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Abstract

We derive a closed master equation for an individual-based population model in continuous space and time. The model and master

equation include Brownian motion, reproduction via binary fission, and an interaction-dependent death rate moderated by a competition

kernel. Using simulations we compare this individual-based model with the simplest approximation, the spatial logistic equation. In the

limit of strong diffusion the spatial logistic equation is a good approximation to the model. However, in the limit of weak diffusion the

spatial logistic equation is inaccurate because of spontaneous clustering driven by reproduction. The weak-diffusion limit can be partially

analyzed using an exact solution of the master equation applicable to a competition kernel with infinite range. This analysis shows that in

the case of a top-hat kernel, reducing the diffusion can increase the total population. For a Gaussian kernel, reduced diffusion invariably

reduces the total population. These theoretical results are confirmed by simulation.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Pioneering works in population biology proposed the
spatial logistic equation (SLE),

Ct ¼ gC � ZC2 þ kr2C, (1)

as a model for the growth ðgÞ, saturation ðZÞ, and dispersal
ðkÞ of a population or gene (Fisher, 1937; Kolmogorov et
al., 1937; Skellam, 1951). Here Cðx; tÞ is the ‘‘concentra-
tion’’ of a species, defined via a sample region dx
surrounding a point x at time t as

Cðx; tÞdx ¼ expected number of organisms in dx. (2)

Our goal here is to better understand how (1) approximates
an individual-based model. The analogous problem in
physics is the derivation of advection–diffusion–reaction
(ADR) equations starting from a many-body formulation.
A key issue in passage from an individual-based model to
an ADR description, such as (1), is local fluctuations in
population density arising from the discrete nature of
e front matter r 2006 Elsevier Inc. All rights reserved.
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individuals and the randomness of birth and death.
Emphasizing the importance of birth and death at an
individual level, Bolker and Pacala (1997) refer to these
fluctuations as ‘‘demographic stochasticity.’’ In statistical
physics similar fluctuations arising from the atomistic
structure of matter are known as ‘‘intrinsic noise’’ (van
Kampen, 1997).
1.1. The Brownian bug model

The individual-based model studied here is an assembly
of organisms (‘‘bugs’’) moving through continuous space
and time via diffusion (with diffusivity k). The bugs
reproduce by binary fission at a constant rate, l, and die at
the rate determined by an intrinsic constant death rate, m,
plus an extra density-dependent contribution.
To simplify the model we make the assumption that the

density dependence of the death rate arises only from
interactions between pairs of organisms. The interaction
between two individuals separated by a distance r is
quantified by a ‘‘competition’’ kernel, nðrÞ (Bolker and
Pacala, 1997; Dieckmann et al., 2000—BDLMP hereafter).
The mathematical statement of this assumption is that in a

www.elsevier.com/locate/tpb
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population with k bugs, the death rate of bug q, located at
xq, is

death rate of bug q ¼ mþ
Xk

p¼1
paq

nðjxp � xqjÞ. (3)

Above, m is the constant intrinsic death rate. The second
term on the right-hand side of (3) is the interaction of bug q

with the other k � 1 bugs in the population. The
competition kernel, nðrÞ, is a positive function so that
interaction between bugs increases the probability of death.

The competition kernel does not have to be interpreted
literally as competition for a limited resource, nor is it the
only means of modeling such an interaction. For example,
Hernández-Garcı́a and López (2004, 2005) use a density-
dependent birth rate. In the ecological literature, Bolker
and Pacala (1999) employ a similar strategy using an
‘‘establishment probability’’ to model competition in plant
populations. Other possible interpretations of (3) include
cannibalism or the attraction of predators to clusters of
prey. Martin (2004) models nutrient limitation using a
hybrid model with individual organisms in continuous
space consuming nutrients defined on a lattice.

The models of Bolker and Pacala (1997, 1999) and Law
et al. (2003) are directed at perennial plant populations. In
this context, dispersal is coupled to birth by using a
‘‘dispersal kernel’’ to give each new plant a random
displacement from its parent. On the other hand, Brownian
bugs move incessantly as random walkers. See Appendix A
for a description of the implementation of the Brownian
bug model.

Young et al. (2001) originally used the term ‘‘Brownian
bug’’ for the special case nðrÞ ¼ 0. Here we use ‘‘Brownian
bugs’’ to refer to the individuals in the more general model
described above.

1.2. The Poisson assumption

We have now introduced two models—the spatial
logistic equation in (1) and the individual-based Brownian
bug model. The first is an approximation to the second if
the Poisson assumption is valid. The analog in statistical
physics is the assumption of molecular chaos. The Poisson
assumption enters the derivation of the ADR equation (1)
through the pair function, Gðx; y; tÞ, defined by1

Gðx; y; tÞdxdy

¼ expected number of pairs of organisms with

one member in dx and the other in dy. ð4Þ

C and G are the first two members of a hierarchy of
‘‘spatial moments’’ or ‘‘reduced distribution functions.’’
1We do not count each individual as a pair with itself, but we do count

the pair 1 and 2 as distinct from 2 and 1. Thus in a domain containing n

singletons, there are nðn� 1Þ pairs. The integral of CðxÞ over x is the

expected value of n, and the integral of Gðx; yÞ over x and y is the expected

value of n2 � n.
Higher members of the hierarchy, such as the triplet
function, Tðx; y; z; tÞ, describe correlations between the
positions of three or more organisms. For independently
distributed (uncorrelated) points the higher spatial mo-
ments factor into products of the concentration:
Gðx; y; tÞ ¼ Cðx; tÞCðy; tÞ, Tðx; y; z; tÞ ¼ Cðx; tÞCðy; tÞCðz; tÞ,
etc.
A systematic derivation of the continuum equations

corresponding to the Brownian bug model results in

Ct ¼ gC �

Z
nðjx� yjÞGðx; y; tÞdyþ kr2C, (5)

where g � l� m is the net intrinsic growth rate (see
BDLMP and Section 5). Eq. (5) is exact: the convolution
term is the expected death rate of a bug at x due to
interaction with neighboring bugs. In the context of
diffusively limited chemical reactions the competition
kernel nðrÞ is known as the reaction kernel, and (5) has
long been appreciated as a fundamental connection
between the concentration, C, and the pair function, G

(e.g., Doi, 1976a, b).
To obtain the spatial logistic equation (1) from the exact

expression (5) one first makes the Poisson approximation

Gðx; y; tÞ � Cðx; tÞCðy; tÞ, (6)

and pulls Cðx; tÞ outside the y-integral in (5). Then, with a
further scale separation assumption, one has

Cðx; tÞ

Z
nðx� yÞCðy; tÞdy � ZC2ðx; tÞ, (7)

where

Z �
Z

nðjyjÞdy. (8)

While the validity of these ad hoc approximations is not
obvious, the intuitive content of (6) is that there are no
correlations between the positions of individuals. Roughly
speaking, one trusts that this assumption is justified if
diffusion is strong enough. The upshot is that density-
dependent population controls, involving pairs of organ-
isms, are approximated in terms of the singleton descriptor,
Cðx; tÞ; this is the origin of the term ZC2 in (1). Note that
the density dependence does not have to come from the
mortality term: a density-dependent birth rate results in the
same SLE.
For recent work on a nonlocal version of the SLE

equation (1), obtained by using approximation (6), but not
approximation (7), see Fuentes et al. (2004), Shnerb (2004),
Hernández-Garcı́a and López (2004, 2005), and Maruvka
and Shnerb (2005).

1.3. Reproductive pair correlations

The reproduction of discrete individuals is a compelling
reason to expect important non-Poisson fluctuations and
the failure of (6). Brownian bugs (and any real organisms
which reproduce via binary fission) are born next to their
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siblings. Therefore, reproduction ineluctably creates non-
Poisson spatial correlations between pairs (daughter cells)
of individuals and these correlations are neglected by the
approximation (6) and the ADR approach.

