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ABSTRACT: Fast-moving synoptic-scale atmospheric disturbances produce large-scale near-inertial waves in the ocean

mixed layer. In this paper, we analyze the distortion of such waves by smaller-scale barotropic eddies, with a focus on the

evolution of the horizontal wavevector k under the effects of straining and refraction. The model is initialized with a

horizontally uniform (k 5 0) surface-confined near-inertial wave, which then evolves according to the phase-averaged

model of Young and Ben Jelloul. A steady barotropic vortex dipole is first considered. Shear bands appear in the jet region

as wave energy propagates downward and toward the anticyclone. When measured at a fixed location, both horizontal and

vertical wavenumbers grow linearly with the time t elapsed since generation such that their ratio, the slope of wave bands, is

time independent. Analogy with passive scalar dynamics suggests that straining should result in the exponential growth of

jkj. Here instead, straining is ineffective, not only at the jet center, but also in its confluent and diffluent regions. Lowmodes

rapidly escape below the anticyclonic core such that weakly dispersive high modes dominate in the surface layer. In the

weakly dispersive limit, k52t=z(x, y, t)/2 provided that (i) the eddy vertical vorticity z evolves according to the barotropic

quasigeostrophic equation and (ii) k5 0 initially. In steady flows, straining is ineffective because k is always perpendicular to

the flow. In unsteady flows, strainingmodifies the vorticity gradient and hence k, andmay account for significant wave–eddy

energy transfers.
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1. Introduction
Atmospheric storms sweeping across the ocean resonantly ex-

cite near-inertial waves, or internal waves oscillating at a fre-

quency close to f, the Coriolis frequency (Alford et al. 2016).

These waves originate within a shallow surface mixed layer, but

with the large horizontal scale characteristic of synoptic weather

systems (Pollard 1980; Thomson and Huggett 1981). Given such

anisotropic primordial scales, wind-generated near-inertial waves

are inefficient at radiating their energy into the ocean interior

(Gill 1984). A reduction in the horizontal length scale of the wave

is necessary to increase the vertical group velocity and enable

propagation into the ocean interior.

Three contender scale-reduction mechanisms are summa-

rized on the right-hand side of the ray-tracing formula for the

evolution of the horizontal wavenumber k 5 (k, l):
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, (1)

where dg/dt is a derivative following the group velocity. The three

processes on the right-hand side—b-refraction, z-refraction, and

straining—tend to increase jkj, i.e., decrease the horizontal length
scale of a freshly generated near-inertial wave.

The Ocean Storms Experiment (D’Asaro 1989; D’Asaro

et al. 1995) provided observational evidence that the lat-

itudinal variation in the Coriolis frequency, b 5 df/dy, leads

to a linear growth of the meridional wavenumber l. In (1),

this corresponds to a dominant balance in which b-refraction

is the main term on the right, implying l5 l0 2 bt. In physical

terms, the southernmost and northernmost portions of the

primordial wave experience slightly different inertial fre-

quencies. Over time, this frequency shift results in phase de-

coherence in the meridional direction, which is equivalent to

an increase of l.
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Gradients in the vertical vorticity, z 5 Vx 2 Uy, with (U, V)

the horizontal velocity of mesoscale eddies, can also reduce the

initial horizontal wave scale (Kunze 1985; Young and Ben

Jelloul 1997). Near-inertial waves embedded in a field of eddies

experience different rotation rates in cyclonic and anticyclonic

regions, such that the wave phase acquires the 10–100-km scale of

eddies. This process is z-refraction in (1). For spatially uniform

and steady vorticity gradients, z-refraction also produces a linear

growth of the wavevector, k5 k0 2 (1/2)t=z. Because mesoscale

eddies typically have j=zj � b, one expects that z-refraction is

more rapid than b-refraction (Van Meurs 1998). For this rea-

son we shall assume constant planetary vorticity f and neglect

b-refraction throughout this paper.

Differential advection by mesoscale eddies stretches and

rotates the wavevector k. This process is captured by the

straining term in (1). By analogy with passive-scalar advection,

one expects straining to cause an exponential growth of jkj
(Jones 1969). In strain-dominated regions, and with sufficient

vertical shear, the horizontal and vertical wavenumbers both

grow exponentially so that the group velocity goes to zero.

Provided uniform velocity gradients along a ray, waves are

captured and strained into oblivion (Bühler and McIntyre

2005). Polzin (2008) argues that the vertical profiles of hori-

zontal velocity observed during the Mid-Ocean Dynamics

Experiment are consistent with wave capture by mesoscale

straining.

What are the respective roles of straining and z-refraction

in shaping k in a generic geostrophic flow in which the two

processes are at play? Naively, one would expect strong-

enough straining to dominate z-refraction because straining

produces exponential-in-time growth of jkj, while refraction

results only in linear-in-time growth. We show here, how-

ever, that this expectation may be violated in the important

case of a wind-generated near-inertial wave, for which the

initial horizontal scale is large, provided that the background

flow is barotropic.

This insight emerged from the Near-Inertial Shear and

Kinetic Energy experiment (NIKSINe), a research initiative

funded by the U.S. Office of Naval Research with a field work

component focused in a region located about 500 km south of

Iceland. In a companion paper, Thomas et al. (2020) provide

observational evidence of the z-refraction of a wind-generated

near-inertial wave in a barotropic vortex dipole. A few inertial

periods after the wind event, the phase differences in the in-

ertial velocities are consistent with a linear growth of k at a rate

comparable to half the local vorticity gradient. This is despite

the fact that ballpark estimates indicate that straining is strong

enough to produce an exponential growth of jkj. Why does

straining appear to be ineffective in the NISKINe dipole?

Furthermore, mesoscale vorticity in the NISKINe region un-

dergoes significant changes over a few inertial periods. How do

these rapid changes in mesoscale vorticity variations affect

z-refraction and straining?

2. Problem formulation

a. Flow setup
Figure 1a shows an estimate of the horizontally non-

divergent flow observed during the NISKINe cruise based on

satellite altimetry refined by in situ velocity measurements

from both ship-mounted and drifting instruments (Thomas

et al. 2020). Vertical profiles reveal a surprisingly uniform flow

vertical structure in the top several hundred meters of the

ocean, motivating the assumption of barotropic flow through-

out this paper. Analysis of wave evolution in this complex flow

field is confined to section 6 of this paper. In the next few

sections, we limit attention to an idealized, dipole model of the

NISKINe flow shown in Fig. 1b.

