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Radiative damping of near-inertial oscillations
in the mixed layer

by N. J. Balmforth1 and W. R. Young1,2

ABSTRACT
An idealized model of the transmissionof near-inertialwaves from the mixed layer into the deeper

ocean is studied in order to assess the combined effects of background geostrophic vorticity and the
planetary vorticity gradient. The model geostrophic � ow is steady and barotropic with a streamfunc-
tion c 5 2 C cos (2 a y); the planetary vorticity gradient is modeled using the b -effect. After
projection onto vertical modes, each modal amplitude satis� es a Schrödinger-like wave equation (in
y and t) in which b y 1 (c yy/2) plays the role of a potential. With realistic parameter values, this
potential function has a periodically spaced set of minima inclined by the b -effect.

The initial near-inertial excitation is horizontally uniform, but strong spatial modulations rapidly
develop: at 20 days the near-inertial energy level is largest near the minima of the b y 1 ( c yy/2)
potential. Near the maxima of the b y 1 (c yy/2) potential, the mixed-layer near-inertialenergy rapidly
decreases,but, at these same horizontal locations,energy maxima appear immediately below the base
of the mixed layer.

The b -effect and the geostrophicvorticityact in concert to produce a rapid vertical transmissionof
near-inertial energy and shear. Because of this radiation damping, the energy density of the spatially
averaged, near-inertial oscillations in the mixed layer falls to about 10% of the initial level after 15
days. However, at the minima of the b y 1 (c yy/2) potential, concentrations of near-inertial energy
persist in the mixed layer for at least forty days.

1. Introduction

The rate of decay of near-inertial oscillations in the mixed layer has been a focus of
research since Gill (1984) noted that the very simplest theory makes the grossly unrealistic
prediction that the timescale of decay is years rather than days. More recently, Balmforth,
Llewellyn Smith and Young (1998) (paper I hereafter) discussed the effect of a geostrophic
� ow on the vertical propagation of near-inertial oscillations (NIOs) out of the mixed layer
and into the deeper ocean. Paper I solved an initial-value problem in which, at t 5 0, the
mixed layer is set into horizontally uniform, slab-like motion in the zonal direction.
However, in contrast to Gill’s case, horizontal modulation is subsequently impressed onto
this initial excitation by a pre-existing geostrophic � ow, idealized as a steady barotropic
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velocity � eld with streamfunction c 5 2 C cos (2 a y). The inverse wavenumber, a 2 1, is the
only externally imposed horizontal length scale in the problem.

The main conclusion of paper I is that the geostrophic vorticity greatly accelerates the
decay of mixed-layer near-inertial activity so that there is no longer a qualitativedifference
between observed and model decay rates. However, there was a suggestion that there
remains a quantitative discrepancy between model and observations: if one adjusts the
model parameters C and a so that the length scale and energy level of the geostrophic � ow
agree with observations (D’Asaro et al., 1995; D’Asaro, 1995a,b) then it takes around
40 days to reduce the horizontal average of the NIO energy in the mixed layer to 10% of its
initial value. This is modestly longer than the observed decay which takes 10, or at most
20 days.

There are many idealizations in the model of paper I which obscure a detailed
comparison with observation. Nevertheless, in paper I it was suggested that other
parameters in the model, such as the mixed-layer depth, could be further tuned to hasten the
decay of mixed-layer NIOs and eliminate this discrepancy. In this paper we show that the
inclusion of the b -effect (D’Asaro, 1989) provides the observed time scale, even if we
continue to use the parameters of paper I. That is to say, the b -effect is a robust way of
reducing the quantitative discrepancy between model and observations without � ne tuning
of poorly constrained parameters such as the mixed-layer depth.

The result of the b -effect alone (without geostrophic vorticity) was investigated by
D’Asaro (1989) who showed that the b -effect results in a gradual change in the north-south
wavenumber of NIOs. This ‘ b -shift’ results in a dephasing of the different vertical modes
which constitute the initial excitation and so there is vertical propagation.We show that the
b -shift acts in concert with the background geostrophic � ow in accelerating the downward
propagation of NIOs. The result is a rapid decay of the horizontal average of the
mixed-layer near-inertial energy, so that there is no longer any quantitative discrepancy
between model and observations. This rapid decay requires both geostrophic � ow and the
b -effect; the two processes together are more effective than either acting alone. Thus, while
we do not dispute the obvious point that a sinusoidal shear � ow is an unrealistic
representation of the geostrophic turbulence in the ocean, our main conclusion is that this
simple model can easily match the time scale observed in ocean data.