The development of reproductive pair correlations is
illustrated in Fig. 1 using an example studied by Felsenstein
in 1975. Felsenstein’s problem is the special case of the
Brownian bug model with nðrÞ ¼ 0 and g � l� m ¼ 0; the
average population is constant because the intrinsic birth
rate l is equal to the death rate m. With these simplifica-
tions there are no interactions between the bugs: birth and
death are independent of the spatial distribution of the
population. Yet the system is still nontrivial. Felsenstein
(1975) showed that the patches in Fig. 1 grow larger and
farther apart with increasing time (see also Young et al.,
2001). Mathematicians refer to this special case nðrÞ ¼ 0 of
the Brownian bug model as ‘‘super-Brownian motion’’
(Adler, 1997; Etheridge, 2000; Slade, 2002). The unrest-
rained clumping produced with nðrÞ ¼ 0 has been indepen-
dently studied by statistical physicists (Zhang et al., 1990;
Meyer et al., 1996; Kessler et al., 1997).

With g � l� m ¼ 0 and nðrÞ ¼ Z ¼ 0, both (1) and (5)
collapse to the diffusion equation

Ct ¼ kr2C. (9)
500 bugs at λt = 0 465 bugs at λt = 1

455 bugs at λt = 5 741 bugs at λt = 25

(a) (b)

(c) (d)

Fig. 1. Clustering due to reproductive pair correlations in the Brownian

bug model. The simulation above uses the Monte Carlo method described

in Appendix A with l ¼ m ¼ 1, nðrÞ ¼ 0 and k ¼ 10�5. The domain is the

unit square (L ¼ 1 and d ¼ 2) with reentrant boundary conditions. The

total population changes due to random differences between the number

of births and deaths.
If there are initially N bugs in the doubly periodic L� L

domain then the solution of (9) with the initial condition
Cðx; 0Þ ¼ N=L2 is Cðx; tÞ ¼ N=L2. This answer is correct:
the solution of the diffusion equation (9) is the ensemble

average of many realizations of Fig. 1. However, because of
reproductive pair correlations the typical realization in Fig.
1 is dominated by demographic stochasticity and is very
different from the ensemble average. In other words,
fluctuations are so large that Cðx; tÞ by itself is an
insufficient characterization of the process. Instead the
pair function, Gðx; tÞ in (4), carries information about the
size and spacing of the clumps (see Section 3).

1.4. The plan

In this article we provide an exact deterministic
formulation of the Brownian bug model using an approach
known in statistical physics as the master equation. The
master equation contains complete and detailed informa-
tion concerning all of the statistical properties of the
Brownian bug model. In a related problem, Bolker and
Pacala (1997) and Law et al. (2003) (BDLMP) have
developed an alternative approach, based on an unclosed
hierarchy of spatial moments. We show that the BDLMP
hierarchy is obtained as a reduction of the master equation.
The master equation is also very complicated and is
unlikely to permanently replace either ADR or the
BDLMP hierarchy in our affections. Nonetheless, it is
useful to possess an exact formulation without closure
assumptions: one can hope to eventually justify the
moment closure strategy by identifying a non-dimensional
parameter permitting asymptotic reduction of the master
equation.
Section 2 is devoted to direct numerical simulation of the

Brownian bug model. The goal is to survey the parameter
space and illustrate the success of (1) in the strong-diffusion
limit, and its failure when diffusion is weak. A surprising
result of Section 2 is that depending on the details and
strength of the competition kernel the population may
increase or decrease in the weak-diffusion limit. In Sections
3 and 4 we formulate a stochastic population model in
continuous space without resort to the BDLMP hierarchy.
The resulting master equation is (44). In Section 5 we show
that the BDLMP hierarchy follows from this master
equation. In Section 6 we obtain an exact solution of the
master equation of Section 4 by considering the unrealistic
case of a competition kernel with infinite range. In Section
7 we use the exact solution from Section 6 to explain the
result from Section 2 that population can increase in
response to decreased dispersal. Section 7 also discusses the
dependence of our results on the structure of the
competition kernel. Section 8 is the conclusion.

2. Simulations and overview of the Brownian bug model

When nðrÞ ¼ 0 (as in Fig. 1), the only ingredient in the
Brownian bug model with any pretense to biological reality
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is that a reproductive event introduces the new individuals
at the same location as the parent. The patches evident in
Fig. 1 are produced solely by this mechanism and do not
require any other interactions between bugs. Felsenstein
(1975) noted that with nðrÞ ¼ 0, the model flagrantly
violates reality because of the absence of density-dependent
population regulation. The problem is more realistic when
a density limiting interaction is included, such as nðrÞa0
(Bolker and Pacala, 1997; Law et al., 2003). Our goal in
this section is to illustrate the behavior of the Brownian
bug model in this case using numerical simulation.
Consider then the case of pairwise competition, nðrÞa0 in
(3). A simple example of local interaction is the ‘‘top-hat’’
competition kernel, defined by

nðrÞ ¼
n0 if roa;

0 if rpa:

(
(10)

With the model above, Z in (8) is equal to n0pa2.
We are interested in the case where the length scale of the

spatial domain (e.g., L for an L� L square) is much larger
than the range of the competition kernel, a. In other words,
a=L is the first non-dimensional parameter and we are
concerned with the regime

a

L
51. (11)

Using the birth rate, l, to define a time scale, there are two
other non-dimensional parameters: m=l and n0=l. The
fourth non-dimensional parameter,

a� � a

ffiffiffi
l
k

r
, (12)

is a measure of the strength of diffusion. The four non-
dimensional parameters above completely specify the
Brownian bug model with the top-hat competition kernel
(10).

2.1. Simulations using the top-hat kernel and m ¼ 0

Fig. 2 shows the total population as a function of time
for four different values of the parameter a�. The dashed
line shows the population predicted by the SLE. The
SLE prediction is the equilibrium solution (or carrying
capacity) of (1), C ¼ g=Z, times the area L2:

N0 �
L2ðl� mÞ
pa2n0

. (13)

(Recall that g � l� m is the net intrinsic growth rate.) In
the case with strong diffusion (a� ¼ 1 in Fig. 2) the
population fluctuates around N0; at a� ¼ 4 the SLE
prediction is a little too high. However, for weak diffusion
(a� ¼ 16 and 64) the population is distinctly greater than
N0. Thus under the top-hat kernel the average popula-
tion depends non-monotonically on the diffusivity (equi-
valently a�).

Snapshots of the final states of the simulations in Fig. 2
are shown in Fig. 3. Panel (a) shows the example with
strong diffusion, a� ¼ 1; in this case the spatial statistics are
close to Poisson (see Section 3 for a quantitative assessment
using the pair function). For weak diffusion, that is, large
a�, the population shows strong clustering—each isolated
cluster in panels (c) and (d) of Fig. 3 is a family descended
from a single individual. These clusters in panels (c) and (d)
indicate the failure of the Poisson assumption (6).
Given the strong clustering with a� ¼ 16 and 64, it is not

unexpected that the SLE prediction (13) is inaccurate. The
surprise in Figs. 2 and 3 is that with weak diffusion
(a� ¼ 16 and 64) the population is elevated well above N0

in (13). This is nonintuitive: one expects a reduction in net
death rate (and hence a higher equilibrium density) the
greater the capacity of bugs to escape from competition
with their relatives. In Fig. 3(c) and (d), weakly diffusing
bugs huddle together in dense, isolated family clusters, but
nonetheless, the total equilibrium population in Fig. 3(c)
and (d) is higher than that of the strongly diffusing
case in Fig. 3(a). The key to understanding this curious
property of the weak-diffusion limit is that the increased
familial competition is compensated by even more strongly
decreased competition with unrelated bugs (see Section 7).
We now show that with the top-hat kernel this peculiar
inverse relation between diffusion and population is found
in a large portion of the parameter space.
Fig. 4 shows a survey of the average population, N, as a

function of a� and l=n0 (with m=l ¼ 0 and L=a ¼ 10). The
results in Fig. 4 are obtained by estimating the average
population from 240 simulations, similar to the 4 shown in
Fig. 2. To obtain stable estimates of the average population
we averaged over long times. For all values of l=n0 in Fig. 4
the population tends towards N0 in the strong-diffusion
limit ða� ! 0Þ. This is consistent with the intuition that
strong diffusion enables a bug to quickly explore a large
environment and so to ‘‘feel’’ the average concentration.
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a* = 1, n(λt) = 562 a* = 4, n(λt) = 593

a* = 16, n(λt) = 789 a* = 64, n(λt) = 984

(a) (b)

