suggests that the dynamics of the instability does 
not depend crucially on qualitative aspects of the downstream decay. The larger 
growth rates for the case U = - 1 relative to the case U = 1 occur because of the 
greater local supercriticality (see figure 2).  

As Pierrehumbert (1984) and Pedlosky (1989) found, only local maxima in 
supercriticality are required for the existence of local unstable modes. Growth rates 
are determined by the maximum supercriticality and do not depend on the degree of 
stability of the flow exterior to the interval of maximum instability. Eigenvalues for 
U = 1 with exterior slope a, = 0.5 (for which there are unstable waves in the 
homogeneous problem), and a, = 0 have the same dependence on a as in figure 3. The 
spatial structure of the modes does change, with weaker trapping for less stable 
exterior flow. 
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4. Numerical solutions and WKB analysis 
For smoothly-varying slope a(z), we have determined the most unstable mode by 

the timestepping method outlined in $2.  The slope is taken to vary exponentially 
with squared distance, 

(38) 
We take U = 1 and CT = 57c and vary only b, which controls the maximum local 
supercriticality of the flow. The domain extends from x = -2On to x = 20n. Global 
instabilities (Pierrehumbert 1984) are damped by a sponge region, with friction 
coefficient r increasing to r = 1 a t  its centre, that covers -20n < x < -+20n. 
Elsewhere r = 0. The supercriticality is zero for a = 0.75 (see figure 2), which occurs 
for b = 1.25. For b = 2,  the slope vanishes a t  its minimum a t  x = 0, just as it did in 
the entire unstable interval in the matching solutions. 

Figure 10 (a )  shows the timestepping solution for the most unstable mode for b = 2 
a t  time t = 450, when the growth rate and frequency have encouraged. Only the 
instantaneous layer velocities w1 and v2 are shown. These may be compared with the 
velocities v1 and w2 in figure 4 (a ) ,  for which the minimum value of the slope a is also 
a = 0, as it is for b = 2. The timestepping and matching solutions have nearly 
identical upper-layer velocities. (The phase and amplitude of each solution are 
arbitrary, so these differences are of no consequence.) The smoothly-varying 
topography (38) leads to smoother variation of the lower-layer velocity in the 
timestepping solution. Otherwise, the lower-layer velocities are also very similar, 
first growing, and then decaying, more rapidly than the upper-layer velocities. The 
wavelengths of the spatial oscillations agree, and the westward phase shift with 
height is evident in the region of spatial growth. 

It is interesting that if the layer streamfunctions are calculated from the 
timestepping solutions by (12) ,  the barotropic fluctuations westward ‘at  infinity ’ are 
negligible for the solution shown in figure lO(a). Instead of (38), the topography 

a(x)  = 2 - b e-za/2na. 

a(x)  = 2-b(tanh*-tanhz)/(2tanh:) 0- CT (39) 
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FIQURE 10. (a) Timestepping solution for most unstable mode, b = 2, t = 450. -, v l ;  ---, v2 
versus x. (6) WKB wavenumber k, and spatial growth rate k, versus x. - -  - -, endpoints of interval 
for absolute instability. ---, location of amplitude maximum. 

may be specified, which approaches the abruptly varying case of $ 3  as u+O. For 
Q ;5 x (and a = lo), timestepping solutions with (39) have appreciable barotropic 
fluctuations ‘at infinity ’, and approach the fastest-growing mode from the matching 
problem in increasing detail as u -+ 0. 

Figure 11 shows the growth rates and frequencies for the numerical and matching 
solutions for a(0) = {0,0.2,0.4,0.6} (b  = {2,1.8,1.6,1.4}). For the matching solutions, 
endpoints of the unstable interval were placed in each case where the top- 
ography (38) passes through the critical slope a = 0.75. These were at  
z( = a)  = (15.2,13.4,11.0,7.5). The agreement is good in both frequency and growth 
rate. 