The dipole is best defined using a coordinate system that is

rotated by 458 relative to the cardinal directions, represented

by the (X, Y) axes in Fig. 1. This rotated (x, y) coordinate

system is shown by the green axes in Fig. 1. The x axis is

antiparallel to the vorticity gradient at the origin. In terms of

the rotated coordinates the dipole streamfunction is

c5Uk21 sinkx cosky . (2)

FIG. 1. Normalized vertical relative vorticity map from (a) NISKINe and (b) its idealized, dipole version. The

rotated axes, (x, y), used for analysis are shown in green. The relation between the two coordinate sets

is (X, Y)5 (x1 y, y2 x)/
ffiffiffi
2

p
.
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The vorticity is z 5 22k2c, or

z52gk21 sinkx cosky , (3)

where g 5
def

2k2U. The scales of the dipole flow are set to fit

both the observed velocity maximum at the center of the

NISKINe jet, U 5 33.5 cm s21, and the observed maximum

vorticity gradient, g 5 2.7 3 1029m21 s21. This requires

k5
ffiffiffi
2

p
p/(70 km). The resulting root-mean-square Rossby

number is kU/f ’ 0.17, with a maximum of 0.34. Despite these

numbers not being reassuringly small, the flow is assumed to

obey quasigeostrophic dynamics, whose validity has been

shown to extend to Rossby numbers of order 0.1 (e.g., Klein

et al. 2008; Asselin et al. 2018).

NISKINe is near 58.58N, so b ; 10211m21 s21 is two orders

of magnitude smaller than the maximum relative vorticity

gradient, g. We thus neglect the latitudinal dependence of the

Coriolis frequency and set f 5 1.24 3 1024 s21. In the (X, Y)

coordinate system used for the axes in Fig. 1, the domain is

horizontally periodic with equal east–west (X) and north–

south (Y) dimensions of 70 km. The depth is H 5 3 km.

Stratification is vertically uniform. Unless otherwise specified,

the square of the buoyancy frequency used in the calculations is

N2 5 1025 s22.

b. Waves
Our idealized scenario consists of a fast-moving, large-scale

atmospheric disturbance impulsively exciting horizontally

uniform near-inertial oscillations in the mixed layer. Following

Gill (1984), we focus on the wake stage where wind stress is no

longer acting. Crucially, we assume that the initial inertial

currents have scales much larger than the O(50) km scale of

eddies. As such, our model is inappropriate for small-scale or

slow-moving atmospheric disturbances (Geisler 1970; Price

1983; D’Asaro 1985; Nilsson 1995). These ideal conditions are

met by the fast-moving storm that generated the near-inertial

wave reported by Thomas et al. (2020).

Mathematically, our scenario translates into an initial value

problem for the waves, with a near-inertial oscillation initially

confined to a surface layer,

u(t5 0)5u
0
exp(2z2/s2), y(t5 0)5 0: (4)

The inertial oscillations begin with an eastward velocity u05
10 cm s21 over a surface layer of depth s 5 30m. Since strati-

fication is depth independent in our model, s does not

represent a mixed layer depth. Instead, we refer to s as the

surface layer depth, i.e., the depth over which momentum is

initially injected by winds.

It is insightful to express wave variables in terms of the back

rotated velocity,

LA5 (u1 iy) eift , (5)

where A(x, y, z, t) is a space- and time-dependent complex

field and

L5
›

›z

�
f 2

N2

›

›z

�
(6)

is a frequently occurring operator. Thus, LA is the slowly

evolving envelope of the near-inertial wave, and its leading-

order evolution is dictated by the Young–Ben Jelloul (YBJ)

equation (Young and Ben Jelloul 1997),

›
t
LA1 J(c,LA)1 i

�
by1

z

2

�
LA1

if

2
4A5 0, (7)

where J(a, b)5
def

axby 2 aybx is the Jacobian and 45
def

›2x 1 ›2y is

the horizontal Laplacian. From left to right, the YBJ equation

expresses the changes to the near-inertial wave envelope due

to advection by the mean flow, refraction by planetary and

relative vorticity, and dispersion.

c. Numerics
Although the analysis is carried out in the classic YBJ

framework, numerical integrations are performed using

the YBJ1 equation (Asselin and Young 2019). This equa-

tion is identical to (7), except that the operator L is re-

placed with

L
1
5
def

L1
1

4
4 . (8)

This tweak in the definition of the wave envelope brings the

twin advantages of higher accuracy and lower computational

effort while maintaining ease of implementation (Asselin and

Young 2019).

The YBJ1 model is pseudospectral in the x and y direc-

tions, allowing horizontal derivatives to be computed with

spectral accuracy. The 2/3 rule is used to remove aliased

modes (Durran 2013). Vertical derivatives are approxi-

mated with second-order centered finite differences. Time

integration is accomplished with the leapfrog scheme with

weak time diffusion (Asselin 1972). Weak horizontal hy-

perdiffusion is applied to filter out subgrid horizontal wave

scales.

3. The dipole solution
We begin by presenting the general appearance of the full

YBJ solution (7) for a large-scale near-inertial wave (4)

evolving in the steady dipole flow (Fig. 1b). The dipole solution

shows strong accumulation of wave energy in the anticyclonic

core of the dipole with little energy left in the cyclonic core

after a few inertial periods (Fig. 2, top panels). This rapid at-

traction of wave energy by anticyclones has been observed

repeatedly (Weller 1985; Kunze 1986; Kunze et al. 1995; Elipot

et al. 2010; Jaimes and Shay 2010). Explanations have been

proposed that rely on the broadening of the allowable fre-

quency band in negative vorticity regions (Kunze 1985), ap-

peals to the quantum analogy between energy wells and

negative vorticity (Balmforth et al. 1998; Rocha et al. 2018),

and a conservation law for steady barotropic flows (Danioux

et al. 2015).

Vertical sections (middle panels of Fig. 2) reveal that wave

energy is drained down the anticyclonic pipe (Lee and Niiler

1998; Asselin and Young 2020). In the process, wave shear

bands form symmetrically about the anticyclonic axis (bottom

panels of Fig. 2), with phase contours propagating upward and
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toward the anticyclone center (see the online supplemental

material for an animated version of the plot). The shear bands

have a clear, dominant wavelength that shrinks with time.

The slope of the bands steepens slightly with depth, but

remains independent of time. In agreement with WKB

scaling, the slope of the shear bands becomes gentler as

stratification is increased (Fig. 3). That is, the vertical

wavenumber increases with N while the horizontal wave-

number seems largely unaffected.