(c) (d)

Fig. 3. Snapshots of Brownian bugs in equilibrium (the ending states of

the simulations in Fig. 2). Notice that the system with weak diffusion

(large a�) is both clustered and has a larger population than the strong

diffusion case in panel (a). The parameters of these four simulations are

lt ¼ 200, a=L ¼ 1
10
, l=n0 ¼ 20, m ¼ 0, and a� as indicated in the titles. n is

the instantaneous population.
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percolating regimes.

2Extinction is impossible if m ¼ 0 since a state with one bug can never

transition to zero bugs.
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Alternatively, strong diffusion wipes out the non-Poisson
correlations generated by reproduction and establishes the
Poisson independence condition (6). The result also
indicates that in the strong-diffusion limit the only relevant
property of the competition kernel is the integral Z in (8).

In Fig. 4 all the curves fall below N=N0 ¼ 1 if a� is
sufficiently small. But once a� is greater than about 5 the
situation is more complicated: N=N0 then has a strong
dependence on both a� and l=n0. It seems unlikely that
there is any simple and comprehensive characterization of
the dependence of N=N0 on a� and l=n0.

2.2. The Gaussian competition kernel

The curves with l=n0 ¼ 20 and 40 in Fig. 4 agree with the
results obtained by Hernández-Garcı́a and López (2004).
These authors, also using a top-hat kernel, showed that the
population of bugs with a density-dependent birth rate
decreased with increased advection.

The results in Fig. 4 disagree with those of Bolker and
Pacala (1997) and Law et al. (2003). Both of these groups
found that increasing dispersal increases the equilibrium
population in their individual-based models and can
increase the population above the mean-field prediction.
We were unpleasantly surprised to discover that this
discrepancy is due to the form of the competition kernel.
Specifically, Fig. 4 is based on the compact top-hat kernel
(10), while Bolker and Pacala (1997) use a Laplacian kernel
and Law et al. (2003) employ a Gaussian kernel:

nðrÞ ¼
Z

2p‘2
e�r2=2‘2 . (14)

Repeating our simulations with the Gaussian kernel (14)
we find that the average population always decreases
monotonically with decreasing dispersal (see Fig. 5).
However, we do not find that increasing dispersal increases
the population above N0; this difference may be due to
Bolker and Pacala (1997) and Law et al. (2003) using
models with instantaneous long-range dispersal and our
using a model with binary fission and diffusion. Section 7
has further discussion of the differences between the
Gaussian and top-hat kernels.

2.3. Nonzero intrinsic death rate, ma0

Our earlier discussion of the top-hat kernel considered
only the special case m ¼ 0 (i.e., the intrinsic death rate is
zero in the simulations used to generate Figs. 2–5). In
Fig. 6 we consider ma0 and verify that the counterintuitive
increase of the population with decreasing diffusion
persists with nonzero intrinsic mortality.
With nonzero m eventual extinction due to a large

fluctuation is guaranteed.2 However, the extinction time
becomes exponentially long as the system size increases and
so in practice one observes a quasi-stationary state in which
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the population fluctuates about some mean level (e.g.,
Doering et al., 2005). The typical population fluctuations in
these ma0 quasi-equilibria are qualitatively similar to those
in Fig. 2 with m ¼ 0. Thus in the simulations with nonzero
m we report the ‘‘quasi-equilibrium’’ population, N, and
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Fig. 5. The average population divided by the SLE prediction (13) as a
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R

r2nðrÞdr=
R
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a=L ¼ 1
10
.

0 200 400 600 800 1
0

200

400

600

800

1000

n(
λt

)

0 0.05 0.1 0.15 0
0

200

400

600

800

1000

µ

N

(a)

(b)

Fig. 6. (a) nðltÞ for m=l ¼ 0:0; 0:2; 0:4. (b) The total population N compared t

indicating that the enhanced population under weak diffusion and the top-ha
compare N to the SLE prediction N0 in (13). This is
illustrated in Fig. 6(a), which shows the population as a
function of time. The initial population is 500 in all cases
and one can see that the bugs rapidly adjust to their (quasi-)
equilibrium populations for m=l ¼ 0:0 and 0:2. With m=l ¼
0:4 the population becomes extinct.
Fig. 6(b) shows the quasi-equilibrium population as a

function of m=l with fixed l=n0 and a�. This shows that the
increase in population above N0 with weak diffusion and
the top-hat kernel is a robust effect which persists for m=l
up to about 0:2. For m=l40:35 fluctuations result in
rapid extinction and no quasi-equilibrium population is
obtained.
2.4. The percolation transition with m ¼ 0

The percolation transition, illustrated in Figs. 7 and 8, is
a watershed in the ða�; l=n0Þ parameter space. If a� is small
and l=n0 is large then a single initial bug will eventually
populate the domain with its descendants. This is the
percolating regime: the expanding family of an ur-bug
invades, and eventually fills, an initially empty domain. On
the other hand, if a� is large and l=n0 is small then a single
bug cannot start an expanding family: pair interactions kill
the bugs before they manage to escape from each other’s
competition circles. (In this subsection we return to the case
m ¼ 0, so that extinction is impossible.) A non-percolating
species is maladapted, and the non-percolating regime has
little biological relevance. Nonetheless, for a complete
characterization of the Brownian bug model, it is important
to appreciate the distinction between the percolating and
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o N0 in (13); l=n0 ¼ 20 and a� ¼ 20 in all cases. N4N0 for all m=lo0:2,
t kernel persists with ma0.
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non-percolating regimes. In Figs. 4 and 5 we indicate the
non-percolating cases by dotting the curves.

Fig. 7 shows the populations and x-coordinates of the
bugs in three runs, each beginning with a single bug. The
upper plot shows the population as a function of time for
each of three values of l=n0: 1, 5, and 7. The value of a� is
10 in all cases and all of the runs start with a single initial
bug. The lower plot shows the x-coordinates of each bug.
The cases of l=n0 ¼ 5 and 7 are percolating. Interestingly,
the expanding population is strongly clustered even as it
diffuses to fill the domain. The case of l=n0 ¼ 1 is not
percolating. Occasionally clusters of bugs will live long
enough to diffuse away from each other. But eventually the
clusters collide and one is eliminated.
Fig. 8 also shows two cases of percolation and one case

of non-percolation. l=n0 ¼ 5 in all cases and again the



ARTICLE IN PRESS
D.A. Birch, W.R. Young / Theoretical Population Biology 70 (2006) 26–42 33
simulations are started with a single initial bug. In the cases
of a� ¼ 12 and 15 the bugs percolate. However, in the
weakest diffusion case ða� ¼ 20Þ the bugs do not percolate.
Note that Fig. 7 uses stronger diffusion ða� ¼ 10Þ than any
of the cases in Fig. 8. Together Figs. 7 and 8 show that
percolation depends on both the birth rate and the
diffusivity.
3. Fock space formulation for population dynamics

The Fock space is a tool for studying the spatial patterns
formed by stochastically evolving populations. We begin
by summarizing the formalism; for more details, Chapter II
of van Kampen (1997) is a useful reference. Suppose that a
variable number of bugs are reproducing and dying in a
d-dimensional space. For example, in a three-dimensional
space ðd ¼ 3Þ bug p is at position xp ¼ ðxp; yp; zpÞ. The total
volume of the domain is denoted by O. The dimensions of
O are ðlengthÞd .

