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Clustering of organisms can be a consequence of social behaviour,
or of the response of individuals to chemical and physical cues1.
Environmental variability can also cause clustering: for example,
marine turbulence transports plankton2±8 and produces chloro-
phyll concentration patterns in the upper ocean9±11. Even in a
homogeneous environment, nonlinear interactions between
species12±14 can result in spontaneous pattern formation. Here
we show that a population of independent, random-walking
organisms (`brownian bugs'), reproducing by binary division
and dying at constant rates, spontaneously aggregates. Using an
individual-based model, we show that clusters form out of
spatially homogeneous initial conditions without environmental
variability, predator±prey interactions, kinesis or taxis. The
clustering mechanism is reproductively drivenÐbirth must
always be adjacent to a living organism. This clustering can
overwhelm diffusion and create non-poissonian correlations
between pairs (parent and offspring) or organisms, leading to
the emergence of patterns.

Figure 1 shows a simulation of the brownian bug model using an
individual-based Monte Carlo approach (described below in
Methods). Because the motion of a brownian bug is unaffected by
a reproductive event, or by the proximity of other bugs, the spatial
aspects of the model are only weakly coupled to the primitive
biological ingredients of birth and death. Perhaps, then, it is
surprising that continuum approximations do not represent the
patches that form in the individual-based model shown in Fig. 1.
The continuum approximation1,12 describes the evolution of large
populations using advection±diffusion±reaction (ADR) equations
for the concentration: C�x; t�dA is the expected number of organ-
isms in the sample area dA surrounding the point x at time t. The
ADR approximation of the brownian bug process is:

Ct � D=2C � �l 2 m�C �1�

where l is the birth rate, m is the death rate and D is the diffusivity.
However, in Fig. 1 death and birth are equally probable so l � m,
and equation (1) collapses to the diffusion equation. Then, as the
initial concentration C0 is uniform, the solution of equation (1) is
C�x; t� � C0; this is not a good characterization of Fig. 1. This
failure shows that equation (1), and other ADR approxima-
tions2±8,13±15, do not capture the ¯uctuations exhibited by the
individual-based model in Fig. 1.

In reality there is a fundamental difference between the locations
of birth and death: deaths occur anywhere, but birth always occurs
adjacent to a living organism. This asymmetry is not represented in
the continuum approximation of equation (1), in which the birth
rate and the death rate occur only in the combination l 2 m. These
reproductive pair correlations are a uniquely biological complica-
tion, with no analogue in the physical and chemical problems
that served as the initial inspiration15 for biological ADR modelling.
Careful derivations of the ADR approximation12 make the assump-
tion that on the length scale of the sample area dA individuals are
distributed without correlations. This assumption enables us to use
Poisson statistics to calculate averages. The brownian bug process
realized in Fig. 1 shows that this Poisson hypothesis can fail in
simple circumstances.

Of course, uniform concentration is the correct (but useless)
answer if C�x; t� is de®ned by an ensemble average over many
realizations: the concentration ¯uctuations in Fig. 1 disappear after
an ensemble average because the brownian bug process is spatially
homogeneous. However, as discussed above, the concentration is
usually de®ned via a spatial average over dA. The optimal choice of
sampling scale is important16±18 because in most circumstances only
spatial averages are accessible to observation, whereas the ensemble
average is most useful for theoretical purposes. If the spatial average
of a single realization is approximated by the ensemble average of
many realizations (for example, either molecularly or turbulently
diffusing chemicals) we say that the system is self-averaging. The
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Figure 1 Distributions of brownian bugs at different times in a simulation with ¢ � 102 3

and N 0 � 20;000. Each point is the position of a brownian bug in the (x, y) - plane. See

Methods for the details of the simulation. a, Initial condition (a Poisson spatial distribution),

with brownian bug colour coded by y coordinate. b, Descendants of the original brownian

bugs at t � 100t. c, As b, at t � 1;000.
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disagreement between the solution C�x; t� � C0 of equation (1)
and the realization in Fig. 1 indicates a failure self-averaging.