2. Formulation of a tractable problem

a. The NIO approximation

As in paper I, our point of departure is the NIO approximation of Young and Ben Jelloul
(1997). This approximation is an asymptotic expansion based on the assumption that
* v 2 f0 * ½ f0, where v is the wave frequency and f0 is the local inertial frequency. The
approximation represents the NIO velocity � eld, (u, v, w), buoyancy, b, and pressure, p, in
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terms of a single complex � eld, A (x, y, z, t):

u 1 iv 5 e2 i f 0 tLA,

w 5 2
1

2
f 0

2 N2 2(Azx 2 iAyz)e2 i f0t 1 c.c.,

b 5
i

2
f0(Azx 2 iAyz)e2 i f0t 1 c.c.,

p 5
i

2
f0(Ax 2 iAy)e 2 i f0t 1 c.c.,

(2.1a–d)

where L is a differential operator de� ned by

LA ; ( f 0
2N 2 2Az)z, (2.2)

and N(z) is the buoyancy frequency.3 For a physical interpretation, notice that LA
provides the back-rotated, horizontal velocity � eld.

For a background, barotropic, geostrophic � ow, A evolves according to the equation,

LAt 1
­ ( c , LA )

­ (x, y)
1

i

2
f0= 2A 1 i 1 b y 1

1

2
z 2 LA 5 0, (2.3)

where c (x, y) is the steady, barotropic streamfunction, z ; = 2 c is the corresponding
vorticity and = 2 is the horizontal Laplacian, = 2 5 ­ x

2 1 ­ y
2. Eq. (2.3) is solved subject to the

boundary condition that w vanishes on the boundaries, which translates to Az 5 0 at the
top and bottom of the ocean.

The asymptotic expansion inherent in the reduction of the linearized primitive equations
to (2.3) is based on the assumption that the wave frequencies are close to f0. That is, it is a
multiple timescale approximation intrinsic to NIOs, and makes no assumption of separa-
tion between the horizontal length scales of the NIOs and the background geostrophic � ow.

b. Projection onto vertical normal modes

In Gill’s (1984) notation, the Sturm-Liouville problem associated with the linear
operator L in (2.2) is

dp̂n

dz
5 2 N 2ĥn, cn

2
dĥn

dz
5 p̂n, Þ Lp̂n 1 Rn

2 2p̂n 5 0, (2.4a,b,c)

where cn is the ‘speed’ of mode n and Rn 5 cn/f0 is the modal Rossby radius. The boundary

3. In paper I, Eq. (2.2) is incorrect; this is corrected in the current (2.2) above.
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conditions are that ĥn 5 dp̂n/dz 5 0 at z 5 0 and z 5 2 H. The eigenmodes are orthogonal:

e
2 H

0
p̂n(z)p̂m(z) dz 5 (Hmix/s n) d mn, e

2 H

0
N 2(z)ĥn(z)ĥm(z) dz 5 (Hmix/cn

2 s n) d mn, (2.5a,b)

where s n is a normalization constant and d mn is the Kronecker delta.
We use (2.5) to project A onto the basis set in (2.4):

A (x, y, z, t) 5 o
n5 1

`

An(x, y, t)p̂n(z). (2.6)

Each modal amplitude then satis� es the Schrödinger-like equation,

­ An

­ t
1

­ ( c , An)

­ (x, y)
1 i 1 b y 1

1

2
z 2 An 5

i" n

2
= 2An, (2.7a)

where

" n ; f0Rn
2 (2.7b)

is the ‘dispersivity’of mode n.

c. Equations for zonal geostrophic � ow

In this paper, we con� ne attention to problems in which there is no dependence on the
zonal coordinate. Thus the Jacobian in (2.7a) is zero and we can rewrite the equation in the
form:

i " nAnt 5 2
" n

2

2
Anyy 1 VnAn, (2.8a)

where

Vn ; " n[ b y 1 1�2 z ]. (2.8b)

Eq. (2.8) is the same as Schrödinger’s equation for the motion of a particle (with mass
m 5 1) in a potential Vn. It is amusing that the analog of Planck’s constant, " n, is a strong
function of the vertical mode number n. Moreover, as n ® ` , the Sturm-Liouville problem
in (2.4) and (2.5) indicates that " n ~ n 2 2. Thus, as the vertical mode number n increases we
approach the classical limit.This is also the limit in which the short-wavelength approxima-
tion and ray tracing are valid (Kunze, 1985).

If z 5 0, then (2.8) is equivalent to the motion of a particle falling in a gravitational
potential, Vn 5 " nb y. Thus, ‘‘particles’’ (i.e., near-inertial wave packets) accelerate toward
the equator with constant acceleration, gn 5 b " n. Furthermore, wave packets of different
vertical order n accelerate at different rates leading to a dephasing of the initial condition,
and therefore downward radiation of the energy. This is the interpretation of D’Asaro’s
b -dispersion mechanism in the quantum analogy.

For an n 5 1 mode with a radius of deformation R1 5 20 km, and f0 5 10 2 4 s 2 1, one has
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" 1 5 4 3 104 m2 s 2 1. On taking b 5 10 2 11 m 2 1 s 2 1, we � nd that the effective gravity for the
gravest vertical mode is g1 5 4 3 10 2 7 m s 2 2. Thus, in 12 days (106 seconds), an n 5 1
‘particle’ starting from rest will have ‘‘fallen’ 200 km. However, as the mode number
increases, the ‘gravity’ is weaker. For instance, a typical Rossby radius for a n 5 5 mode is
R5 5 5 km so that g5 5 g1/16. Thus the b -shift mechanism is most effective for low vertical
modes.

