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ABSTRACT

Some essential features of a recirculating inertial gyre (the “recirculation™) can be analyzed with a very simple,
analytically tractable model. In wind-driven eddy-resolving general circulation models the recirculation appears
as a strong sub-basin-scale inertial flow with homogeneous potential vorticity. The constant value of potential
vorticity decreases with increasing forcing/dissipation ratio while the size and the strength of the recirculating
gyre increases. In the subtropicat gyre the recirculating gyre might be driven by anomalous values of low potential
vorticity carried northward by the western boundary current. We have modeled this process using a barotropic
model and prescribing the values of potential vorticity at the edge of the gyre. Our model gyre is contained in
a rectangular box in an attempt to simplify the geometry as much as possible and to isolate the processes
occurring in the recirculating region.

With weak diffusion the prescribed boundary forcing induces a flow with constant potential vorticity. We
show how to calculate the homogenized value of potential vorticity in the interior without explicitly solving for
the flow. We also numerically solve our model and so obtain explicit solutions. Two distinct cases arise: 1) For
strong boundary forcing the gyre fills the whole box. Therefore the homogenized value of potential vorticity
can be determined but the extent of the recirculation is prescribed. 2) For weak boundary forcing the recirculation
fills only part of the basin and the size of the gyre must be determined as well as the homogenized value of
potential vorticity within it. The latter case is the most relevant to the wind-driven, numerical experiments,
because in these calculations the recirculating flow is confined to a sub-basin-scale region. Also in this case the
homogenized value of potential vorticity decreases with increasing forcing, while the size and the strength of
the gyre increase.

1. Introduction clear that this inertial gyre is not directly wind driven

but is somehow forced by the anomalous potential
vorticity of the separated boundary current. It is not
clear from oceanic observations whether this potential
vorticity anomaly is due to buoyancy effects associated
with heat loss to the atmosphere, or to northward ad-
vection of low values of planetary potential vorticity
by the western boundary current.

In this article we emphasize the possible role of
boundary currents as a source of low values of potential
vorticity. This is principally because we compare our
results with wind-driven numerical models in which
this is the only process acting. However the model ul-
timately formulated in section 2 merely requires an
external source of low potential vorticity as a driving
mechanism. We do not attempt to explicitly model the

Since Fofonoff’s (1954) and Niiler’s (1966) work on
the free inertial circulation in a closed oceanic basin,
few conceptually simple (and analytically tractable)
models have been developed to understand strongly
nonlinear circulation. In these early works the nonlin-
ear, inertial gyre fills the basin. But subsequent obser-
vations, and numerical experiments, indicate that the
region of strongly nonlinear, almost free, flow is con-
fined to the northwest corner of the basin.

This “recirculation” is an oceanographically relevant
phenomenon when regarding the observation of a tight
subbasin-scale gyre directly south of the separated Gulf
Stream. The transport of this feature is far too large to
be directly driven by the observed wind system through

"the Sverdrup relation and indeed in eddy-resolving
general circulation numerical models the westward re-
circulation occurs in a region pressed against the zero
wind stress curl line (the northern wall in Fig. 1). It is
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processes producing the low potential vorticity.
Moore (1963) modeled the recirculation as a stand-

ing damped Rossby wave in the exit of the western

boundary current. But results from general circulation
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FIG. 1. Top row: steady state streamfunction resulting from a two-layer quasi-geostrophic wind-driven general circulation model. (a)
Upper layer, (b) lower layer. Bottom row: Time-averaged pressure fields (solid line) and horizontal velocity (arrows) resulting from a S-level,
primitive equation, wind-driven, eddy-resolving general circulation model (Robinson et al., 1977). (c) 40 m, (d) 490 m, (e) 2690 m. These

very different models produce similar large-scale circulation patterns.

models have disproved Moore’s picture: both in the
steady state flow (when steady equilibrium is achieved)
and in the time-averaged flow (when the final equilib-
rium is oscillatory or chaotically eddying) the dominant
feature is a “blob” of water recirculating in closed paths,
rather than oscillating in a wavelike pattern. Eddy-re-
solving general circulation models have also clarified
the role of transient small-scale features upon the mean
large-scale circulation. The divergent eddy flux of vor-
ticity points systematically down the mean potential
vorticity gradient, suggesting that eddies can be pa-
rameterized as lateral diffusion of mean potential vor-
ticity. Moreover in eddy-resolving models the recir-
culation zone has roughly the same horizontal extent
at every depth and the strength of the flow is of the
same magnitude throughout the water column. There-
fore, to a first approximation the recirculation can be
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considered independent of depth and so a barotropic
(one-layer) model may capture many of its essential
features.