At time t, the population is specified by the population
size, k, and a vector, Xk, containing the positions of all k

bugs:

Xk � ½x1;x2; . . . ;xk�. (15)

The Fock space is the set of all possible states. The
probability distribution over the Fock space is given by a
set of non-negative functions, F kðXk; tÞ, defined such that

FkðXk; tÞdXk ¼ Pr fk bugs, with a bug in dx1,

another in dx2 etc.g. ð16Þ

The normalization is

F0ðtÞ þ

Z
F1ðX1; tÞdX1 þ

Z
F 2ðX2; tÞdX2 þ � � � ¼ 1.

(17)

Bugs are indistinguishable, so we can freely exchange xp

and xq; this is the permutation symmetry of F k:

Fkðx1; . . . ;xp; . . . ;xq; . . . xk; tÞ

¼ Fkðx1; . . . ;xq; . . . ;xp; . . . xk; tÞ. ð18Þ

Any function A defined on the Fock space consists of

fA0;A1ðX1Þ;A2ðX2Þ; . . .g. (19)

The expectation of A is a sum over k as well as, for each k,
a k-fold integral:

hAi � A0F 0ðtÞ þ
X1
k¼1

Z
AkðXkÞF kðXk; tÞdXk. (20)

If Ak ¼ 1 then (20) collapses to the normalization
condition in (17). Notice that an expectation may be time-
and space-dependent, such as the expected density of bugs
at a particular location in a temporally evolving and
spatially inhomogeneous system.
3.1. Reduced distribution functions

Consider a sample volume V and let wðxÞ be the
indicator function of V. That is, wðxÞ ¼ 1 if x 2V and
wðxÞ ¼ 0 otherwise. Denote the number of bugs in V by n.
n is a random variable and using the definition of
expectation in (20), with Ak ¼

Pk
p¼1 wðxpÞ, we get

hni ¼
Xk

p¼1

wðxpÞ

* +

¼
X1
k¼1

Z Xk

p¼1

wðxpÞFkðXkÞdXk. ð21Þ

Using the permutation symmetry (18) the k terms in
the sum over p are all equal to the term with p ¼ 1.
Thus,

hni ¼
X1
k¼1

k

Z
wðx1ÞF kðXkÞdXk

¼

Z
wðx1Þf

ð1Þ
ðx1; tÞdx1, ð22Þ

where the concentration or density of bugs is

f ð1Þðx; tÞ �
X1
k¼1

k

Z
F kðx;Xk�1; tÞdXk�1. (23)

The concentration can be written more intuitively as

f ð1Þðx; tÞ ¼
Xk

p¼1

dðx� xpÞ

* +
. (24)

Eq. (24) may be verified by plugging into the definition of
the expectation (20) and once again obtaining (23).
The function f ð1Þðx; tÞ is exactly the same as the

concentration, Cðx; tÞ, introduced previously in (2). In this
section we prefer the notation f ð1Þ to emphasize that the
concentration is the first function in a hierarchy of reduced

distribution functions or spatial moments (see BDLMP).
One essential point is that hi denotes the average computed
according to the definition in (20). Thus the concentration
is defined via an ensemble average, hi, rather than by coarse
graining. A glance at Fig. 1 or 3 shows that this distinction
is important.
Next, consider the expected value of n2:

hn2i ¼
Xk

p¼1

Xk

q¼1

wðxpÞwðxqÞ

* +
. (25)

Using the definition of hi in (20) and the permutation
symmetry (18) we find that

hn2 � ni ¼

Z Z
f ð2Þðx; y; tÞwðxÞwðyÞdxdy, (26)
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where

f ð2Þðx; y; tÞ ¼
X1
k¼2

kðk � 1Þ

Z
F kðx; y;Xk�2; tÞdXk�2 ð27Þ

¼
Xk

p;q¼1
paq

dðx� xpÞdðy� xqÞ

* +
. ð28Þ

The function f ð2Þ is the same as the pair function, G, defined
in (4). Two other interpretations are helpful. First, the ratio
f ð2Þðx; yÞ=f ð1ÞðxÞf ð1ÞðyÞ is the probability of having bugs at x
and y relative to the probability of having bugs at x and y if
the bugs were independently distributed. Second, the ratio
f ð2Þðx; yÞdy=f ð1ÞðxÞ is the conditional probability of having
an individual at dy, given that there is an individual at x.

The functions f ð1Þðx; tÞ and f ð2Þðx; y; tÞ are the beginning
of an infinite hierarchy of reduced distribution func-
tions. The reduced distribution function of order s,
f ðsÞðx1; x2; . . . ; xs; tÞ, is

f ðsÞðX s; tÞ �
X1
k¼s

k!

ðk � sÞ!

Z
FkðX s;Xk�s; tÞdXk�s. (29)
3.2. Some examples of the pair function f ð2Þ

As an illustrative example of the descriptors f ð1Þ and f ð2Þ,
consider the four simulations shown in Fig. 3. Because the
system is spatially homogeneous, the concentration f ð1Þ

(defined via an ensemble average) is constant in each of the
four cases. Thus the concentration does not usefully
distinguish between the different cases in Fig. 3.

On the other hand, the pair descriptor f ð2Þ gauges the size
and spacing of the patches in Fig. 3. Fig. 9 shows estimates
of the radial distribution function, gðrÞ, defined by
gðrÞ � f ð2ÞðrÞ=f ð1Þ

2
. This definition of gðrÞ is motivated by

considering that gðrÞ ¼ 1 (actually 1� 1=n, but we are
interested in large n) for a Poisson process. An intuitive
interpretation of the radial distribution function is
provided by

f ð1ÞgðrÞ ¼ average density of bugs at a distance r

from a tagged bug. ð30Þ

The a� ¼ 1 curve in Fig. 9 is very close to gðrÞ ¼ 1,
indicating that the statistics of the points in Fig. 3(a) are
close to Poisson.

As the diffusion is reduced (and a� � a
ffiffiffiffiffiffiffiffi
l=k

p
increases)

the radial distribution develops a strong peak at r ¼ 0. This
is evident in Fig. 9(b). This r ¼ 0 peak is the signature of
reproductive pair correlations—if diffusion is very weak
each bug remains close to its ancestors. Thus the r ¼ 0
peak in Fig. 9(b) indicates the existence of family clusters in
Figs. 3(c) and (d) and the width of the peak estimates the
cluster radius.

The radial distribution function of the simulations with
a� ¼ 16 and 64 in Fig. 9 has an oscillatory structure. The
first deep minimum of gðrÞ indicates the ‘‘excluded area’’
surrounding each isolated family in the lower panels of
Fig. 3. The first maximum at nonzero r indicates the
nearest-neighbour families in the first ‘‘coordination shell’’.
These push the next nearest neighbours into the second
shell, and so on. Thus there is a sequence of oscillations
with a wavelength related to the range of the competition
kernel.