To assess the effect of the background geostrophic � ow, we adopt the sinusoidal shear
� ow of paper I:

c 5 2 C cos 2 a y, z 5 4 a 2 C cos 2a y. (2.9a,b)

The potential in (2.8b) can be written as

Vn 5 2 " n a 2 C ( b ˆ h 1 cos 2 h ), (2.10)

where

h ; a y, and b ˆ ;
b

2 a 3 C
. (2.11a,b)

The nondimensional b -parameter in (2.11), b ˆ , is the ratio of the dimensional planetary
vorticity gradient, b , to a typical gradient of the geostrophic vorticity, a 3C .

The potential (2.10) is illustrated in Figure 1. When b ˆ , 2, the potential has a regularly
spaced set of minima (see Fig. 1b), but these are ‘‘inclined’’ by the b -effect. In quantum
mechanics a potential such as that in Figure 1b is known as a ‘Wannier-Stark ladder.’ From

Figure 1. The potential Vn( y) ~ b y 1 ( z /2) in (2.10). (a) b ˆ 5 0; the dotted lines schematically
indicate the eigenfrequencies(equivalently,energy levels) of some of the eigenmodesdescribedby
paper I. The mode with negative eigenfrequencyis ‘subinertial.’(b) b ˆ 5 0.96. In this case there are
no true modes. Instead there are disturbanceswhich, for a time, remain trapped in the local minima
of the laddered potential. However, these disturbances eventually tunnel through the potential
barrier and fall toward the equator (see Fig. 4). In (b) the dotted lines indicate the eigenfrequencies
of these ‘leaky modes.’
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the oceanographic perspective, the physical mechanism is clear and potentially important
to the latitudinalpropagationof NIOs: without b , near-inertial waves are trapped in regions
of negative geostrophic vorticity. If b Þ 0, sufficiently deep negative vorticity wells will
continue to trap wave packets and impede their fall to the equator. But the trapping only
delays and does not prevent the fall: an initially trapped wavepacket will eventually
‘tunnel’ through the potential barrier and escape equatorward.

d. The model buoyancy pro� le and the initial condition

Following paper I, we use the model buoyancy pro� le introduced by Gill:

N(z) 5 5 0, if 2 Hmix , z , 0;
s/(z0 2 H 2 z), if 2 H , z , 2 Hmix.

(2.12)

(Gill placed z 5 0 at the bottom of the ocean; we prefer to use the convention that z 5 0 is
the surface of the ocean.) Typical values for the parameters are given in Table 1. Gill (1984)
solves (2.4) with N(z) in (2.12) and gives simple analytical expressions for the eigenfunc-
tions p̂n and ĥn and the normalization constant, s n in (2.5). Additional details of these
normal modes are given in paper I and in Zervakis and Levine (1995).

In this paper we use the initial condition from paper I. Speci� cally, we take

uI(z) ; o
n 5 1

40

e ns np̂n(z), e n ; N exp ( 2 n2/600), (2.13a,b)

and vI(z) 5 0. The factor, N in (2.13b), is computed to ensure that uI(0) 5 1 ( N < 1.20).
The function uI(z) is constant within the mixed layer and decreases rapidly, but smoothly, to
zero below the mixed layer (see Fig. 2); uI(z) is a smoothed and continuousversion of Gill’s
(1984) initial condition in which the mixed layer is set into impulsive motion as a slab. This
ensures that the initial shear is � nite (though discontinuous, see Fig. 2).

Table 1. Numerical values of the parameters for the ‘standard case.’The nondimensional planetary
vorticity gradient de� ned in (2.11) is b ˆ 5 0.96.

Quantity Symbol Typical numerical value

Ocean depth H 4200 m
Mixed layer depth Hmix 50 m
Strati� cation parameter s 2.5 m s 2 1

Vertical scale of N z0 4329.6 m
N at base of mixed layer Nmix 0.01392 s2 1

Inertial frequency f0 102 4 s2 1

Length scale of geostrophic � ow a 2 1 80,000 m
Maximum geostrophic streamfunction C 4000 m2 s2 1

Minimum geostrophic vorticity z min 5 2 4 a 2C 2 2.5 3 102 6 s2 1

Kinetic energy density K 5 ( a C )2 1�400 m2 s 2 2

Time scale T 5 2/ * z min * 9.26 days
Planetary vorticity gradient b 1.5 3 10 2 11 m 2 1 s2 1
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In paper I, 80 vertical modes were used in the modal decomposition; in (2.13) we
employ only 40. As a practical matter we use only 40 vertical modes because we must
numerically solve (2.8) by time stepping for each vertical mode (n 5 1 to 40). Paper I (with
b 5 0) employed an analytic solution involving Mathieu functions and so obtained
generous vertical resolution at a modest computational expense. Comparison of our b 5 0
numerical solutions with the equivalent solutions from paper I shows that the difference
between 40 and 80 vertical modes is insigni� cant for the evolution of the near-inertial
energy, but there are some slight differences in the shear. However, the differences in shear
do not alter our qualitative conclusions.

