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Lecture 9: Least squares uncertainties

Recap
In Lecture 8, we looked at some specific examples of least-squares fitting, specifically focused

on setting up inversion problems. In this lecture, we’ll expand our repertoire by considering ad-
ditional constraints, starting by looking at the linear regression case when our dependent variable
(e.g. time or position) has uncertainties.

Linear regression with uncertain variables
In class we examined results using “ordinary least squares” compared with results based on

the “standard major axis” approach (see Bellacicco et al, 2019). In a classic least-squares problem
we define a model:

y = Gm+ n (1)

where
ŷ = Gm (2)

where n is the vector of the noise or misfit, which we aim to minimize. We minimize the cost
function:

ε =
N∑
i=1

(yi − ŷi)2 (3)

to obtain the standard least-squares solution. For a linear regression that finds a constant and a
slope, of the form ŷ = m1 +m2x, and the matrix G is:

G =


1 x1
1 x2
...

...
1 xN

 . (4)

The standard least-squares solution gives us

m = (GTG)−1GTy, (5)

which gives

m1 = 〈y〉 −m2〈x〉 (6)

m2 =
Cxy

Cxx

, (7)

where Cxy is the covariance of x and y, in the form 〈(x− 〈x〉)(y − 〈y〉)〉.
The standard major axis method assumes that both x and y have uncertainties so minimizes

the area of a triangle between the data point y and the line defining ŷ. The produces:

m1 = 〈y〉 −m2OLS
〈x〉 (8)

m2 =

√
Cyy

Cxx

= ±sy
sx
, (9)
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where sy is the estimated standard deviation of y and xs is the estimated standard deviation in x.
Check the appendix of Bellacicco et al (2019) for details.

Uncertainties in model parameters
All of the above discussion is a temporary digression. In general, when we compute a least

squares fit, we probably want to know uncertainties for our fitted parameters mi. If our data have
a known covariance, we can define a weight matrix:

W = 〈ddT 〉 = σ2I. (10)

If we weight each line of our matrix equation by the uncertainty in the data, we have

dW−1/2 = W−1/2Gm (11)

As we noted before, this yields

m = (GTW−1G)−1GTW−1d. (12)

We can also estimate the covariance of m:

〈mmT 〉 = 〈(GTW−1G)−1GTW−1d((GTW−1G)−1GTW−1dd)T 〉 (13)

= (GTW−1G)−1GTW−1〈ddT 〉W−1G(GTW−1G)−1T (14)

= (GTW−1G)−1GTW−1WW−1G(GTW−1G)−1T (15)

= (GTW−1G)−1(GTW−1G)(GTW−1G)−1T (16)

= (GTW−1G)−1(GTW−1G)(GTW−1G)−1T (17)
= (GTW−1G)−1. (18)

This is conveniently just the matrix that we were inverting, and it tells us that the inverted matrix,
weighted appropriately by the uncertainties, will provide the uncertainties in m.

Let’s test this out in the simplest possible case. Consider the case where our inversion is
simply used to find the mean of d. We define an N × 1 matrix:

G =


1
1
...
1

 . (19)

and
W = σ2I (20)
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The standard least-squares solution gives us

m = (GTW−1G)−1GTW−1d (21)

=

[1 1 . . . 1
]
σ−2I


1
1
...
1




−1

[
1 1 . . . 1

]
σ−2Id (22)

=

(
N∑
i=1

1

σ2

)−1 N∑
i=1

di
σ2

(23)

= d, (24)

where the overbar indicates the mean. The uncertainty in this estimate comes from the inverted
matrix:

〈mmT 〉 =

(
N∑
i=1

1

σ2

)−1

(25)

=

(
N

σ2

)
(26)

= σ2N. (27)

This wonderfully shows us that the uncertainty in our estimatem1 of the mean is the standard error
of the mean, σ/

√
N .

Example
In class, we considered one example.

1. In an annual record, data (y) collected in summer are more accurate than data collected in
winter. How do we represent that?
To account for varying accuracy in our data, we’ll want to adjust our weight matrix We to
have differing values of σ−2

i on the diagonals. Smaller σi in summer imply larger weights.
Note that overweighting summer values could mess up our estimates of the annual mean and
annual cycle, so we would need to scrutinize our results fairly carefully.

In class discussion, we noted that formally we would create a matrix W of the form:

W =


σ2
i 0 0 . . . 0
0 σ2

2 0 . . . 0
0 0 σ2

i . . . 0
...

...
... . . . ...

0 0 0 . . . σ2
N

 (28)

In this case, σi should be large in the winter and small in the summer, and we talked about ways
it could vary—either over time blocks or perhaps following a sinusoidal variation. Formally, we
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might want W to contain off-diagonal elements, but we often can assume data to be uncorelated,
allowing us to omit the covariance terms (〈didj〉), which is good, since they would make W dif-
ficult to invert. W is an N × N matrix. Although it’s quick to invert, we still might not want to
fill the full matrix, and we might be able to speed up the calculation by dividing each di by σi and
each row of G (i.e. Gi,j) by σi.

The corresponding matrix G should at a minimum solve for a mean and a diurnal cycle:

G =


1 cos(2πt1) sin(2πt1)
1 cos(2πt2) sin(2πt2)
...

...
...

1 cos(2πtN) sin(2πtN)

 . (29)

where ti is time in days. Depending on the data, we might also fit to additional functions to account
for a linear trend or an annual cycle, for example. We only require M < N , so that the problem is
overdetermined.

There are challenges intrinsic in this problem—notably that downweighting the winter data
will bias the solution to summer conditions. You could address this by (a) solving separately for
winter and summer, or (b) using the winter uncertainties for the entire record, or (c) tolerating the
fact that the solution was based on summer conditions only.
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