For oceanographic systems it is interesting to study the effects of
large-scale random advection on the patches in Fig. 1. This is the
simplest model of a planktonic species reproducing in a turbulent
¯uid. The assumption that the ¯ow ®eld is large scale means that the
characteristic length of the velocity is much greater than the
diameter of the emerging patches in Fig. 1b. In other words, we
are in the `Batchelor regime' in which the velocity ®eld varies
linearly with the separation s(t) of a recently divided parent and
offspring19±22. In this case there is a timescale (related to the root
mean square, r.m.s., strain rate of the velocity) but there is no length
scale, other than s(t). Consequently s�t� ~ exp�gt�, where g-1 is the
timescale mentioned above.

Because exponential pair separation is much faster than diffusive
separation, we might expect that the patches formed by reproduc-
tive pair correlations would disappear. However, the simulation in
Fig. 2, which uses a computationally tractable model of exponential
pair separation22, shows that the patches persist as elongated
®laments (Fig. 2b). This elongation is suggested by visualizations
of nonreproducing contaminants in this same incompressible
random velocity ®eld22 (Fig. 2a). Without reproduction an initially
uniform density of brownian bugs remains uniform (Fig. 2a):
stirring alone does not create patches. But with reproduction,
®lamentary patches appear spontaneously (Fig. 2b). Thus, there is
an essential difference between reproductive and nonreproductive
contaminants.

To proceed with theory beyond equation (1) we notice that the
constant ensemble-averaged concentration C is the ®rst member of a

hierarchy of distribution functions that describe the nonindepend-
ent probabilities of the positions of all brownian bugs23. The second
member of this hierarchy is the pair correlation function:
G�x1; x2; t�dA1dA2 is the probability of ®nding a pair of brownian
bugs with one member in the dA1 surrounding x1 and the other
member in the dA2 surrounding x2. For example, a Poisson point
process with uniform concentration C0 has G � C2

0; departures of G
from C2

0 indicate pair correlations. In particular, because births
occur at the same location as the parent, births increase the
correlation G above C2

0 for small x1 2 x2. Because the pair correla-
tion function G is the Fourier transform of the `coarse-grained'
concentration spectrum24, we can relate this analysis to spectral
descriptions of plankton patchiness2,3,9.

For an isotropic and spatially homogeneous process, such as
those in Figs 1 and 2, G depends only on the pair separation
r [ jx1 2 x2j. Then it is convenient to de®ne the radial density
function g�r; t� by G�x1; x2; t� � C2

0g�r; t� where C0 is the uniform
concentration. because the pair correlations disappear at great
distances, g ! 1 as r ! `. In a two-dimensional space, the expected
number of brownian bugs located in the annulus �r; r � dr� sur-
rounding a typical brownian bug is C0g�r; t�2prdr; thus, by making
a histogram of pair separations, we can estimate g from the results of
a simulation (Fig. 3).

The solid curve in Fig. 3 shows that without random advection
(U � 0) there is a greatly enhanced probability of ®nding one
brownian bug in the close neighbourhood of another. The effect of
random advection is to reduce g at r � 0 and to produce a long tail
signifying slowly decaying pair correlations at large r (Fig. 3). The
reduction at r � 0 quanti®es the rapid advective separation of
nearly coincident pairs, whereas the tail is the signature of the
correlations that exist along the ®laments in Fig. 2b. At moderate
values of the stretching parameter U in equation (3), this tail is well
described by g < r22 (Fig. 3): advection reduces reproductive pair
correlations at small r, but enhances these correlations at large r.

The pair correlation function G is useful as a quantitative
diagnostic of patchiness. But theoretical progress is also possible
because for the brownian bug process G�r; t� satis®es

Gt � 2Dr12d
�rd21Gr�r � 2�l 2 m�G � gr12d

�rd�1Gr�r � 2lCd�r�

�2�

In this equation, d is the dimension of the space (d � 2 in all our
simulations). The ®rst term on the right-hand side is the diffusive
separation of pairs with a diffusivity 2D because each member of the
pair is an independent random walker. The second term on the right
is the production of new pairs, which occurs if the birth rate l
exceeds the death rate m. The third term on the right describes the
separation of pairs by rapidly decorrelating random advection21,
this particular form applies provided that r is much less than the
smallest scale of the velocity ®eld. The ®nal term is production of
coincident pairs (at r � 0) by birth.