The WKB results for frequency and growth rate, also shown in figure 11,  agree 
with the numerical and matching solution values. Figures 3 and 9 compare the WKB 
results with the dispersion relations for w from the matching solutions. As noted 
above, the WKB results retain considerable accuracy for intervals of length 
comparable to the wavelengths of homogeneous unstable waves. For shorter 
intervals, the WKB results rapidly lose accuracy. For large intervals, the WKB 
results accurately predict the frequency and growth rate of the most unstable mode 
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of the matching problem. Since the matching problem contains abrupt zonal 
variations in meridional slope, while the WKB results presume only gradual 
variations, this agreement is perhaps surprising. This suggests (as for the comparison 
of U = 1 and U = - 1 matching solutions) that the dynamics of the instability does 
not depend crucially on qualitative aspects of the disturbance field in the decay 
region. 

We refer the reader to Pierrehumbert (1984) for a detailed exposition of the 
relevant WKB theory in the context of local instability. The fundamental 
assumption is that departures from zonal homogeneity are small, that is, the 
topographic slope varies slowly with x. Then solutions may be sought that behave 
locally as waves over constant slope and so satisfy (15) locally. The WKB theory 
(which follows from a generalization to complex w of the well-known stationary 
phase approximation) is asymptotic for large time, and so treats only the most 
unstable mode, which will eventually dominate. The WKB requirement for local 
instability is that dwldk = 0 at the point of maximum local supercriticality. 

Figure 10(b) shows the local wavenumber of the WKB solution for b = 2 
(a(0) = 0), for which the numerical solution is shown in figure lO(a). The coalescence 
point a t  x = 0 is indicated. The maximum amplitude of the mode will be attained 
where the imaginary part of the wavenumber changes sign and the mode begins to 
decay downstream (shown by the long-dashed line). This corresponds well with the 
location of maximum amplitude in the numerical solution. For comparison, the 
endpoints of the unstable interval (where the topographic slope passes through 
critical) are also shown. 

Figure 11 shows the numerical, matching and WKB eigenvalues w ,  versus slope a t  
x = 0. The supercriticality A = U - b 2  = U-p-a = 0.75-aso A = 0 when a = 0.75. 
Growth rates increase linearly with supercriticality. This contrasts sharply with the 
zonally homogeneous problem, in which the growth rate increases as the square root 
of the supercriticality (Pedlosky 1979). The local instability constraint leads to a 
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weaker increase of growth rate with small supercriticality. Note that the frequency 
and growth rate for a(0) = 0 agree with the results (his figure 7 ,  O= 0.5) of 
Pierrehumbert (1984) for slowly-varying basic flow. The WKB results must agree, 
since they depend only on the flow parameters at  the location of maximum 
supercriticality, which are identical when a(0) = 0. 

For A 4 1 this linear dependence of growth rate on supercriticality may be 
analytically approximated from the WKB theory. In (15) let o = SZA + O(A2) .  Then 

(p- Uk2) k 
- Uk2(k2 + 2 )  + ( p  + U) (k2  + 1) ' 

a= 

The local instability condition dQ/dk = 0 then yields 

V k 6  - U(2p+ U) k4 + (/I2 + 2pU+ 3U2) k2 + /?(p + U )  = 0, (41) 

which may be solved for k given /3 and U. The result (for the unstable mode with 
Im 12 > 0) is shown as the dashed line in figure 11 for U = 1, ,8 = 0.25. The agreement 
even for large supercriticality is remarkable. For general ,8 and U,  the accuracy of 
(40) and (41) is only guaranteed for A 4 1. 

5. Dimensional quantities and frictional effects 
Although the model problem studied here is idealized, it is of interest to make some 

rough estimates of dimensional parameters based on atmospheric and oceanic scales. 
The basic scales are U, (the basic state velocity scale) and L, (the internal 

deformation radius). Typical deformation radii are L, = 1000 km for the atmosphere 
and L, = 50 km for the ocean. For corresponding velocity scales U, = 80 m s-l and 
U, = 20 cm s-l, respectively, and mid-latitude variation of Coriolis parameter with 
latitude p* = 2 x m-l s-l, these yield a non-dimensional p = 0.25, as above, and 
timescales T = LR/U* of 3.5 h and 3 days, respectively. The growth rates for the 
eastward flow of figure 3 and an unstable interval of length L,  (a = 0.5) correspond 
to e-folding times of 2.4 days and 50 days, respectively. These are comparable to 
observed atmospheric and oceanic timescales for cyclogenesis. More rapid growth 
rates obtain for stronger shears. Thus, supercritical regions of even quite limited 
zonal extent support substantial local instabilities. 