4. Evolution of the distribution functions: the master

equation

Now we use standard arguments (e.g., Feller, 1968; van
Kampen, 1997; Renshaw, 1991) to construct the exact
equations determining the continuous-time evolution of the
unreduced probabilities F kðXk; tÞ introduced back in (16).
The basic idea is to model the evolution of the Brownian
bug population as a one-step Markov process in contin-
uous space and time. It helps to think of probability as
flowing through the Fock space. For example, probability
collects in the state k ¼ 0 when a death occurs in any
configuration with just one bug at any location x1. Thus
the probability of extinction, F 0ðtÞ, evolves according to

qtF0 ¼ m
Z

F 1ðx1; tÞdx1, (31)

where m is the death rate of the lonely bug at x1. The next
equation in the master equation formulation is the
evolution of F1ðx1; tÞ:

½qt � kr2
1�F 1 ¼ �ðmþ lÞF 1 þ 2

Z
ðmþ n12ÞF2 dx2. (32)

On the left-hand side, diffusion acting on the single bug at
x1 is represented in the usual way; =1 is the gradient
operator associated with x1. Denoting the birth rate by l,
the first term on the right-hand side of (32) is the loss of
k ¼ 1 configurations due to either the reproduction ðlÞ or
death ðmÞ of the single bug.
The second term on the right-hand side of (32), involving

the integral over x2, is the flux of probability into
configurations with one bug ðk ¼ 1Þ by death in config-
urations with two bugs ðk ¼ 2Þ. Following Bolker and
Pacala (1997) we model density-dependent mortality using
the competition kernel nðrÞ introduced in (3); we use the
shorthand

npq � nðrpqÞ ¼ nðjxp � xqjÞ. (33)

The factor of 2 in front of the integral in (32) accounts for
the possibility that either of the bugs in a k ¼ 2
configuration might die.
At k ¼ 2 we have for the evolution of F2ðx1;x2; tÞ

½qt � kðr2
1 þ r

2
2Þ�F 2 ¼ lF 1d12 � 2ðmþ n12 þ lÞF2

þ 3

Z
½mþ n13 þ n23�F 3 dx3. ð34Þ

The first term on the right-hand side, lF1d12, is the
production of configurations with two bugs ðk ¼ 2Þ by
birth in configurations with one bug ðk ¼ 1Þ. Here we are



ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

g

10
-4

10
-2

10
-2

10
-1

10
0

10
1

10
2

10
3

r

a
*
 = 64

a
*
 = 16

a
*
 = 4

a
*
 = 1

a
*
 = 64

a
*
 = 16

a
*
 = 4

a
*
 = 1

(a) (b)

Fig. 9. Estimates of the radial distribution function, gðr; tÞ, obtained from the simulations in Fig. 3. After calculating and binning the separations of all

pairs of bug we use equation (30) to estimate gðrÞ. The smooth curves above are the average of nine realizations each. The log–log plot in panel (b) resolves

the large peak at very small r.

D.A. Birch, W.R. Young / Theoretical Population Biology 70 (2006) 26–42 35
using the notation

dpq � dðxp � xqÞ ðnot the Kronecker-dÞ. (35)

The d-function ensures that the new bug is introduced at its
mother’s location.

The second term on the right-hand side of (34) is the flux
of probability out of k ¼ 2 configurations driven by births
at rate 2l and deaths at rate 2ðmþ n12Þ. The final term on
the right-hand side of (34) is the production of k ¼ 2
configurations by a death in k ¼ 3 configurations. The
factor n13 þ n23 accounts for the enhanced mortality of bug
3 due to competition with the other two bugs in the
configuration. The factor of 3 outside the final integral in
(34) accounts for the possibility that any of the three bugs
might die in dt. We turn now to the general case.

4.1. Birth and death

Suppose that a birth occurs in a configuration with k � 1
bugs. The rate of this process is ðk � 1Þl and therefore the
ensuing loss of probability from configurations with k � 1
bugs is

qtFk�1 þ � � � ¼ �lðk � 1ÞFk�1 þ � � � . (36)

The corresponding gain of probability in configurations
with k bugs is

qtFk þ � � � ¼ þlðk � 1ÞBF k�1 þ � � � . (37)

Above, B, is a ‘‘birth operator’’ that increases the number
of x’s from k � 1 to k by introducing all kðk � 1Þ=2 of the
dpq’s, while maintaining normalization and permutation
symmetry. For instance, BF1 ¼ d12F1, and

BF 2 ¼
1
3
½d12F2ðx2;x3Þ þ d13F 2ðx2; x3Þ þ d23F2ðx1;x3Þ�.

(38)

Writing the general expression for B requires some
notational elaboration. We define

Xkjp ¼ Xk with xp deleted. (39)

For example, X4j2 ¼ ½x1;x3;x4� and X2j1 ¼ x2. Using this
notation, the birth operator B is

BF k�1 �
2

kðk � 1Þ

X X
1ppoqpk

dpqFk�1ðXkjp; tÞ. (40)

Notice there are kðk � 1Þ=2 terms in the double sum above.
The normalization factor 2=kðk � 1Þ in (40) ensures thatZ

BFk�1 dXk ¼

Z
F k�1 dXk�1, (41)

and thus probability is conserved.
Because of death, probability leaves configurations with

k bugs at a rate

qtFk þ � � � ¼ � mk þ 2
X X

1ppoqpk

npq

 !
F k þ � � � . (42)

The bracketed factor on the right-hand side is the total
death rate in a configuration with k bugs. The probability
leaving configurations with k bugs due to a death flows
into configurations with k � 1 bugs. This source in the
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evolution equation for Fk�1 is constructed by reducing the
number of x’s in Fk from k to k � 1 via integration over xk.
This reduction must conserve probability and the permuta-
tion symmetry so that

qtFk�1 þ � � � ¼ þk

Z
mþ

Xk�1
p¼1

npk

 !
Fk dxk þ � � � . (43)

The bracketed term inside the integral is probability per
unit time that the bug at xk dies; the factor k outside the
integral accounts for the possibility that any of the k bugs
might die.
4.2. Summary: the master equation

Assembling the results above, the final evolution
equation for FkðXk; tÞ with kX1 is

½qt � kn�Fk

¼ lðk � 1ÞBF k�1 � kðmþ lÞ þ 2
X X

1ppoqpk

npq

" #
F k

þ ðk þ 1Þ

Z
mþ

Xk

p¼1

np;kþ1

 !
F kþ1 dxkþ1. ð44Þ

The birth operator B is defined in (40) and the k ¼ 0
equation is given in (31). On the left-hand side of (44),

n �
X1
p¼1

=p � =p (45)

is the total Laplacian. Because F kðXkÞ does not depend on
xkþ1, xkþ2, . . ., the operator n collapses to a finite number
of terms when it acts on any Fk.
5. Reduced distribution functions: the closure problem

The reduced distribution functions or spatial moments
defined in (29) summarize the most basic statistics of the
population. Using definition (23) we obtain the equation
for the first reduced distribution function, f ð1Þðx1; tÞ (the
concentration), by summing and integrating the master
equation (44). The f ð1Þ equation is (5) with different
notation:

ðqt � knÞf ð1Þ ¼ gf ð1Þ �

Z
nðx� yÞf ð2Þðx; y; tÞdy. (46)

Above g � l� m denotes a net growth rate. Because of the
density dependence, nðrÞ, the pair function, f ð2Þ, appears in
(46) as a convolution.

To obtain the equation for the pair function,
f ð2Þðx1; x2; tÞ, we again sum and integrate the master
equation (44) using the definition of f ð2Þ in (28). The
calculation is very similar to that for f ð1Þ and the result is

ðqt � knÞf ð2Þ ¼ 2ld12f ð1Þ þ 2ðg� n12Þf
ð2Þ
� ðn13 þ n23Þ%f ð3Þ.