We project the initial condition, LA (y, z, 0) 5 uI(z) in (2.13), onto the basis set of
vertical normal modes as follows:

An( y, 0) 5 2 Rn
2e ns n. (2.14)

Thus, the problem is to solve

Ant 1 i[b y 1 2a 2C cos (2 a y)]An 5
i" n

2
Anyy, (2.15)

subject to (2.14).

Figure 2. The initial condition in (2.13). Panel (a) shows the initial velocity uI(z) and the
eigenfunction p̂40(z) of the highest-ordervertical mode used in the truncation. Panel (b) shows the
initial shear and the eigenfunction ĥ40(z). The maximum value of the initial shear, which occurs
immediately below the base of the mixed layer at z 5 2 51 m, is uz < 5.057.
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e. Changing frame

There is a transformation of (2.15) which greatly simpli� es the ultimate numerical
solution; de� ne Ã n by

An( y, t) 5 exp 3 2 ib yt 2
i" n

6
b 2t34 Ã n( y, t). (2.16)

The evolution equation for Ã n is

Ã nt 2 gntÃ ny 1 2ia 2C cos (2 a y)Ã n 5
i" n

2
Ã nyy, (2.17)

where gn ; b " n is the effective gravity of mode n. By introducing a new independent
variable,

ỹ ; y 1 1�2gnt2, (2.18)

we place (2.17) into the form,

Ã nt 1 2i a 2 C cos 3 2 a 1 ỹ 2
1

2
gnt22 4 Ã n 5

i" n

2
Ã nỹỹ. (2.19)

The initial condition for (2.19) is Ã n( ỹ, 0) 5 2 Rn
2 e n s n.

On comparing (2.19) with (2.15) we see that the transformation has eliminated the
nonperiodic coefficient y from the problem. In exchange for this simpli� cation there is an
unsteady potential in (2.19). However, this is a small price to pay because (2.19) can be
solved numerically on the interval 0 , ỹ , p using periodic boundary conditions. Because
of the nonseparable y and t dependence of the exponential factor in (2.16) the solution in
terms of the original variables is not periodic, and so (2.15) must be solved on an in� nite
domain. From a numerical perspective this would typically involve the imposition of
conditions at some arti� cially speci� ed domain boundaries, ymin and ymax. By using (2.19),
we avoid all these complications.

The decomposition in (2.16) shows that the local wave frequency changes with both
latitude and time, as a result of the arrival of wave packets falling from higher latitudes.
The temporal increase of the wave frequency may ultimately invalidate the NIO approxi-
mation.

3. Beta-dispersion

We begin by reviewing an extreme case in which there is no geostrophic � ow ( C 5 0)
but b Þ 0. Then the solution of (2.19) is Ã n( ỹ, t) 5 2 Rn

2 e n s n (this is essentially the
solution of D’Asaro, 1989). We then reconstruct the solution by performing the sum in
(2.6) (with an upper limit n 5 40). The results are summarized in Figure 3.

Figures 3a and 3c show contours of constant ‘speed,’ Î LALA *, and ‘shear,’
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Î LAzLA *z, in the (z, t) plane4 with b 5 1.5 3 10 2 11 m2 s 2 1. The b -dispersion mechanism
results in vertical transmission of speed but the shear remains localized at the base of the
mixed layer for at least 40 days. As D’Asaro (1989) remarks, the difference is because
b -dispersion operates most effectively on the low vertical modes which contain a
substantial fraction of the energy, but a much smaller proportion of the shear. Figure 3b
shows the evolution of speed in the mixed layer for three different values of b (the
difference between the three cases is an obvious rescaling of time). The initial decay due to
radiation damping is very slow but as t increases the factor exp [ 2 i " nb 2t3/6] in (2.16)
precipitates a sudden loss of modal coherence. This effect depends sensitively on b so that
at high latitudes (small b ) the decay of mixed-layer speed is delayed. Figure 3d shows that

4. With C 5 0 both the speed and the shear are independent of y. Thus, Figure 3 applies at all horizontal
positions.

Figure 3. Evolution of the NIO � elds on a b -plane with no geostrophic � ow ( C 5 0). Panels (a) and
(c) show contours of constant speed and shear amplitude as a function of time and depth with b 5
1.5 3 102 11 m 2 1 s 2 1. Panel (b) displays the amplitude of the speed in the mixed layer as a function
of time and panel (d) shows a similar picture for the shear amplitude at z 5 2 51 m. In panels (b)
and (d) we compare three different values of b : b 5 10 2 11, 1.5 3 102 11 and 2 3 102 11 in units of
m 2 1 s 2 1.
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the shear immediately below the base of the mixed layer (at a depth of 51 m) decays by
only 40% over 40 days.