The main effect of small friction on the above results is to decrease the growth rates 
by an amount nearly equal to the frictional decay rate. Thus, inviscid modes with 
growth rates below a given frictional decay rate will decay rather than grow when 
that friction is imposed. As a result, in the presence of friction the anticipated 
successive loss of unstable modes with decreasing unstable interval length occurs, 
while it does not in the inviscid case. For U = 1 and a = 0.5 as above, setting r = 0.02 
(dimensional decay times of 7.3 days and 150 days, respectively) increases the e- 
folding times to 3.6 days and 75 days, respectively. 

6.  Summary 
Local baroclinic instability is studied following an approach, proposed by 

Pedlosky (1989), that allows the interval of instability (local supercriticality) to be 
arbitrarily short, circumventing the limitations of conventional WKB analysis. 
Variable meridional bottom slope controls the supercriticality of a uniform zonal 
flow in a two-layer quasi-geostrophic model. Solutions are found by matching 
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pressure, velocity, and upper-layer vorticity across points where the bottom slope 
changes abruptly so as to destabilize the flow in a central interval. 

Remarkably, an infinite number of unstable modes exists for arbitrarily short 
intervals. This contrasts with the heuristic models of Pedlosky (1989), in which 
successive modes are lost as the interval shortens. The growth rates for these modes 
decreases as l / m  with mode number m for short intervals, but are independent of m 
as the interval length approaches zero. We speculate that this infinity of modes, 
associated with the singular behaviour of (31) as o -+ 0, depends upon the absence of 
mean flow advection in the lower layer relative to the supercritical interval. Hence 
we are reluctant to generalize this aspect of our result to more general flow. The 
addition of small friction introduces a growth-rate threshold and results in successive 
loss of modes with decreasing interval length, as in the heuristic model. 

WKB results for growth rate and frequency for the most unstable mode in flow 
over slowly varying slope are accurate for long intervals but lose accuracy for 
intervals of length comparable to and smaller than the wavelengths of unstable 
waves in the homogeneous problem. The matching solution local modes retain large 
growth rates (about half maximum) for intervals as short as the internal deformation 
radius, and considerably shorter than the wavelengths of the shortest homogeneous 
instabilities. For intervals shorter than the deformation radius, growth rates 
decrease rapidly. Evidently, the deformation radius and not the homogeneous 
instability determines the fundamental horizontal scale for local instability. 

The modes are weakly trapped in the upper layer, yielding resonant Rossby waves 
in eastward flow and long baroclinic waves in westward flow for short intervals and 
small growth rates, while the lower-layer amplitudes decay more rapidly. Heat flux 
is more strictly confined to the supercritical interval than amplitude. The coupling 
of disparate horizontal lengthscales in the upper and lower layers in a single unstable 
mode for short intervals is dramatic and unexpected. Only local maxima in 
supercriticality are required for the existence of local unstable modes, in agreement 
with previous results (Pierrehumbert 1984 ; Pedlosky 1989). For all interval lengths, 
maximum mode amplitudes occur near the downstream edge of the interval. Growth 
rates increase linearly with supercriticality for weakly supercritical flow, in contrast 
to the more rapid square-root of supercriticality growth in the homogeneous 
problem. 

The present work treats linear instabilities without meridional variation. A 
natural question concerns the effect of meridional confinement on the linear modes. 
This problem is under investigation. It is also tempting to speculate that the 
nonlinear equilibration of local instability processes similar to these may be 
associated with the genesis of blocking patterns and coherent vortex structures, 
though the physical structure of the local modes for short intervals is more complex 
than the simple ‘bound eddy’ mode of the heuristic models of Pedlosky (1989). A 
quasi-stationary Rossby wave forms in the upper layer, growing in time and 
decaying downstream, while a narrow jet in the lower layer grows and fluctuates in 
phase with the upper layer flow. 
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