What explains the shape of the bands, with a single dominant

wavelength at any given time, nearly straight but steepening

slope with increasing depth and decreasing stratification, and

why is their slope time independent? These questions are the

focus of the next section.

4. Refraction
As a starting point, we consider the wave evolution in the

presence of z-refraction alone, i.e., neglecting straining in (1).

While this premise is strictly valid only near the jet center, its

implications turn out to be insightful and apply over a broader

region than anticipated. We begin by using a heuristic ap-

proach to understand the shear bands properties reported in

FIG. 2. Dipole solution with N2 5 1025 s22. (top) Vertically averaged wave energy (WE) anomaly on a logarithmic scale. Vorticity

contours of 0, 60.1f and 60.2f are overlaid. (middle) Vertical cuts of WE along the yellow line drawn in top panels (y 5 0). (bottom)

Vertical cuts of eastwardwave velocity shear, also along the yellow transect. Time increases from left to right: 5, 10, and 15 inertial periods.

FIG. 3. Wave shear bands in the dipole solution. Each panel shows a different value of stratification, increasing from left to right. The

vertical slices are along the yellow line drawn in top panels of Fig. 2 (y 5 0). Snapshots are shown after 10 inertial periods.
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section 3. These heuristic results are confirmed in appendix A,

where a derivation of the linear wave solution is presented for

an arbitrary steady vorticity gradient profile with weak spatial

variability.

a. Wavevector evolution at the jet center
Let us consider the wavevector evolution near the center of

the dipole jet. For simplicity, we assume a uniform vorticity

gradient, =z52gx̂ with g . 0. At t 5 0, near-inertial oscilla-

tions are horizontally uniform and confined to the ocean sur-

face layer (4). Then, z-refraction causes an initial linear growth

of the wavevector along the vorticity gradient,

k5
1

2
gt, l5 0. (9)

Although we are considering the center of the jet, where

velocity is maximum, U 5 (0, U), the wavevector (9) is per-

pendicular to the flow and the Doppler shift,U � k, is zero. This
justifies the neglect of advection throughout this section. In

section 6, the neglect of advection is shown to be less restrictive

than one might suppose.

The inertial wave is initially confined to a shallow surface

layer, and thus projects on a broad spectrum of vertical

wavenumbers m. This compact initial disturbance then dis-

perses as a wave train. Because the flow is barotropic and N is

constant, m is constant along a ray. And because there is no

Doppler shifting, wave energy propagates at the intrinsic group

velocity,

cxg 5
N2

fm2

gt

2
, cyg 5 0, czg 52

N2

fm3

�gt
2

�2
, (10)

where gt/2 is the horizontal wavenumber in (9). Wave energy

propagates downward at vertical group velocity czg ;m23 so

there is a dominant vertical wavelength at a given depth and

time. To quantify this, we integrate czg with respect to time:

z(t)5

ðt
0

czg(t
0)dt0 52

N2g2

12fm3
t3, (11)

FIG. 4. Vertical cuts of the zonal wave velocity u after 5, 10, and 15 inertial periods along y 5 0. (top) Leading-order analytical solution,

(A19), using the x-dependent =z. (bottom) Solution of the full numerical model with overlaid u5 0 contours from the analytical solution.

FIG. 5. (left) Horizontal wavenumber, (center) vertical wavenumber, and (right) slope of the wave bands from the numerical YBJ

solution (dotted; see appendix B), spatially averaged over the jet center region, x 2 [5, 15] km, y 5 0, and z 2 2[100, 300] m. Different

colors indicate different stratifications. To reduce noise only regions with wave energy above 1025 m2 s22 are included in the average. For

comparison, predictions (A23), (A24), and (13) are shown (solid lines).
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where we have applied the initial condition z(0)5 0. Inverting

the above expression for m, one finds

m5

�
N2g2

12f jzj
�1/3

t , (12)

where jzj is the (positive) depth.

At fixed depth z, both k and m grow linearly with time (9)–

(12), consistent with Fig. 2. Furthermore, the wave band slope,

defined as

dz

dx
52

k

m
52

�
3fgjzj
2N2

�1/3

, (13)

is time independent (Fig. 2). The band slope increases pro-

portionally to jzj1/3, consistent with the weak steepening of

bands with depth (Fig. 2). Finally, (13) goes like N22/3 such

that higher stratification is associated with gentler band

slopes (Fig. 3).

b. Validation of heuristic arguments using analytical and
numerical solutions
Analytical and numerical solutions to the YBJ equation

are used to test these predictions from the heuristic argu-

ments. The analytical solution is obtained from linearizing

the YBJ equation and is described in appendix A [see

Eq. (A19)]. This analytical solution generalizes the heuristic

predictions to encompass arbitrary, but slowly varying vor-

ticity gradients =z. Near the jet center, where =z’2gx̂, the

generalized predictions for the horizontal and vertical

wavenumbers, (A23) and (A24), reduce to the heuristic

predictions, (9) and (12). As a bonus, the analytical deri-

vation predicts not only the wavevector, but also the wave

amplitude.

The analytical solution is compared to the numerical solu-

tion of the full YBJ equation in Fig. 4. Near the surface and in

the jet region, the analytical solution captures the salient fea-

tures of the shear bands—the shrinking of their dominant

wavelength, the steepening of their slope with depth and their

time-invariant shape. The cyclone-anticyclone energy gradi-

ent, however, is not captured due to the assumption of slowly

varying vorticity gradient. The analytical solution also fails

near the core of the anticyclone because rays emitted from the

other side of the anticyclone interfere with the locally emitted

rays (see Fig. 3).

The wavevector predicted by (A23) and (A24) agrees

quantitatively with the full YBJ solution (Fig. 5). Both k andm

increase linearly at the predicted rate. Stratification leaves k

essentially unchanged, while the growth rate of m increases

with stratification. In turn, shear bands are steeper in regions of

weak stratification (Fig. 3). Since both k and m increase line-

arly with time, the wave band slope asymptotes to a constant

value (13).

FIG. 6. Fraction of energy in wavenumbers m , mc(t) estimated

from the heuristic solution (solid curves) vs the fraction of wave

energy below the surface layer from the numerical solution (dashed

curves). Vertical lines correspond to tH in (22).

FIG. 7. (a) Normalized rate of strain (note that the other component, Ss, is zero for the dipole) and (b) Okubo–

Weiss criterion, which identifies straining- (.0) vs vorticity-dominated (,0) regions of the domain. Local values of

the Okubo–Weiss criterion are indicated in the confluent (purple), jet (green), and diffluent (blue) regions.