(47)
In (47) the convolutions, now denoted by %, are integrals
over x3. The term involving d12 ¼ dðx1 � x2Þ is the source
of reproductive pair correlations. For good measure, we
also give the triplet equation

ðqt � knÞf ð3Þ

¼ 2lðd12f ð2Þðx2;x3Þ þ d13f ð2Þðx2;x3Þ þ d23f ð2Þðx1;x3ÞÞ

þ ð3g� 2ðn12 þ n13 þ n23ÞÞf
ð3Þ

� ðn14 þ n24 þ n34Þ%f ð4Þ. ð48Þ

The last term on the right-hand side of the f ð2Þ equation
contains f ð3Þ, and f ð4Þ appears in the f ð3Þ equation with the
convolution indicating integration over x4. In general, if
nðrÞa0, the equation for each reduced distribution function
contains the reduced function of the next higher order. In
order to make practical use of these equations it is
necessary to truncate the hierarchy (see BDLMP). Indeed,
just as the master equation (44) is analogous to the
Liouville equation of statistical mechanics, the spatial
moment hierarchy of BDLMP above is analogous to the
BBGKY hierarchy of statistical mechanics.
We note that the closure problem of the spatial

correlation functions and the development of patchiness
due to reproductive pair correlations are independent
issues. The closure problem is due solely to pair interac-
tions, e.g., the term involving nðjx� yjÞ in (5). With nðrÞ ¼
0 there is no closure problem and (9) is an exact (but
inadequate) ADR description of the spatial structure of the
population in Fig. 1 and Gðx; y; tÞ can also be found exactly
in this case.
6. Exact equilibrium solution of the master equation with

infinite-range competition

In this section we discuss the case of infinite-range
competition. This means that the competition kernel is a
constant

nðrÞ ¼ n0, (49)

and that the pairwise interaction does not decay with
separation. With a constant competition kernel the
interaction between bugs is global: every bug ‘‘feels’’ every
other bug, no matter how distant. In this infinite-range case
one can directly extract information from the master
equation, without descent to the moment hierarchy and
closure assumptions. Before turning to these analytic
considerations, a simulation of the global competition
model is shown in Fig. 10. The initial condition is the
Poisson distribution of bugs shown in panel (a). Eventually
the system reaches equilibrium with the bugs in a single
clump, as in panel (b). This patch is the family of
descendants from a single ur-bug, which has eliminated
all other families from the domain. Thus, despite the
simplicity of the infinite-range competition kernel, the
spatial distribution of the equilibrium population is non-
trivial.
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6.1. The probability of k bugs with global competition

The global competition case is soluble because the
distribution of the bugs in space has no effect on the
population dynamics. Specifically, consider

pkðtÞ �

Z
FkðtÞdXk,

¼ probability of k bugs at time t. ð50Þ

With infinite-range competition, and m ¼ 0, integration of
the master equation (44) over all space yields a set of
differential equations for the pkðtÞ’s:

_p1 ¼ � lp1 þ 2n0p2,

_p2 ¼ lp1 � ð2lþ 2n0Þp2 þ 6n0p3, ð51Þ

and in general

_pk ¼ lðk � 1Þpk�1 � ½klþ kðk � 1Þn0�pk þ n0kðk þ 1Þpkþ1.

(52)

This is a simplified version of the logistic process in
Kendall (1949) whose equilibrium solution is given in
Renshaw (1991):

pk ¼
1

k!

l
n0

� �k
1

expðl=n0Þ � 1
. (53)

It is easy to check (53) by substitution into (52). We have
also confirmed that the statistics of the fluctuating
population in the simulation of Fig. 10 conforms to the
equilibrium probability distribution in (53). Of course this
solution for pk gives us no information about the spatial
structure of the cluster in panel (b) of Fig. 10.

6.2. The spatial structure of the population with global

competition

The solution of the global competition model without
integration over space now proceeds as follows: With m ¼ 0
we see from (31) that F0 is constant. In other words, if
m ¼ 0 then k ¼ 1 configurations can never transition to
k ¼ 0. Thus we now take F 0 ¼ 0 and begin by writing (44)
in the form

qtFk ¼ Rk þ Sk, (54)

where

Rk � ðk � 1ÞlBFk�1 � kðk � 1Þn0Fk þ knFk, (55)

and

Sk � kðk þ 1Þn0

Z
F kþ1 dxkþ1 � klF k. (56)

Notice that we have used the infinite-range assumption to
pull n0 outside the xkþ1-integral above. We solve the steady
system ðqtF k ¼ 0Þ by demanding that Rk and Sk separately
vanish (detailed balance). To appreciate how this proce-
dure works, and to reach an inductive proof, we write out
the first few terms explicitly. At k ¼ 1 we have

R1 � knF1,

S1 � 2n0

Z
F 2 dx2 � lF1. ð57Þ

At k ¼ 2,

R2 � ld12F1 � 2n0F2 þ knF 2,

S2 � 6n0

Z
F 3 dx3 � 2lF2, ð58Þ

and, for good measure, at k ¼ 3,

R3 �
2
3 l½d12F2ðx2;x3Þ þ d13F 2ðx2; x3Þ þ d2;3F 2ðx1;x3Þ�

� 6n0F 3 þ knF3,

S3 � 12n0

Z
F 4 dx4 � 3lF3. (59)

The homogeneous and isotropic equilibrium solution is
now found with the ansatz

FkðXkÞ ¼
1

k!

l
n0

� �k
FkðXkÞ

el=n0 � 1
. (60)

For (60) to satisfy the normalization condition (17) we
requireZ

FkðXkÞdXk ¼ 1. (61)

The guess in (60) and (61) is motivated by the form of the
spatially integrated solution in (53).
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Fig. 11. The non-diffusive case in d ¼ 2 at lt ¼ 100. Only 50 of the

original 2000 families have survived. The total population N � 1:7�N0,

where N0 is the population predicted by the SLE in (13). The locations of

the surviving families are indicated by the � symbol and the circles have

radius a=2. Overlap between circles would indicate competition between

surviving families. The parameters for this simulation are lt ¼ 100,

a=L ¼ 1
10
, l=n0 ¼ 20, l=m ¼ 1, a� ¼ 1.
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Starting with k ¼ 1, to make the ansatz (60) satisfy (57)
and (61) we take

F1 ¼ O�1 and

Z
F2ðrÞdr ¼F1, (62)

where O is the area of the domain. Turning to k ¼ 2,
substituting the ansatz (60) into (58), and demanding that
R2 ¼ 0, give

‘2nF2 � 2F2 þ 2F1dðrÞ ¼ 0, (63)

where

‘2 � k=n0. (64)

Above r � x2 � x1, and because of isotropy and homo-
geneity F2 is a function only of r � jrj so that
nF2 ¼ 2r2

rF2. Integrating (63) over dr we now see that
the integral constraint on F2 in (62) is satisfied—this is the
first indication of how the ansatz works. But demanding
that S2 ¼ 0 in (58) now gives another integral constraintZ

F3 dx3 ¼F2. (65)

Now at k ¼ 3, substituting the ansatz (60) into (59) gives

‘2nF3 � 6F3 þ 2½d12F2ðr23Þ þ d13F2ðr23Þ þ d23F2ðr13Þ�

¼ 0, ð66Þ

and alsoZ
F4 dx4 ¼F3. (67)

Integrating (66) over x3 and using (63) show that F3

indeed satisfies the integral constraint in (65).
The considerations above work at every order. Demand-

ing that Sk ¼ 0 gives the integral constraintZ
Fkþ1 dxkþ1 ¼Fk. (68)

The condition Rk ¼ 0 determines Fk as the solution of

‘2nFk � kðk � 1ÞFk þ kðk � 1ÞBFk�1 ¼ 0. (69)

Integrating the equation above over dxk verifies that Fk

satisfies the integral constraint obtained at the previous
order, k � 1. The essential intermediate identity used in this
inductive proof is

ðk þ 1Þ

Z
BF k dxkþ1 ¼ 2Fk þ ðk � 1ÞB

Z
Fk dxk, (70)

where B is the birth operator defined in (40).
This looks like a pyrrhic victory because it is increasingly

difficult to solve (69) as k increases. However, if we are
content with the reduced distribution functions f ð1Þ and f ð2Þ

then we can make progress. The key is that the integral
constraint (68) greatly simplifies the definition of f ðsÞðX sÞ.
Specifically, one finds that

f ðsÞðX sÞ ¼
ðl=n0Þ

s

1� e�l=n0
FsðX sÞ. (71)
Thus, remarkably, F k and f ðkÞ are proportional to the
function Fk defined by (69). Explicitly then, using (62) and
(71), the equilibrium concentration with infinite-range
competition is

f ð1Þ ¼
l=n0

1� e�l=n0
1

O
. (72)