In Figure 3b the initial monotonic decrease of the mixed layer speed is interrupted by the
onset of ‘bouncing.’ As time progresses, the bounce frequency increases, while the
amplitude varies irregularly. The bouncing energy level is a result of both the b -effect and
the uniform initial amplitude of the NIOs: waves ‘falling’ from the north arrive with the
relatively high frequency characteristic of those latitudes, and the attendant interference
results in rapid � uctuations of energy level in the mixed layer. These � uctuations would be
reduced by using an initial condition which is structured so that the energy decreases to the
north.

The main point of this section is that b -dispersion alone is not sufficient to explain the
total decay of near-inertial activity in the mixed layer in one or two weeks: b -dispersion
operates effectively on the low vertical modes, but a substantial fraction of the energy (and
most of the shear) is contained in the high vertical modes. Further, with no geostrophic
vorticity, there is no horizontal modulation of the NIO energy density.

4. Beta-dispersion and geostrophic vorticity

We now turn to the combined effects of b -dispersion and geostrophic vorticity. We use
the ‘sinusoidal’geostrophic � ow in (2.9) with the parameter values in Table 1. This is the
‘standard case’ used in paper I. We also use b 5 1.5 3 102 11 m 2 1 s 2 1; the nondimensional
b -parameter de� ned in (2.11) is b ˆ 5 0.96.

The Schrödinger equation (2.19) is solved with 256 grid-points in the interval 0 , h ;
a y , p using the Crank-Nicholson scheme described by Garcia (1994). Figures 4 and 5
show a selection of low-order vertical modes plotted in the original stationary coordinate
system. Figure 4, with b 5 0, is a reprise of the results in paper I; the main point here is that
there is a regular pattern of focussing then defocussing at the vorticity minima, with no
asymmetry (in h ) about the vorticity minimum at h 5 p /2. Figure 5 shows the effects of b ;
the low vertical modes, with larger values of gn 5 b f0Rn

2, display strong accelerations
toward the equator.

Figures 6 through 9 show the results of reconstituting the solution by summing over the
40 vertical modes. The main difficulty in visualizing the results is that when b and C 0 are
both nonzero the near-inertial � elds are strongly dependent on both horizontal and vertical
position.

Figure 6 shows the solution by plotting the speed, * LA * 5 Î u2 1 v2, as a surface above
the ( h , z)-plane at four instants.5 The radiation of the disturbance out of the mixed layer and
into the deeper ocean is rapid so that at 20 days (Fig. 6b) there is a substantial amount of
energy at 200 m and the kinetic energy density ( * LA * 2/2) at some points in the mixed layer
has fallen to less than 10% of its initial value. However, because of the geostrophic
vorticity, strong horizontal modulations of near-inertial energy density develop.

5. Figure 9 of paper I shows the equivalent of Figure 6, except with b 5 0.
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Figure 4. Evolution of the ‘‘energy density,’’ * An * 2, against the dimensionlesshorizontal coordinate,
h 5 a y, and time, t/T, with b 5 0 and C 5 4000 m2 s 2 1. The timescale T is T ; 2/ * z min * , and
An 5 1 at t 5 0. Shown are selected vertical modes: n 5 1, 2, 3, 4, 5 and 10. With b 5 0 the
patterns are symmetric about the vorticity minimum at h 5 p /2; each mode alternately focusses
and defocusses (like a seiche). The shading denotes the regions where the amplitude, * An * , is
greater than unity (that is, the uniform initial value).

1999] 571Balmforth & Young: Mixed layer near-inertial oscillations



Figure 5. Evolution of the ‘‘energy density,’’ * An * 2, against the dimensionless horizontal coordinate, h 5
a y, and time, t/T, with b ˆ 5 0.96 and C 5 4000 m2 s2 1. The timescale T is T ; 2/ * z min * , and An 5 1 at
t 5 0. Shown are selectedverticalmodes: n 5 1, 2, 3, 4, 5 and 10.At � rst, the energy density is focussed
into the minima of the b y 1 (z /2) potential. But, eventually, each mode tunnels through the potential
barrierand ‘falls’toward the equator. Both the time for focussingand the escape time are strongfunctions
of the vertical mode number. The shading denotes the regions where the amplitude, * An * , is greater than
unity (that is, the uniforminitial value).
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In Figure 7 we display the speed, * LA * 5 Î u2 1 v2, at the vorticity maximum, h 5 0,
and at the vorticity minimum, h 5 p /2, and we compare three cases:

(i) Geostrophic � ow alone; b ˆ 5 0;
(ii) Geostrophic � ow with b ˆ 5 0.96;
(iii) No geostrophic � ow and b 5 1.5 3 10 2 11 m 2 1 s 2 1.
The effects of b are striking (compare the top two panels of Fig. 7 with the two middle
panels). When b 5 0 (Figs. 7a and 7b) the near-inertial energy ‘piles-up’below the base of
the mixed layer and there is little subsequent vertical propagation over 40 days. However,
with b ˆ 5 0.96 (Figs. 7c and 7d), the submixed layer wave � eld develops both short vertical
lengthscales and high frequency � uctuations and there is rapid vertical transmission of the
disturbance. Figure 7e shows the case with C 5 0 and b Þ 0 for which there is no
horizontal modulation of the near-inertial wave� eld.