If l � m then we can obtain a steady (Gt � 0) solution of
equation (2). These are `constant-¯ux' solutions: the reproductive
source produces pairs at the origin (r � 0) of the pair-separation
space. Then a combination of brownian motion and advective
stretching transports these pairs outwards to larger values of r.
Where r is much greater than

��������
D=g

p
, advective stretching is the

dominant process and the steady solution has G ~ r2d (this is the r-2

regime in Fig. 3). These steady analytic solutions of equation (2) are
shown as dash-dot curves in Fig. 3. The large differences between
theory and simulation at small r signi®es the failure of the con-
tinuum approximation equation (2) once r is comparable to the
step length of the random walk.

The brownian bug process is a simple model of plankton patchi-
ness with two ingredients the production of concentration ¯uctua-
tions by reproduction and the reduction in length scale of these
¯uctuations by stirring. It is crucial that the reproductive source
term, d(r) in equation (2), forces all wavenumbers equally. (We note
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Figure 2 Effects of stirring on the brownian bug clustering (¢ � 0:001, N 0 � 20;000,

as in Fig. 1).Each point is the position of a brownian bug in the (x, y ) - plane.

a, Distribution at t � 30t with U =t=2 � 0:1 and no birth or death. b, Distribution at

t � 1;000t and Ut=2 � 0:1.
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that if one Fourier transform acts on equation (2), then d�r� ! 1,
showing that the ®nal term forces a white spectrum.) Other models
of plankton patchiness2,3,9,11 follow Batchelor20 in assuming that
concentration variations are forced externally only at small wave-
numbers. The brownian bug process shows that the ¯uctuations can
be generated by reproduction and that this process pumps variance
into both large and small spatial scales. The common factor is that
stirring reduces the length scale of concentration ¯uctuations so
that diffusion can become effective. M

Methods
Conceptually the brownian bug model is a population of random-walking individuals
evolving in continuous time and space and simultaneously undergoing a branching
process25. In probability theory this is known as a superbrownian process26. To simulate
this on a computer we must discretize.

The initial condition (t � 0) is prepared by randomly and independently placing
N0 q 1 brownian bugs (idealized as points) in the L 3 L square (periodically extended in
order to avoid dealing with re¯ection boundary conditions). For visualization each
brownian bug is tagged with a colour that varies smoothly with the y coordinate. The
simulation is advanced through time in increments of a `cycle' of duration t. Each cycle
consists of three steps: (1) random birth and death; (2) brownian motion; and (3)
advective stirring. In step (1) each brownian bug reproduces by binary ®ssion (with
probability p) or dies (with probability q) or remains unchanged (with probability
1 2 p 2 q). When a lucky brownian bug divides, the offspring is placed on top of the
parent and parents transmit their colour to their offspring. In step (2), bug k is displaced to
a new position x9k�t� � xk�t� � dxk�t�. The components of dxk are independent and
identically distributed gaussian random variables, each with r.m.s. value ¢ (that is,
brownian motion with the diffusivity D � ¢2=2t). These independent displacements
separate coincident parent±offspring pairs. In step (3) we use the random map
procedure24

xk�t � t� � x9k�t� � �Ut=2� cos�ky9k�t� � J�t��

yk�t � t� � y9k�t� � �Ut=2� cos�kx9k�t � t� � v�t��

where J(t) and v(t) are independent random phases and k [ 2p=L.
In principle, we can approach the continuous limit in equations (1) and (2) by taking

t ! 0 while holding the parameters l [ p=t, m [ q=t, D [ ¢2=2t and �kU�2t ®xed.
Step (1) is a Galton±Watson branching process25 and because the probabilities of birth

and death are equal (we take p � q � 1=2) we are at the critical point. In this case, even
though the average population is always N0, the actual population has large ¯uctuations
and total extinction is certain if the simulation lasts too long. We avoid this issue by
making N0 much larger than the number of generations. The suppression of extinction is a
consequence of approaching the `thermodynamic limit' (N0 ! ` with C0 � N0=L