To obtain the pair function we assume that ‘5O1=d and
solve (63). Using (71) the result is

f ð2Þ ¼
ðl=n0Þ

2

1� e�l=n0
1

O‘2
�

ð‘=2Þ expð�jr̄jÞ; d ¼ 1;

ð2pÞ�1K0ðjr̄jÞ; d ¼ 2;

ð4prÞ�1 expð�jr̄jÞ; d ¼ 3:

8><
>: (73)

Above, r̄ � r=‘.
7. Weak diffusion, and the form of the competition kernel

The infinite-range competition of Section 6 seems
contrived. But this special case helps explain the result
from Section 2 that the total population can increase in
response to decreasing diffusion. In particular, notice that
the non-dimensional parameter a� � a

ffiffiffiffiffiffiffiffi
l=k

p
is increased

by either reducing diffusion, k, or increasing the range, a.
To illustrate this correspondence, Fig. 11 shows a simula-
tion with a=L ¼ 1

10 with no diffusion (that is, a� ¼ 1). In
this case bugs cannot move away from their parents, and so
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each surviving family occupies a single point marked with
the symbol �. The circles in Fig. 11 have radius a=2 (not
a!). If any of the circles overlapped then the families they
contain would be competing. However, none of the circles
overlap in Fig. 11, and therefore each surviving family in
the non-diffusive case effectively acts as an independent
realization of the global competition case in Fig. 10. Thus,
with no diffusion, the system spontaneously forms a
pattern that eliminates competition between surviving
families, and the size of each family follows exactly the
same statistics as an ensemble with global competition,
namely pk in (53). The result of this pattern is the elevated
population in Fig. 11, where N ¼ 1:7N0. We emphasize
that the simulation in Fig. 11 is obtained with no diffusion.
However we expect the case of weak diffusion, that is,
a�b1, to behave similarly.

7.1. Optimal packing with the top-hat kernel

The counterintuitive result that the population increases
as diffusion decreases (see Fig. 4) may be rationalized by
considering the case of no diffusion and deliberately
packing as many families into the plane as possible by
minimizing inter-family competition. The solution is to
place the families on a triangular lattice with edge length a,
the competition radius, so that then there is no inter-family
competition. This arrangement results in each family
occupying a hexagonal territory with apothem a=2 and
area a2

ffiffiffi
3
p

=2. Using (53) to obtain the expected population
of a single family, the expected aggregate population is
then

N ¼
2L2ffiffiffi
3
p

a2

l
n0

1

1� e�l=n0
. (74)

Recall now that for the top-hat kernel the stationary
solution of the SLE (1) predicts that the aggregate
population is N0 ¼ L2l=pa2n0. The ratio of the population
of the hexagonally packed case in (74) to N0 is therefore
N=N0 ¼ 2p=

ffiffiffi
3
p
� 3:63.3 The lesson is that by deliberately

cultivating the bugs in a triangular lattice the aggregate
population can be greatly increased above that of the
strong-diffusion limit, N0.

Of course, in the simulations of Figs. 4 and 11 the
families are never optimally packed, and so the ratio N=N0

is always well below the optimal level 3.63, but N=N0 is
greater than 1. The optimal packing calculation correctly
indicates how organizing the population into well-sepa-
rated families might elevate the total population above that
of the strong-diffusion limit, N0 in (13). In simulations with
weak diffusion the inter-family spacing is evident in the
radial distribution function: the peaks of gðrÞ are separated
by a little more than a, the competition radius (see Fig. 9).
The width of the big peak at the origin, ‘ ¼

ffiffiffiffiffiffiffiffiffiffi
k=n0

p
, is

obtained from the solution in the previous section.
3We are interested in the regime with l=n0 substantially larger than one

and so we are neglecting expð�l=n0Þ in (74).
7.2. A family of competition kernels and the

weak-diffusion limit

We showed in Section 2 that in the weak-diffusion limit
the aggregate population is sensitive to the form of the
competition kernel. This sensitivity is strikingly illustrated
by comparing the top-hat result in Fig. 11 to zero-diffusion
simulations using the Gaussian competition kernel in (14).
With a Gaussian kernel there is an unavoidable interaction
even with distant neighbors. Consequently, one finds with a
Gaussian kernel that at very long times there is a single
surviving family.4 With the Gaussian kernel, organization
into a non-competitive pattern is impossible.
To explore the transition between the Gaussian and top-

hat cases more fully we now consider a family of
competition kernels, nðr;mÞ, with a parameter m control-
ling the shape of the kernel: m ¼ 0 is the top-hat kernel and
m ¼ 1 is the Gaussian kernel. Specifically, we propose the
following family of competition kernels:

nðr;mÞ ¼
ðmþ 1ÞZ
pR2

m

1�
r

Rm

� �2
" #m

if rpRm;

0 if rXRm:

8>><
>>: (75)

The range, Rm, in (75) is defined by

Rm ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2
m

q
, (76)

where a is the ‘‘integral length’’. This definition ensures
that the kernel is normalized for all m,

Z ¼
Z

nðr;mÞdx, (77)

and that the squared ‘‘radius of gyration’’,Z
r2nðr;mÞdx

Z
nðr;mÞdx

�
, (78)

is equal to a2=2. Thus the integral length a grossly
characterizes the distance over which nðr;mÞ falls from its
central maximum to a substantially smaller value. By
analogy with Section 2, we measure the strength of
diffusion relative to the integral scale a using the non-
dimensional parameter a� � a

ffiffiffiffiffiffiffiffi
l=k

p
. Note that if m is

large, so that nðr;mÞ approaches a Gaussian, then the range
Rm is much larger than the integral length a.
Fig. 12(a) shows nðr;mÞ deforming smoothly from a top-

hat to a Gaussian as m increases from zero to infinity. To
probe the effect of the competition-kernel shape on the
average population we fix a�, a=L, l and Z and vary only
the shape parameter m. The SLE then predicts that the
total population is N0 ¼ lL2=Z. Fig. 12(b) shows the
average populations obtained from simulations using
the families which is comparable to the system size L. Thus with Gaussian

interaction one family drives the other to extinction over a time which

diverges like roughly expðþL2=2‘2Þ.
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Fig. 12. (a) The kernel in (75) as a function of r for various values of m. The Gaussian limit is nðr;1Þ ¼ 2Z expð�2r2=a2Þ=pa2. (b) The steady-state

population as a function of m. In these simulations a=L ¼ 10, a� ¼ 20, m ¼ 0 and lpa2 ¼ 20Z.
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different values of m. In the cases of m ¼ 0; 1=4; 1=2 the
average population exceeds the SLE prediction N0.
However, as m increases and the kernel widens, the
population falls below N0 ¼ lL2=Z. Thus we pass smoothly
between the top-hat and Gaussian limits by varying only
the shape parameter m. There are significant changes in the
total population during this transition.