Vorticity contours of 0, 60.1f, and 60.2f are overlaid.
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c. Backtracking wave bands
Conservation of Eulerian wave frequency v in a steady flow

allows one to backtrack the surface origin of wave bands ob-

served at depth. The full dispersion relation of the f-plane YBJ

equation (7) is

v5U � k1 f

2
(Ro1Bu), (14)

where v is the wave frequency in excess of f, and the vorticity-

based Rossby number and wave Burger number are

Ro5
def z

f
, Bu5

def
�
Njkj
fm

�2

. (15)

As we have seen, the Doppler shift is negligible near the jet

center such that the intrinsic frequency,

v
i
5

f

2
(Ro1Bu), (16)

is also conserved in its vicinity. Therefore, the sum of Bu and

Ro remains constant as the wave propagates. One can thus

backtrack wind-generated wave bands observed at depth in

steady barotropic eddies. If wave bands are observed in a re-

gion with Ro* 5 z*/f with scales corresponding to Bu*, then

the wave must have originated from a surface region where

Ro 5 Ro* 1 Bu*.

d. Damping of sea surface near-inertial oscillations
The heuristic solution provides a time scale for the radiative

damping of sea surface near-inertial oscillations. The time

taken for a disturbance with a wavenumberm to propagate to a

depth z is obtained by rearranging (12)

t5

�
12f jzj
N2g2

�1/3

m . (17)

After a given time t, all disturbances with wavenumbers

from m 5 0 up to m(z, t) in (12) have reached a depth z or

below. To obtain a rough time estimate of wave energy radi-

ation below the mixed layer, a cutoff mc(t) is defined by re-

placing z with the surface layer depth s in (12)

m
c
(t)5

�
N2g2

12fs

�1/3

t . (18)

In a barotropic flow, the vertical wavenumber spectrum of

wave energy is time independent, and thus can be obtained

from a Fourier transform of the wave initial condition (4)

E (m)5
1

2
jcLA

0
(m)j2 } exp(2m2s2/2) . (19)

One estimates the fraction of wave energy radiated out of

the surface layer by integrating E (m) from m 5 0 to mc(t):

WE
rad

(t)

WE
tot

’

ðmc(t)

0

E (m) dmð‘
0

E (m)dm

5 erf

�
m

c
(t)sffiffiffi
2

p
	
, (20)

where erf denotes the error function.

In Fig. 6, we compare (20) (dashed lines) with the fraction of

energy below the surface layer in the full numerical solution

(solid lines). The heuristic solution (20) overestimates the ra-

pidity of downward radiation. A rationalization of this dis-

crepancy is that the heuristic calculation uses the maximum

vorticity gradient g in (18) and thus overestimates the cutoff

wavenumber mc(t). The heuristic estimate also assumes that

once a disturbance reaches the surface layer base, its energy is

fully located below the surface layer.

To compress the information in (20) we define a character-

istic time scale ts by equating the argument of erf in (20) to one;

erf(1) 5 0.84, meaning that 16% of the initial energy is left in

the surface layer at t 5 ts. Thus, we obtain the radiative

damping time scale

t
s
5

�
23/212f

N2g2s2

�1/3

. (21)

Moehlis and Llewellyn Smith (2001, hereafter MLS) con-

sidered the radiative damping of a mixed layer induced by

b-refraction. The MLS model has a weakly stratified mixed

layer of depthHmix sitting above a uniformly stratified interior

ocean. (We use uniform N over the whole depth H and so do

FIG. 8. (left) Horizontal wavenumber, (center) vertical wavenumber, and (right) slope of the wave bands from the numerical YBJ

solution (dotted; see appendix B), spatially averaged over x 2 [5, 15] km, z 2 2[100, 300] m. Colors specify the location on the y axis, i.e., the

confluent (ky52p/4, purple), jet center (y5 0; green), anddiffluent (ky51p/4, blue) regions shownasdots inFig. 7b. Superimposed in solid lines

are the z-refraction predictions, (A23), (A24), and (13), based on the local vorticity gradient. The solid purple line depicts the identical predictions

for the confluence and diffluence regions. To reduce noise only regions with wave energy above 1025 (m s21)2 are included in the average.
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not explicitly model the mixed layer.) Despite the mixed layer

model, and aside from numerical factors of order unity, the

time scale identified byMLS is the same as (21) with g replaced

by b and s replaced by Hmix. In particular, the radiative

damping time scale is independent of the mixed layer stratifi-

cation (if any).

How does the radiative-damping time scale (21) compare

with previous estimates of the mixed layer decay time scale?

Gill (1984) proposed that the decay scale can be estimated as

the time needed for the gravest vertical mode to undergo a phase

change of 908. D’Asaro (1989) adapted this idea to estimate the

decay scale due to b-refraction. For a constant-N flow with a

background vorticity gradient jgj � b, this estimate is

t
H
5

�
12p3f

N2g2H2

�1/3

, (22)

where the H subscript emphasizes that tH depends on the full

ocean depth H. Aside from numerical constants, ts is larger

than tH by the factor (H/s)2/3 � 1. Indeed, tH badly underes-

timates the time needed for a significant loss of the surface-

layer energy: see the vertical colored lines in Fig. 6.

5. Straining
Thus far we have considered wave evolution close to the jet

center. In this special location, the rate of strain vanishes, i.e.,

cxy5 cxx2 cyy5 0 (Fig. 7a). TheDoppler shift,U � k, is also zero
because k is antiparallel to=z, so perpendicular toU. What about

straining-dominated regions, such as the dipole’s confluent and

diffluent regions? How does straining affect the wavevector k?

Bühler and McIntyre (2005) examined straining by a steady

uniform shear (thus eliminating z-refraction, which relies

on second-order spatial derivatives of velocity). In this case,

analytical solutions can be found for the evolution of the

FIG. 9. Evolution of the wave phase [u5 tan21(y/u); colors] in the dipole flow. (top) Sea surface u for the from the full, dispersive YBJ

system, (7), withN25 1025 s22. (middle) Sea surface u for the nondispersiveYBJ solution, (7) with the4A term set to zero. (bottom) u at a

depth of 200m in the full, dispersive YBJ system, (7), with N2 5 1025 s22. Contours are for vorticity values of 0,60.05,60.1f, and60.2f.
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packet-following three-dimensional wavevector (Jones 1969).