Another feature of the speed is displayed in Figure 8. This shows the back-rotated
velocity components, exp (i f0t)(u 1 iv), at vorticity maximum ( h 5 0) and vorticity
minimum ( h 5 p /2) at depth z 5 2 80 m. Panels (a) and (b) show the time series of the
backrotated velocities for cases (i) and (ii); the b -shift causes the oscillation frequency to
increase with time, as displayed by the exponential factor on the right of (2.16).6 Panels (c)
and (d) show hodographs of the back-rotated velocity components for cases (i) and (ii)
above.

Based on panels (c) and (d) of Figure 8 we see that when b 5 0, the back-rotated vector,
exp (i f0t)(u 1 iv), rotates counterclockwise at vorticity minimum and clockwise at the
vorticity maximum. The counterclockwise rotation at the vorticity minimum implies a shift
out of the internal wave band, which is in agreement with Kunze’s (1985) ray-tracing
arguments. However, with b Þ 0, this rotation is completely dominated by the induced
phase variation produced by the b -shift. Thus, in Figure 8, with b Þ 0, the backrotated
vector rotates clockwise at both the vorticity maximum and the vorticity minimum (this is
also true at the potential minimum, h < 1.32).

In Figure 9 we display the backrotated shear, exp (i f0t)(u 1 iv)z, at the same two
positions as Figure 8 (z 5 2 80 m and h 5 0 and p /2). In shear, the effect of b is reduced
because the b -effect chie� y in� uences lower-order vertical modes, but the shear is
contained in higher-order vertical modes. However, the b -induced phase variation remains
dominant, and this again leads to a clockwise rotation of the shear hodograph at vorticity
minimum if b Þ 0 (again, this is anti-clockwise if b 5 0).

Figure 10 shows the vertical penetration of the shear as a function of ( h , z) at four times
for case (ii). The initial focussing and subsequent vertical radiation of shear occurs near the
minimum of the potential,Vn, at h < 1.32. Yet, relative to speed, the vertical penetrationof
shear is slow; at t 5 40 days the shear is still mostly in the top 150 meters of the ocean. The

6. The increase in the frequency with time results from the propagation of wavepackets from higher latitudes
toward the equator, and is a consequence of the uniform initial condition. If the initial condition was actually
con� ned to a range in latitude, the frequency would not continue to increase inde� nitely.
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Figure 6. Snapshots of the speed, Î * LA * 2 5 Î u2 1 v2, as surfaceplots above the (h , z) plane at t 5 10, 20,
30 and 40 days (panels (a)–(d)), for 2 800 m # z # 0 and 0 # h # p . The mixed layer (with
Hmix 5 50 m) is evident as the region with verticallyuniformspeed.The planetaryvorticitygradient is b
5 1.5 3 102 11 m2 1 s2 1 and the geostrophicstreamfunctionis constructedusing the parameter values in
Table 1. At t 5 0, the speed Î * LA * 2 is independentof h and equal to 1 in the mixed layer; in panel (a),
after 10 days, the mixed-layer speed at the vorticity minimum (h 5 p /2) is ampli� ed above its initial
value. This ampli� cation occurs because the low vertical modes in Figure 5 focus coherently near h 5
p /2.
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Figure 6. (Continued)
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Figure 7. Variation of the speed, Î * LA * 2 5 Î u2 1 v2, with and without geostrophic � ow and the
b -effect. Shown are surface plots of * L A * above the (z, t) plane. Panels (a) and (b) show the
solution with b 5 0 and the geostrophic � ow parameters of Table 1; (a) shows the evolution at
vorticity maximum ( h 5 0) and (b) at vorticity minimum (h 5 p /2). Panels (c) and (d) show
evolution for the case with b ˆ 5 0.96, at vorticity maximum and minimum, respectively. Panel (e)
is the corresponding picture for C 5 0 and b Þ 0; in this � nal case the speed is horizontally
uniform (that is, there is no distinction between vorticity maximum and vorticity minimum).
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main feature in Figure 10 is the development of a submixed layer maximum in shear in the
vicinity of the potential minimum. This feature also arises when b 5 0, and was discussed
in paper I; once again, we identify this enhancement in shear with the ‘‘beam’’ observed in
the Ocean Storms experiment (D’Asaro et al., 1995; D’Asaro, 1995a,b).

Figure 7. (Continued)
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5. Strong dispersion

The numerical calculations reported above require the solution of the Shrödinger
equation (2.7) for each vertical mode. This effort is time-consuming, and so it is
worthwhile to explore further simpli� cations of the problem. One such simpli� cation is the
strong dispersion approximation (SDA) of Young and Ben Jelloul (1997). In this section
we make a comparison between the SDA and the complete solution.