We can rationalize the result in Fig. 12(b) by repeating
the optimal packing calculation (74) using the kernel in
(75). To completely eliminate inter-family competition the
families are separated by the range Rm in (76) instead of a.
But the intrafamily competition is given by nð0;mÞ. We find
that in the optimal configuration the generalization of (74)
is

N ¼
2plL2ffiffiffi
3
p
ðmþ 1ÞZ

1

1� e�l=n0
. (79)

Taking the Gaussian limit ðm!1Þ, with fixed system size
L, we see that the total population vanishes with optimal
packing. It is amusing that if mpmc, where

mc ¼
2pffiffiffi
3
p � 1 � 2:63, (80)

then the optimal value in (79) is greater than N0 ¼ lL2=Z.5

In other words, if mpmc then farming is more productive
than rapid dispersion.
5The populations in Fig. 12(b) drop below N0 for m � 0:6omc. This

indicates that these simulations are far from optimal packing.
8. Conclusions and discussion

We have derived the master equation (44) for an
individual-based model with constant reproductive rate
and a death rate depending only on pairwise interactions.
The master equation is exact, but also complicated and
intractable. However, from the master equation one can
derive the exact equations for the reduced distribution
functions, for example (46)–(48), and so make contact with
earlier work based on this open hierarchy of moments
(BDLMP). With non-zero nðrÞ the equations for the
reduced distribution functions form an open hierarchy.
One must seek closure via approximation, the simplest
being the Poisson assumption (6). The Poisson assumption
yields the familiar spatial logistic equation (1). Through
simulation we have shown that the predictions of the SLE
are a valid approximation of the underlying individual-
based model only if diffusion is strong in the sense that a� is
small. If the diffusion is weak then the total population
predicted by the SLE can be too high or too low depending
on the parameters (Fig. 4) and the form of the competition
kernel (Fig. 12). The spatial logistic equation totally misses
the percolation transition and predicts populations that are
much too high for non-percolating parameter values. All
these failures of the SLE are due to the strong reproductive
correlations which void the Poisson assumption (6) unless
a�51.
We have discussed two special complementary cases in

which exact analytic results are possible. First, in the non-
interacting case, n ¼ 0, the hierarchy of reduced distribu-
tion functions closes without approximation. Felsenstein
(1975) obtained the pair function in this case, and it is easy
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to repeat his calculation by solving (47) with n ¼ 0. This is
the very simplest model describing patchiness and cluster
formation. As such, the case n ¼ 0 is important because
reproductive pair correlations continue to operate even
with nonzero n. The second case in which exact analytic
results are possible is the infinite-range interaction model of
Section 6. This solution is useful in understanding the case
of very weak diffusion (e.g., as in Fig. 11). In this second
case the BDLMP hierarchy is unclosed and so this analytic
solution provides the only example of exact closure known
to us.

For the case of weak diffusion, a�51, the shape of the
competition kernel becomes important. The optimal
packing calculation (74) helps us understand this irksome
sensitivity to seemingly unimportant details of the compe-
tition kernel, such as the weak exponential tail of the
Gaussian. For compact kernels like the top-hat—or small
m in (75)—the average population is greater than the SLE
prediction. However, for diffuse kernels such as the
Gaussian—or large m in (75)—the average population is
always less than the SLE prediction (Fig. 12). Both these
results are consistent with calculations based on maximiz-
ing the population by arranging non-interacting families of
bugs on a hexagonal lattice.

A point of discussion in previous papers (Hernández-
Garcı́a and López, 2004; Shnerb, 2004) has been the cause
of clusters such as those in Figs. 1, 3, and 13. Invoking the
non-local version of the SLE mentioned after (8), these
authors attribute the clusters to an instability of the
homogeneous state which is controlled by the Fourier
transform of the competition kernel. This non-local SLE
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Fig. 13. (a) 797 bugs at lt ¼ 2000, with a top-hat kernel a� ¼ 20. (b) The

radial distribution function for (a). (c) 433 bugs at lt ¼ 2000, with a

Gaussian kernel and a� ¼ 20. (d) The radial distribution function for (c).
theory predicts that a spatially uniform population is a
stable solution with the Gaussian kernel, but is unstable
with the top-hat kernel. However, the Gaussian simulation
in Fig. 13(c) and (d) is strongly clustered. Thus the
nonlocal SLE proves unreliable in the weak-diffusion limit.
The main difference between the two radial density
functions in Fig. 13 is depth of the first minimum and the
strength of the successive oscillations. These features are
stronger in the top-hat case in Fig. 13(b), indicating greater
long-range spatial order in the positions of the clusters. But
contrary to the predictions of the nonlocal SLE, sponta-
neous cluster generation is a robust feature of both

Gaussian and top-hat kernels.
To avoid the curious behavior of the top-hat kernel and

the infinite-range interactions of the Gaussian kernel one
might prefer a kernel that is both compact and smooth,
such as m ¼ 2 in (75). This ensures that families separated
by a distance greater than the range cannot drive each
other to extinction. Obviously, the value of m could vary
between species and a density-dependent death rate may
not be the ideal mechanism for modeling interactions
between organisms. However, the main point is that the
precise shape of the competition kernel can have a
dramatic effect on the outcome of models and one can
plausibly speculate that in the weak diffusion limit this
extends to other forms of interactions.
We conclude by mentioning one aspect of the model

which, with hindsight, we regard as unfortunate, or at least
special. We have followed BDLMP and made the death
rate depend on the local density using the competition
kernel. An alternative model assumption is to make the
birth rate depend on the local density through a similar
construction (e.g., Hernández-Garcı́a and López, 2004,
2005; Bolker and Pacala, 1999). At the crude level of the
SLE there is no difference between these model strategies:
they both produce a quadratic saturation term. However, it
is likely that the resulting individual-based models have
different properties in the low-diffusion limit. We believe
that in many situations density-dependent birth is likely to
be a better model of intra-specific competition than
density-dependent mortality.
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Appendix A

The Brownian bug model can be simulated on a
computer as follows: First, prepare the initial condition
ðt ¼ 0Þ by randomly and independently placing k0b1



ARTICLE IN PRESS
D.A. Birch, W.R. Young / Theoretical Population Biology 70 (2006) 26–4242
Brownian bugs (idealized as points) in the L� L square
domain. For simplicity we consider the domain to be
periodic.

Second, repeat the following sequence of steps until the
desired simulation time has elapsed: determine the time to
the next event (birth or death), determine the type of event,
determine which bug performs the event, execute the event,
and diffuse all bugs.

The simulation is event-driven and advanced through
time using exponentially distributed inter-event times in the
manner described by Renshaw (1991). The time to the next
event, t, is equal to � lnðY Þ=R where Y is a uniformly
distributed random number on ð0; 1Þ and R is the total rate
of events (births and deaths). If the population is k bugs,
the total rate is R ¼ BþD, where B is the birth rate:

B ¼ lk, (81)

and D is the death rate:

D ¼ mk þ 2
X X

1ppoqpk

nðjxp � xqjÞ. (82)

The calculation of the double sum in D is the most time
consuming routine in the simulation and is performed
using the neighbor-counting scheme in Rapaport (1995).
The periodicity of the domain must be taken into account
by calculating the distance between two bugs in the x-
direction (and similarly in the y-direction) according to

jx1 � x2j ¼ minimumfabsðx1 � x2Þ;L� absðx1 � x2Þg.

(83)

A second uniformly distributed random number deter-
mines whether the event is a birth (with probability B=R)
or a death (with probability D=R). A third random number
determines which bug performs the event. If the event is a
birth then each bug is equally likely to have performed the
event. If the event is a death then the probability of
selecting a particular bug is weighted according to the
magnitude of that bug’s contribution to the death rate in
(82).

Finally, every bug diffuses with diffusivity, k, which
amounts to a step of normally distributed length with root
mean square value 2

ffiffiffiffiffi
kt
p

in a random direction (uniformly
distributed on ð0; 2pÞ). Periodic boundary conditions are
used to handle bugs which diffuse out of the domain.
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Hernández-Garcı́a, E., López, C., 2004. Clustering, advection and

patterns in a model of population dynamics with neighborhood-

dependent rates. Phys. Rev. E 70, 016216.

Hernández-Garcı́a, E., López, C., 2005. Birth, death and diffusion of

interacting particles. J. Phys.: Condens. Matter 17, S4263–S4274.

Kendall, D.G., 1949. Stochastic processes and population growth. J. R.

Stat. Soc. Ser. B Methodological 11, 230–282.

Kessler, D.A., Levine, H., Ridgway, D., Tsimring, L., 1997. Evolution on

a smooth landscape. J. Stat. Phys. 87, 519–544.

Kolmogorov, A., Petrovsky, I., Piscunov, H., 1937. Study of the diffusion

equation with growth of the quantity of matter and its application to a
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