In a barotropic flow, the rate-of-strain tensor in (1) can be

separated into two distinct contributions: 
U

x
V

x

U
y

V
y

!
5
1

2

�
S
n

S
s

S
s

2S
n

�
1
1

2

�
0 z

2z 0

�
, (23)

where Sn 5
def

Ux 2Vy 522cxy and Ss 5
def

Uy 1Vx 5cxx 2cyy are

the normal and shear components of the rate-of-strain tensor,

respectively. The first term of (23) tends to increase jkj expo-
nentially in time; the second term, on its own, rotates k with a

frequency z/2. In regions of positive Okubo–Weiss criterion

(shown for the dipole in Fig. 7b),

OW5S2
n 1 S2

s 2 z2 , (24)

the wavevector k should undergo exponential growth with an

e-folding time scale OW21/2 (Bühler and McIntyre 2005). Is

this the case in the dipole solution?

Although the confluent and diffluent regions are character-

ized by OW/f 2 5 60.06, corresponding to an e-folding time

scale of OW21/2 ’ 0.7 inertial period, there is no sign of a

wavevector exponential growth, even after 15 inertial periods

(Fig. 8). In fact, the refraction-only predictions (A23) and

(A24) are as good at capturing k and m in the confluent and

diffluent regions as they are in the jet center (Fig. 5). In other

words, z-refraction alone accounts for the wavevector evolu-

tion, and straining is ineffective. Why is that?

A first clue comes from the work of Rocha et al. (2018). In a

barotropic flow, vertical modes are uncoupled. For any given

vertical mode, the horizontal group velocity,

FIG. 10. Evolution of the sea surface wave phase [u5 tan21(y/u); colors]. The top and middle panels show the solution of the full,

dispersive YBJ system, (7), with N2 5 1025 s22 coupled with a flow evolving according to the barotropic quasigeostrophic equation,

(34). The NISKINe flow (Fig. 1a) is used as an initial condition. Contours are for vorticity values of 0, 60.05f, 60.1f, and 60.2f.

For comparison, the bottom panels show the solution of the nondispersive YBJ system for the same times as the middle panels: 5, 10,

and 15 inertial periods.
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chg 5 Zk , (25)

where Z5
def

N2/fm2 is the wave dispersivity, grows linearly with

k. As straining exponentially compresses wave crests, the

horizontal group velocity also increases exponentially. Thus,

if Z is large enough, the wave rapidly escapes the straining

region and its growth is no longer exponential. This is con-

sistent with low-m disturbances leaving the jet region to ac-

cumulate in the anticyclone.

But what about weakly dispersive waves, for which Z is small

and escape is slow?Why do not we observe exponential growth

for the weakly dispersive modes left in the jet region? To an-

swer these questions, we now consider the combined effects of

refraction and straining in the limit of weak dispersion.

6. Weak dispersion
The two previous sections considered refraction and straining

separately, focusing on the case of the dipole flow. Along the jet’s

confluent, diffluent, and center regions, k ’ 2t=z/2. This is con-

sistent with z-refraction, but inconsistent with straining. In this

section, we consider the evolution of k under the combined effects

of refraction and straining, but also k-advection, J(c, k), which has

so far received limited attention. The limit of weak dispersion

proves enlightening not only to explain why straining is ineffective

in the dipole, but also yields a remarkably simple analytical wave

solution for arbitrary barotropic flows.

a. General wavevector evolution
Let us first consider general near-inertial wave dynamics for

an arbitrary barotropic flow. We begin by decomposing the

wave field into vertical normal modes:

LA(x, y, z, t)52�
‘

n51

r22
n A

n
(x, y, t)g

n
(z) , (26)

where gn is the vertical eigenmode and rn the Rossby radius of

the nth vertical mode. Substituting (26) into the YBJ equation

(7) yields decoupled equations for each vertical mode:

›
t
A

n
1 J(c,A

n
)1 i

�
by1

z

2

�
A

n
2

i

2
Z
n
4A

n
5 0, (27)

where Zn 5
def

r2n/f is the dispersivity of mode n. Following

Klein et al. (2004) we write the wave envelope asAn 5Rne
iun ,

where Rn and un are the real-valued amplitude and phase.

Substituting into (27) and separating the real and imagi-

nary parts:

›
t
R1 J(c,R)52

Z

2
(2=R � =u14uR) , (28)

›
t
u1 J(c, u)52

�
by1

z

2

�
1
Z

2

�4R

R
2 jkj2

�
, (29)

where we have lightened the notation by dropping the mode

index n. The above equations are an exact reformulation of the

YBJ equation for an arbitrary barotropic flow and arbitrary

stratification. Note that (29) is a generalized version of the

dispersion relation (14), where ut [ 2v and J(c, u) is the

Doppler shift.

The evolution of the wavevector is obtained by taking the

horizontal gradient of (29):

›
t
k1 J(c,k)|fflfflffl{zfflfflffl}

k-advection

1 J(=c, u)|fflfflfflfflffl{zfflfflfflfflffl}
straining

5 2bŷ|ffl{zffl}
b-refraction

2
1

2
=z|fflfflffl{zfflfflffl}

z-refraction

1
Z

2
=

�4R

R

�
2 (chg � =)k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersive effects

. (30)

Equation (30) incorporates all processes discussed so

far—b-refraction, z-refraction, and straining—but also

group velocity propagation and k-advection, which ap-

pear in the ray derivative on the left-hand side of (1):

d
g
k

dt
5
def

›
t
k1 J(c,k)1 (chg � =)k . (31)

The ray tracing formula (1) is the WKB approximation of

(30), and differs from it only by neglecting the dispersive term

Z=(4R/2R). Otherwise, (30) amounts to the geometrical optics

equation of Lighthill (1978) and Kunze et al. (1995) written in

an Eulerian frame. This simple reframing, however, turns out

FIG. 11. Wave potential energy production via refraction (45) and straining (46), and loss via dissipation, for (a) the

dipole and (b) NISKINe flows, with (solid) and without (dashed) dispersion.
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to be insightful because the usual wave-following ray-tracing

Eq. (1) conceals a near-cancelation between k-advection and

straining for large-scale inertial waves in steady barotropic eddies.