2 ®xed).
The stretching parameter g in equation (2) was determined for each value of Ut as the

best-®t slope of �1=d�hln r�t�i against t. hln r�t�i is an average obtained from an ensemble of
800 particle pairs (without diffusion and birth/death) initially separated by r�0� � 1027.
The growth rate l was obtained by considering the case U � 0 and l � m and then least-
squares-®tting the similarity solution of equation (2) to the results of a simulation in the
range ¢ to 200¢. The resulting estimate of l conforms with the expected result that
l < 1=2t.
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Darwinian evolution favours genotypes with high replication
rates, a process called `survival of the ®ttest'. However, knowing
the replication rate of each individual genotype may not suf®ce to
predict the eventual survivor, even in an asexual population.
According to quasi-species theory, selection favours the cloud of
genotypes, interconnected by mutation, whose average replica-
tion rate is highest1±5. Here we con®rm this prediction using
digital organisms that self-replicate, mutate and evolve6±9. Forty
pairs of populations were derived from 40 different ancestors in
identical selective environments, except that one of each pair
experienced a 4-fold higher mutation rate. In 12 cases, the
dominant genotype that evolved at the lower mutation rate
achieved a replication rate .1.5-fold faster than its counterpart.
We allowed each of these disparate pairs to compete across a range
of mutation rates. In each case, as mutation rate was increased,
the outcome of competition switched to favour the genotype with
the lower replication rate. These genotypes, although they occu-
pied lower ®tness peaks, were located in ¯atter regions of the
®tness surface and were therefore more robust with respect to
mutations.

Mutation and natural selection are the two most basic processes
of evolution, yet the study of their interplay remains a challenging
area for theoretical and empirical research. Recent studies have
examined the effect of mutation rate on the speed of adaptive
evolution10,11 and the role of selection in determining the mutation
rate itself12±14. Quasi-species models predict a particularly subtle
interaction: mutation acts as a selective agent to shape the entire
genome so that it is robust with respect to mutation1±5. (See refs 15±
18 for related predictions expressed in other terms.) In particular,
selection in an asexual population should maximize the overall
replication rate of a cloud of genotypes connected by mutation,
rather than ®x any one genotype that has the highest replication
rate. Thus, a fast-replicating organism that occupies a high and
narrow peak in the ®tness landscapeÐwhere most nearby mutants

are un®tÐcan be displaced by an organism that occupies a lower
but ¯atter peak. Thus, `survival of the ¯attest' may be as important
as `survival of the ®ttest' at high mutation rates. This prediction has
proved dif®cult to test experimentally, but a recent study19 with an
RNA virus reported that two populations, derived from a common
ancestor, have mutational neighbourhoods with different distribu-
tions of ®tness effects.

Direct evidence for the displacement of a fast replicator by a more
robust, slower one must come from experiments in which such
organisms are squarely pitted against each other. The systematic
(repeatable) winner of such a competition is, in effect, the ®tter one,
although the loser may have the higher replication rate. For
example, imagine that a particular mutation yields a more robust
genotype, but at the cost of a slightly lower replication rate. It is an
empirical question whether the advantage of the mutational robust-
ness is suf®cient to offset its disadvantage in terms of replication
rate. Quasi-species theory predicts that, under appropriate condi-
tions (high mutation pressure), such a mutation can be ®xed in an
evolving population, despite its lower replication rate. This predic-
tion does not depend on the details of the organism chosen for
experiments, but only on mutation rate, replication speed, and
robustness to mutations. Microorganisms, such as bacteria and
viruses, are often used to test evolutionary theories, and competi-
tion experiments are typically performed to quantify ®tness in the
course of these tests. However, it would be dif®cult to disentangle
the contributions of replication rate and robustness, because com-
petitions measure the combined effect of both processes. Here, we
use a more convenient system for disentangling these effects: digital
organisms that live in, and adapt to, a virtual world created for them
inside a computer.

Digital organisms are self-replicating computer programs that
compete with one another for CPU (central processing unit) cycles,
which are their limiting resource. Digital organisms have genomes
(series of instructions) and phenotypes that are obtained by the
execution of their genomic programs. The evolution of these
programs is not simulated in the conventional (numerical) sense.
Instead, they physically inhabit a reserved space in the computer's
memory (an `arti®cial Petri dish'), and they must copy their own
genomes. Moreover, their evolution does not proceed towards a
target speci®ed in advance; instead it proceeds in an open-ended
manner to produce phenotypes that are more successful in a
particular environment. Digital organisms acquire resources
(CPU cycles) by performing certain logical functions, much as
biochemical organisms catalyse exothermic reactions to obtain
energy. They lend themselves to evolutionary experiments because
their environment can be readily manipulated to examine the
importance of various selective pressures. The only environmental
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Figure 1 Competitions for one pair of organisms at four different mutation rates.

Organism A replicates 1.96 times faster than B. m, Genomic mutation rate.
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