The SDA uses the spatially averaged � eld,

Ā ( y, z, t) 5
a

p e
y 2 p /2 a

y 1 p /2 a
A ( y8, z, t) dy8, (5.1)

as the master variable. (The wavenumber of the sinusoidal shear � ow is 2a so that the
horizontal wavelength is p /a .) Then, provided that C /f0Rn

2 is small, the result of spatially
averaging (2.3) over the sinusoidal spatial scales is

LĀ t 1 ib yLĀ 1
i f0
2

= 2Ā 1
iK

f0
L2Ā 5 0 (5.2)

(Young and Ben Jelloul, 1997), where K ; a 2 C 0
2 is the spatially averaged kinetic energy

density of the sinusoidal � ow in (2.9). The � nal term on the left-hand side of (5.2) is the
recti� ed effect of the sinusoidal vorticity on the spatially averaged NIO � elds.

The solution of (5.2), with the initial condition shown in Figure 2, is

LĀ 5 o
n 5 1

40

s ne np̂n(z) exp 3 2 i b yt 2
i" n

6
b 2t3 1

iK

" n
t 4 . (5.3)

Figure 7. (Continued)
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Unfortunately, the SDA fails for high vertical modes7 so that there is no justi� cation
for including the large-n terms in (5.3). We press on, and address this criticism by
making a comparison between the simple approximation in (5.3) with the full numerical
solution.

7. As n increases, Rn decreases so that C /f0Rn
2 is not small for high vertical modes.

Figure 8. Back-rotatedvelocity, L(Ar 1 iAi) 5 exp (if0t)(u 1 iv), at z 5 2 80 m and vorticitymaximum
(panels (a) and (c)) and vorticityminimum (panels (b) and (d)). Panels (a) and (b) show time series of the
back-rotatedcomponentswith b ˆ 5 0 and b ˆ 5 0.96.Panels (c) and (d) show the rotationof the hodograph
vectorL(Ar 1 iAi); the solid curve is the case with b ˆ 5 0.96 for t , 30 days, and is continuedup to t 5
47 days by the dotted curve. The clockwise looping acceleratesbecause of the b 2t3 factor in (2.16). The
dashed curve is the case with b ˆ 5 0 which has much slower hodographrotation;notice the differentsense
of rotationin panel (c) (clockwise)versus panel (d) (counterclockwise).
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From the full numerical solution we may construct an ‘exact’ analog to (5.3). This is the
horizontal average,

LĀ 5 u 1 iv ;
a

p e
0

p /a
(u 1 iv) dy. (5.4)

In Figure 11a we compare the speed computed from (5.3) with the speed average, * u 1 iv *
from (5.4). (Notice * u 1 iv * is independent of y.) The strong dispersion approximation
gives a good prediction of the decay of the speed average over the � rst ten or twelve days.

Figure 9. Back-rotated shear, L(Ar 1 iAi)z 5 exp (if0t)(u 1 iv) z, at z 5 2 80 m and vorticity maximum
(panels (a) and (c)) and vorticity minimum (panels (b) and (d)). Panels (a) and (b) show time series of
the back-rotatedcomponentswith b ˆ 5 0 and b ˆ 5 0.96. Panels (c) and (d) show the rotation of the shear
hodographvector L(Ar 1 iAi)z . In panels (c) and (d), the solid curve shows the case with b ˆ 5 0.96 for
t , 30 days,and is continuedup to t 5 47 daysby the dottedcurve.The dashedcurvesshow the casewith
b ˆ 5 0; notice the different sense of rotation in panel (c) (clockwise)versus panel (d) (counterclockwise).
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In a similar way, we may construct the shear average from the full numerical solution,
* uz 1 ivz * , and compare it to the shear in strong dispersion approximation, * LĀ z * calculated
from (5.3). In Figure 11b we show the comparison at the base of the mixed layer, z 5
2 51 m. Unfortunately, the SDA inaccurately predicts a very rapid decay, primarily because
it poorly approximates the high-order modes in which most of the shear resides.

To summarize: the SDA is accurate for low vertical modes and inaccurate for high
vertical modes. Consequently, while the SDA reliably predicts the decay of mixed-layer
energy, SDA fails to represent the much slower decay of the shear at the base of the mixed
layer.

6. Conclusions

The transmission of near-inertial oscillations from the mixed layer into the ocean’s
interior is observed to occur on a timescale of between ten and twenty days. We have

Figure 10. Snapshots of the distribution of shear amplitude, Î uz
2 1 vz

2, in the case with b ˆ 5 0.96 and
geostrophic � ow parameters in Table 1, at times t 5 10, 20, 30 and 40 days (panels (a)–(d)), for
2 800 m # z # 0 and 0 # h # p . The contour interval in all panels is 1 in the same units as
Figure 2b. The main effect of the geostrophicvorticity is to focus the shear at the base of the mixed
layer into the neighborhood of the potential minimum at h < 1.32; this location is shown by the
vertical dashed lines. The vertical radiation of the shear then occurs mostly in the neighborhoodof
this vorticity minimum.
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shown in this paper that this relatively fast decay can be explainedusing a combination of a
background geostrophic � ow and the b -effect (even without the additional tuning of
parameters suggested in paper I).