To see this, we consider the limit of weak dispersion, Z/ 0.

b. Weakly dispersive limit: An analytical solution
In the weakly dispersive wave limit, Z/ 0, only the local,

instantaneous vorticity gradient affects the wavevector of an

initially uniform inertial wave. Crucially, this holds true not only

for the dipole case, but for any barotropic quasigeostrophic flow,

steady or unsteady. When Z/ 0, the phase–amplitude formu-

lation of the f-plane YBJ in (28) and (29), simplifies to

›
t
R1 J(c,R)5 0, (32)

›
t
u1 J(c, u)52

1

2
z . (33)

The equations above are solved alongside the barotropic

quasigeostrophic equation:

›
t
z1 J(c, z)5 0: (34)

The exact solution to (32) and (33) for a horizontally uni-

form inertial wave in an arbitrary barotropic flow is

R5R
0
, (35)

u5 u
0
2

t

2
z(x, y, t) , (36)

k52
t

2
=z (x, y, t), (37)

where R0 and u0 are the initial uniform wave amplitude and

phase. It is remarkable that the evolution of vorticity fully

dictates the wave phase at all times. During the initial stages of

evolution, z-refraction imprints the vorticity onto the phase,

then phase and vorticity are subsequently advected by the

same streamfunction. As a result, the spatial structure of

the phase u is slaved to the vorticity field for all time. Note

that this solution crucially relies on the assumption that

the inertial wave is initially horizontally uniform, k0 5
=u0 5 =R0 5 0.

We emphasize that this solution retains all processes in (30)

except dispersion (and b-refraction, which is weak). In par-

ticular, (30) includes z-refraction, straining, and k-advection

and holds for an arbitrary barotropic flow, i.e., the flow is

neither assumed steady nor spatially uniform. Moreover, the

solution gives the evolution of k at a fixed point in space, not

following the wave packet. At all points in space and time,

the wavevector k is determined by the local instantaneous

vorticity gradient. In a steady flow such as the dipole, k

grows linearly in time, consistent with the behavior in the jet

center (Fig. 5) as well as in the confluent and diffluent re-

gions (Fig. 8).

c. Validation

1) STEADY FLOW

Dispersive and nondispersive YBJ solutions for sea surface

wave phase u look qualitatively similar in the dipole case

(Fig. 9). The wave phase grows proportionally to the local

z(x, y), such that vortex-shape annuli form. In accordance to (36),

the phase of the nondispersive solution (middle panels, Fig. 9)

is perfectly antisymmetric between the cyclonic and anticy-

clonic cores. Over time, this antisymmetry is broken in the

dispersive solution (top panels, Fig. 9) by terms such as2Zjkj2
in (29), which is negative everywhere.

No wave energy propagation occurs without dispersion. The

weakly dispersive solution does not predict what happens below

the surface layer, where wave energy remains confined. That said,

thewavephase solution at a depth of 200m (bottompanels, Fig. 9)

exhibits some similarities with the depth-independent nondis-

persive solution (middle panels, Fig. 9) in the anticyclone. In

particular, phase contours largely align with streamlines, indicat-

ing weak Doppler shifts. Outside the anticyclone, there is almost

no wave energy and the wave phase is not meaningful.

2) UNSTEADY FLOW

As a more challenging test of the weakly dispersive solution,

the YBJ equation is integrated with the usual wave initial

condition, but coupled with the NISKINe flow field (Fig. 1a).

Contrary to the dipole flow, which is a steady solution of (34),

the NISKINe flow is unsteady. This is clear from the rapid evolu-

tion of the vorticity contours in Fig. 10. Within a few inertial pe-

riods, isolines of vorticity are squeezed into filaments as enstrophy

cascades forward and the flow becomes rapidly unrecognizable.

Overlaid on these vorticity contours are color maps of the

sea surface wave phase u. Vorticity contours enclose regions of

relatively uniform wave phase, consistent with phase being

slaved to vorticity. The dispersive (two top rows, Fig. 10) and

nondispersive (bottom row, Fig. 10) solutions look qualita-

tively similar, although they begin to diverge significantly after

10 and 15 inertial periods.

d. Interpretation

1) STEADY FLOW

We finally return to one of the central question of this paper:

why is straining ineffective in the dipole flow? The key is that

both straining and k-advection originate from the gradient of

the Doppler shift (or phase advection):

=J(c, u)|fflfflfflfflffl{zfflfflfflfflffl}
Doppler shift

5 J(c,k)|fflfflffl{zfflfflffl}
k-advection

1 J(=c, u)|fflfflfflfflffl{zfflfflfflfflffl}
straining

. (38)

In a barotropic steady flow such as the dipole, contours of

vorticity align with streamlines: J(c, z)5 0 in (34) if ›tz 5 0. In

the weakly dispersive limit, wave phase is slaved to vorticity

(36) such that wave phase contours also align with streamlines

(Fig. 9). Thus, k is perpendicular to U and the Doppler shift

remains zero at all times:

J(c, u)52
1

2
tJ(c, z)5 0: (39)

Consequently, k-advection must cancel straining every-

where and at all times to satisfy (38) and (39):

k-advection52straining. (40)
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This is true provided that (i) the barotropic flow is steady

and (ii) the initial phase of the wave is uniform. Condition

(ii) is the usual assumption that the near-inertial wave is

quickly generated by atmospheric forcing with large

horizontal scales.

We can finally answer the question posed above: straining

and k-advection are both ineffective in the dipole because

they cancel each other. The jet region of the dipole is

dominated by weakly dispersive modes which have not yet

escaped to the anticyclonic core. In accordance to (30), the

Eulerian wavevector increases linearly with the local vor-

ticity gradient,

›
t
k52

1

2
=z(x, y), (41)

consistent with Figs. 5 and 8. Only refraction modifies the

wavevector.

Since theDoppler shift vanishes everywhere for steady flows

in the weakly dispersive limit (38), the intrinsicwave frequency

vi (16) is conserved along ray trajectories. Following section 4c,

wave bands can be backtracked not only near the jet center, but

anywhere.

2) UNSTEADY FLOW

In unsteady flows, the wavevector is also only determined

by the local instantaneous vorticity gradient, (37). This seems

to suggest that only refraction is acting. But this is not the

case: straining also shapes the wavevector. Unlike the steady

case, k and U are no longer perpendicular so Doppler shift is

not zero in an unsteady flow:

J(c, u)52
t

2
J(c, z)5

t

2
›
t
z 6¼ 0: (42)

The gradient of J(c, u) still results in both k-advection and

straining via (38), but these processes no longer perfectly

cancel:

k-advection 6¼2straining. (43)

In unsteady flows, the rate of change of the wavevector is

the sum of the local instantaneous vorticity gradient (pure refrac-

tion) plus a term due to the time dependence of vorticity, which

encapsulates the noncanceling effects of straining and k-advection:

k
t
52

1

2
=z(x, y, t)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
refraction

2
t

2
›
t
=z(x, y, t)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
straining

. (44)

If the flow is steady, only refraction is effective and one

recovers (41).

7. Energetics
To quantify the roles of refraction and straining in eddy–

wave energy transfers, we introduce the volume-averaged

refraction- (Gr) and advection-induced (Ga) production of wave

potential energy (Rocha et al. 2018),

G
r
5
def

2



1

2f
=z � F

�
, (45)

G
a
5
def

2
1

4

f 2

N2

*�
A

xz
* A

yz
*
�S

n
S
s

S
s

2S
n

� 
A

xz

A
yz

!+
, (46)

where F is the wave energy flux and A is defined in (5).

Refraction produces wave potential energy (Gr . 0) when the

wave energy flux goes against vorticity gradients, i.e., as wave

energy propagates toward more anticyclonic regions. Straining

produces wave potential energy (Ga . 0) when wave gradients

are enhanced via geostrophic straining.

Figure 11a shows wave potential energy production for the

dipole flow, with (solid lines) and without (dashed lines) dis-

persion. As predicted, the nondispersive dipole has exactly

zero contribution from straining (green dashed line is zero).

With dispersion, refraction (solid blue) dominates the early

time creation of gradients as wave energy accumulates in the

anticyclonic region. Straining (solid green) does kick in after a

few inertial periods, but its magnitude remains relatively weak,

compared with expectations from passive-scalar picture of

straining. This is consistent with Fig. 9, in which wave phase

lines remain nearly parallel to streamlines, such that J(c, u)’ 0

and straining is largely cancelled by k-advection.

Straining is more potent in the NISKINe flow (Fig. 11b) than

in the dipole (Fig. 11a). This is because letting the flow evolve

allows the generation of stronger flow gradients via the forward

enstrophy cascade. Note that in contrast to the dipole, straining

is not eliminated by removing dispersion (green dashed). Quite

the contrary: straining is much stronger in the nondisper-

sive than in the dispersive case for the NISKINe flow. In this

case, waves cannot disperse and wave escape is impossible.

Dissipation is correspondingly larger as waves are strained

into oblivion.

8. Discussion
In this paper we examined the evolution of large-scale near-

inertial waves in steady and unsteady barotropic flows, with an

eye on how refraction and straining shape the wavevector. We

now assemble the main findings of the previous sections and

discuss their implications and limitations.

a. Wave bands along the dipole jet
Nearly monochromatic wave bands appear along the di-

pole jet as wave energy propagates downward and toward

the anticyclonic drainpipe (Fig. 2). With the knowledge of

stratification and vorticity gradient alone, one can predict the

bands’ horizontal (9) and vertical (12) wavenumbers and their

slope (13). Although these results follow from analysis at the

jet center, their validity extends along the axis of the jet.

Conservation of the intrinsic frequency (16) allows one to

backtrack the surface origin of wave bands observed at depth

in the jet vicinity (section 4c). Finally, if the distribution of

vertical wavemodes is known, the radiation of wave energy out

of the surface layer can be estimated (section 4d).

b. Straining is ineffective in steady barotropic flows
The weakly dispersive limit helps explain why wind-generated

inertial waves do not experience a strain-induced exponential

growth of jkj in barotropic steady flows. If the primordial wave

has a horizontal scale larger than the eddies, z-refraction is the
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only process acting initially. Vorticity imprints its scales

onto wave phase, and both fields are subsequently advected

by the same streamfunction. In barotropic steady flows,

vorticity advection, and thus phase advection is zero ev-

erywhere (39). This means that the Doppler shift vanishes

everywhere (39). As a result, k52=z(x, y)t/2 (Figs. 5 and 8).

Note that this is true only of the weak-dispersion limit.

When dispersion is included, straining operates, albeit

more weakly than anticipated from the passive-scalar anal-

ogy (Fig. 11).

c. Straining is effective in unsteady barotropic flows
In the limit of weak dispersion, the wavevector grows pro-

portionally to the local instantaneous vorticity gradient (37).

This does not imply that the wavevector is only modified by

refraction. Unsteady vorticity gradients are associated with

straining (44). In the NISKINe flow, straining is actually more

effective than refraction in producing wave gradients after a

few inertial periods (Fig. 11).

d. Forward cascade of wave phase
Unsteady quasigeostrophic flows, by analogy with two-

dimensional flows, promote a forward cascade of potential

vorticity variance (Kraichnan 1967; Charney 1971). For baro-

tropic flows, this implies a relentless enhancement of vorticity

gradients via squeezing and stretching of filaments until sta-

tistical stationarity is attained (Fig. 10). In the weakly disper-

sive limit, the wave phase is slaved to vorticity (36). One

therefore also expects a forward cascade of wave phase vari-

ance that is even faster than that of vorticity variance because

of the additional t factor in (36). In other words, the wave phase

rapidly becomes incoherent as a consequence of quasigeo-

strophic turbulence (Fig. 10).

As wave phase gradients (=u 5 k) are enhanced by this

forward cascade, Bu increases and strengthens dispersive

effects. Asselin and Young (2019) show that dispersion

eventually arrests the forward cascade. This is consistent

with the right panel of Fig. 11, which shows shear production

by straining (green) and loss via dissipation (black) in the

unsteady NISKINe flow. The dispersive solution (solid)

suffers less straining and dissipation than the nondispersive

solution (dashed) since wave escape upsets wave capture

(Rocha et al. 2018).

e. Predictability of the wave phase in a barotropic flow
Theweakly dispersive solution (36) promises strong predictive

powers on the sea surface wave phase for both steady and un-

steady barotropic flows. According to this solution, one can de-

duce the wave phase anywhere and anytime from the local

instantaneous flow vorticity and time elapsed since the wave in-

ception. The horizontal wavevector or wave frequency can sim-

ilarly be predicted given the local instantaneous vorticity gradient

or tendency. It is remarkable that wave dynamics do not explic-

itly depend on the history of the evolution of the barotropic

flow—whatever happened between the wave inception and

the time of measurement—but only on its instantaneous

state. The wave phase also depends only on spatially local

measurements of vorticity. The spatiotemporal locality of

the weakly dispersive solution makes it powerful for inter-

preting spatially and temporally sparse observational data.

With great predictive powers come great limitations. The

weakly dispersive solution crucially depends on three re-

strictive assumptions: (i) the flow must be barotropic, (ii)

the primordial horizontal scale of the wave must be much

larger than eddies, and (iii) the waves must be weakly dis-

persive. This last assumption limits the validity of the

weakly dispersive solution to early times following the wave

inception, i.e., before a significant fraction of the wave en-

ergy is radiated away by the dispersive modes. Finally, the

model’s predictive power is confined to the surface layer

and does not extend to near-inertial waves propagating

in the pycnocline because these waves are by definition

dispersive.