We emphasize that this rapid decay of NIO energy and shear requires both geostrophic
� ow and the b -effect. The two processes acting in concert are much more effective than
either acting alone. Roughly speaking, b affects one part of the NIO wave spectrum, and
the geostrophic � ow a different part. The dephasing of the low vertical modes is accelerated
by b , whereas the geostrophic � ow has a stronger effect on the high vertical modes.

Note that the nondimensional parameter, b ˆ , given in (2.11b), is crucial to this concerted
effect. This parameter is the ratio of b to the geostrophic vorticity gradient. Therefore, it
varies with both the latitude and with the model of the local eddy � eld. The computations
reported in Section 4 all use b ˆ 5 0.96. But, we may increase a whilst holding a C constant.
Thus, we � x the kinetic energy density but decrease b ˆ . Computationsof this kind with b ˆ 5
0.24 ( a 2 1 5 40 km) produce solutions much like the cases reported in paper I (with
b 5 0). This suggests that the combination of b and a more complex velocity � eld, with a
mixture of spatial scales, may be qualitativelydifferent.

In addition to rapid decay of the mixed-layer NIOs, the model shows that the wave� eld
develops vertical and horizontal inhomogeneities.The horizontal modulations are solely a
result of the geostrophic vorticity.That is, with C 5 0 and b Þ 0, the NIO energy density is

Figure 11. A comparison of the SDA in (5.3) with the ‘exact’ result obtained by numerical solution.
(a) A comparison of the average speed in the mixed layer; the SDA provides a reliable estimate of
the decay of speed over the � rst 12 days. (b)A comparisonof the shear average immediately below
base of the mixed layer. Because it seriously misrepresents the evolution of high vertical modes,
the SDA grossly overestimates the rate of decay of shear.
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horizontally homogeneous (just as in the initial condition). The spatial inhomogeneities
which result if C Þ 0 can be strong and our statement above that the mixed-layer NIOs
decay rapidly requires quali� cation: it is the spatially averaged (over a period of the
sinusoidal shear � ow) mixed-layer NIOs which decay rapidly. At some horizontal posi-
tions, persistent concentrations of NIO energy remain in the mixed layer. Moreover, for
short times, and at certain locations, the mixed-layer NIO energy density can increase
above initial levels.

The patterns of near-inertial energy and shear are complicated functions of both depth
and horizontal position. Broadly speaking, enhanced near-inertial energy levels are
correlated with environmental features, such as geostrophic vorticity maxima or minima.
More speci� cally, energy and shear build up beneath the minima of the effective
‘potential,’ b y 1 z /2 (Kunze 1985). This provides an explanation of the ‘‘beam’’ in the
Ocean Storms experiment (D’Asaro et al., 1995; D’Asaro, 1995a,b).

This is, of course, a favorable comparison of an oversimpli� ed model with inadequate
observations; we cannot claim that everything is understood here. But the model in this
paper contains a minimal set of ingredients and predicts a rapid propagation of near-inertial
waves out of the mixed layer. The associated decay of the near-inertial activity in the mixed
layer is best described as radiation damping.

Finally, we remark that our calculations do not offer support for Gill’s (1985) viscous
( n = 2u) parameterization of the decay process. Nor is a Rayleigh drag (2 n u) parameteriza-
tion suggested. Instead a curious alternative is indicated by the strong dispersion approxi-
mation. Returning to the primitive equations, we can obtain the approximation in (5.3) by
using:

ut 2 ( f0 1 b y)v 1 px 5 (K/f0)Lv, vt 1 ( f0 1 b y)u 2 py 5 2 (K/f0)Lu, (6.1)

where L is the differential operator de� ned in (2.2) and K 5 a 2C 2 is the kinetic energy
density of the geostrophic � ow. In terms of the complex velocity u 1 iv, the unfamiliar
terms on the right-hand side of (6.1) are:

(u 1 iv)t 1 i( f0 1 b y)(u 1 iv) 1 ( px 2 ipy) 5 2 (iK/ f0)L(u 1 iv). (6.2)

The parameterization above is equivalent to adding an imaginary vertical viscosity,
if0KN2 2, to the primitive equations.This is unusual, but it is less ad hoc than either viscous
or Rayleigh drag parameterizations: the imaginary viscosity is a physically motivated
representation of the vertical radiative processes which carry near-inertial energy out of the
mixed layer and into the deeper ocean.

However, as we have indicated in our discussion of Figure 11, the parameterization in
(6.1) and (6.2) is reliable only for the low vertical modes. Consequently,while the decay of
energy in the mixed layer is adequately represented, the parameterization seriously
overestimates the rate at which the shear at the base of the mixed layer decays. For the
same reason, the parameterization will move the shear downward into the deeper ocean far
too quickly. For many purposes (e.g., mixing parameterizations based on Richardson
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number) the vertical distribution of shear is more important than the distribution of speed.
Thus, this failure of (6.2) is serious and we still lack a simple parameterization which
reliably predicts the evolution of both speed and shear.
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