The weakly dispersive solution is useful despite its limita-

tions. Thomas et al. (2020) use the weakly dispersive solution

(37) to explain the wavevector evolution observed in the un-

steady NISKINe flow. In two distinct regions of the flow, time

series of the wavenumber follow the observed local instanta-

neous vorticity gradient for several inertial periods. This is a

strong test of the weakly dispersive solution, where =z varies

both in space and time.
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APPENDIX A

Jet Region Solution
We seek a solution of the linear YBJ equation in the vicinity

of the jet region, kx � 1, and along the line joining the vortex

cores (y 5 0). Assuming constant f and N, YBJ (7) melts

down to

A
zzt

1
i

2
zA

zz
1 i

N2

2f
A

xx
5 0: (A1)

FollowingMLS, we seek for solutions of the formA(x, z, t)5
B(x, z, t) exp(2izt/2). Substituting this ansatz into (A1) yields

B
zzt

1
N2z

x

2f
tB

x
5 i

N2z2x
8f

t2B2
N2z

xx

4f
tB2 i

N2

2f
B

xx
. (A2)

It is useful to nondimensionalize (A2) with

X5 xk, Z5
z

s
, T5

t

t
, t5

�
f

N2g2s2

�1/3

. (A3)
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Then, (A2) becomes

B
ZZT

2
1

2
hT cosXB

X
5

i

8
T2 cos2XB2

1

4
hT sinXB2

i

2
xB

XX
. (A4)

Two dimensionless numbers emerge; using the typical dipole

values we obtain

h5
k

gt
’ 0:2, x5

�
N2k2s2

f 2

�
(tf )’ 0:03, (A5)

where t ’ 2.5 inertial periods. As such, the leading-order so-

lution is dominated by

B
zzt

’ i
N2z2x
8f

t2B . (A6)

To solve the above equation, we first take a Fourier trans-

form in the vertical,

B̂(m)5

ð‘
2‘

B(z)e2imz dz , (A7)

where we assumed an infinite domain, i.e., the solution

is largely concentrated near the surface so the bottom

boundary can neglected. B is extended evenly into positive

z. The resulting ordinary differential equation has the

solution

B̂5 B̂
0
exp

�
2i

N2z2xt
3

24fm2

�
. (A8)

To recover the solution in terms of A, the inverse Fourier

transform of (A8) is performed:

B(z, t)5
1

2p

ð‘
2‘

B̂
0
(m)eiF dm , (A9)

where the phase F was introduced

F5
def

2
N2z2xt

3

24fm2
1mz . (A10)

We can find an approximate solution to this integral using

the method of stationary phase (e.g., Whitham 2011, and ref-

erences therein). The idea is that the largest contributions to

the integrand happen when the phase is stationary, i.e., when

Fm 5 0, or

m*52

�
N2z2x
12fz

�1/3

t . (A11)

Expanding phase around m*,

F(m)’F(m*)1 (m2m*)F
m
(m*)|fflfflfflfflffl{zfflfflfflfflffl}
50

1
1

2
(m2m*)2F

mm
(m*)1 � � � . (A12)

Coming back to (A9), we pull all m-independent terms out

of the integral:

B(z, t)’
B̂

0
(m*)expiF(m*)

2p
3

ð‘
2‘

exp

�
i

2
(m2m*)

2F
mm

(m*)

	
dm . (A13)

Noting that Fmm 52N2z2xt
3/4fm4 is always negative, the

variable m is changed to n5 (m2m*)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFmm(m*)j/2p

:

B(z, t)’
B̂

0
(m*)expiF(m*)

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jF

mm
(m*)jp ð‘

2‘

exp(2in2) dn . (A14)

These are Fresnel integrals and can be evaluated exactly:ð‘
2‘

exp(2in2) dn5
ffiffiffiffi
p

p
e2ip/4 . (A15)

Consequently,

B(z, t)’
B̂

0
(m*)expi[F(m*)2p/4]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pjF
mm

(m*)jp . (A16)

To obtain an expression for B̂0(m*) we Fourier transform

the wave initial condition (4):

cLA
0
5u

0

ð‘
2‘

exp[2(z/s)2 2 imz] dz

5 u
0
s
ffiffiffiffi
p

p
exp(2m2s2/4) . (A17)

Then, we can evaluate B̂0(m*), which is 2(N/fm)
2cLA0

evaluated at m*. Plugging back all expressions into the

solution (A16) and bringing back the x-dependent part of

the solution:

A(x, z, t)’

ffiffiffi
2

p
u
0
Ns

z
x
( ft)3/2

exp

�
i

�
F*2

p

4
2

z

2
t

�
2
m*2s2

4

	
, (A18)

where F*5
def

F(m*)5 (3/2)m*z. Finally, applying the L oper-

ator on (A18) to get the solution in terms of the back-rotated

wave velocity,

LA5F(x, z, t)exp

�
i

�
F*2

p

4
2

z

2
t

�
2
m*2s2

4

	
, (A19)

with

F(x, z, t)52
u
0
sffiffiffiffiffiffiffiffiffiffiffiffiffi

6zm*3
p [G

zz
1 (G

z
)
2
] . (A20)

Above, G is the bracketed expression in (A19), whose de-

rivatives are

G
z
5 im*1

1

6

s2m*2

z
, (A21)

G
zz
52i

m*
3z

2
5

18

�
sm*
z

�2

. (A22)

One can predict the wavenumbers characterizing the

monochromatic leading-order solution by differentiating

the phase of (A19):
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k5
def ›

›x

�
F*2

z

2
t

�
52

1

2
z
x
t1

z
xx

z
x

m*z’2
1

2
z
x
t , (A23)

m5
def ›

›z

�
F*2

z

2
t

�
5m*5

�
N2z2x
12f jzj

�1/3

t . (A24)

At the jet center, zxx5 0 and the heuristic predictions (9) and

(12) are recovered, except that here zx may be an arbitrary,

albeit slowly varying function of x.

APPENDIX B

Estimating Wavenumbers
The back-rotated velocity is

LA5Reiu, (B1)

where R and u are both real. For any space or time variable a,

LA
a

LA
5
R

a

R
1 iu

a
0 u

a
5J

�
LA

a

LA

�
. (B2)

This rule permits the calculation of local Eulerian frequency

and wavenumbers at every point in space and time which, in

the WKB framework, are defined as

v5
def

2u
t
, k5

def
u
x
. (B3)
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