The purpose of this work is to isolate the main dy-
namical balance and driving mechanism of the recir-
culation using a simple, barotropic model. Before pre-
senting this model we will summarize the results of
some numerical experiments and ocean observations
which motivate our formulation.

a. The driving mechanism

Figure 2 shows the instantaneous streamfunction
and potential vorticity fields of the final state of a gen-
eral circulation model developed by one of the authors.
The model is formulated using the quasi-geostrophic
barotropic equation in a closed basin forced by a sim-
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F1G. 2. Instantaneous fields at quasi-equilibrium. (2) Streamfunc-
tion, (b) potential vorticity. y, = L/2, wy fo/ HB*L? = 1073, xBH/wo fo L
=2.5X 1072, x and y axis in units of L.

ple wind stress curl and damped by lateral diffusion of
potential vorticity. The standard wind-driven, quasi-
geostrophic formulation is

%%1+J(¢,q)=ﬁ)wE/H+xvzq (1.1)
where
(=¥, ¥) = (4, V) )
a=By+v%
wg=—wp cosw(2y+ L—y,)/2(L+y,), ( (1.2)
if —L<y<y,
wg=0, if y<y<L ]
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with boundary conditions ¢ = V% = 0 on the bound-
aries x = L, —L; y = L, —L. The Ekman pumping
above was first suggested by Veronis (1966) as a means
of illustrating one of the essential features of recircu-
lation, viz., it can occur entirely in a region where the
wind stress curl is zero (north of y,). In this experiment
the western boundary current continues northward of
¥, turns eastward at the northern boundary, L, and
transports low values of potential vorticity northward,
where low means smaller than the local planetary vor-
ticity. This essential feature is independent of the choice
of the wind stress pattern as shown in Fig. 3, which
shows the ¥ and g time-averaged fields for the above-
mentioned model, but with a wind stress curl which
fills the basin, i.e., y; = L in (1.2).

- b. The dynamical balance

The other feature of interest in the recirculation re-
gion is that potential vorticity is essentially homoge-
neous (see Figs. 2 and 3). Because the numerical model
is barotropic the only term which can balance the
planetary gradient, 8y, is relative vorticity. Relative
vorticity in these models is small in most of the basin
(the external Rossby number fywo/82HL? is 10~3), while
it becomes important in the recirculation region both
in the eastward and westward flow.

A very detailed diagnostic analysis of general cir-
culation models of the type we used can be found in
Boning (1986). An important conclusion of his analysis
is that the dominant balance in the recirculation region
is between advection of planetary vorticity and advec-
tion of relative vorticity. Dissipation becomes impor-
tant only in the boundary layers around the edge of
the recirculation and wind forcing is always negligible.
Nevertheless dissipation is essential in determining the
vorticity distribution inside the recirculation region.
This is quite different from the picture envisaged by
Marshall and Nurser (1986) who proposed a general-
ization to a baroclinic ocean of Fofonoff’s (1954) cal-
culation as a model for the inertial recirculation. In
their calculations relative vorticity is neglected in the
interior of the recirculation (i.e., where the flow is
westward) and its effect is confined to narrow boundary
layers.

The size and strength of these recirculating gyres
depends sensitively on the dissipation. Figure 4 shows
the solution when the diffusivity is reduced by a factor
of two below that in Fig. 3. The inertial gyre is larger,
its velocities are faster and the homogenized value of
potential vorticity within it is reduced. This last ob-
servation is consistent with the intuitive notion that
the boundary currents are more effective at transporting
southern values of potential vorticity northwards when
the lateral diffusivity is reduced.

One final observation from numerical experiments
is that the tangent velocities at the boundary of the
recirculation are essentially determined by the dynam-
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FIG. 3. Time-averaged field for the same model as in Fig. 2 except
for y, = L. (a) Streamfunction, (b) potential vorticity.

ics in the interior of that region. In Fig. 5 we show the
zonal velocity, u, and potential vorticity, ¢, in a section
which cuts the recirculation region longitudinally. No
jump in u occurs when the northern boundary is ap-
proached. Clearly there is a jump in the shear, du/dy,
in order to satisfy the free slip boundary conditions,
and therefore a jump in g, causing the second derivative
of the velocity to be large near the boundary. But the
essential point is that the velocity on the boundary can
be predicted approximately by extrapolating its interior

value from just outside the northern boundary layer.

c. Ocean observations

A decisive observational test of the theory proposed
here (and also that of Marshall and Nurser, 1986) would
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require direct measurement of relative vorticity in the
westward flowing limb of the recirculation. The present
model assumes that it is as large as the planetary con-
tribution (beta times the north—south width of the re-
circulation) and further that both of these exceed the
vortex stretching term. Unfortunately it is probably
not possible to calculate the relative vorticity suffi-
ciently accurately from observations to make this
comparison.

However, one feature of the recirculation which all
observers have emphasized, and which strongly sup-
ports the barotropic model used here, is the weak depth
dependence of the currents in this region. Schmitz

a) >3-

b) >3

e
|
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-1.0 0.0 10
X

FIG. 4. As in Fig. 3 except for xBH/w, fuL = 1.25 X 1072, i.e., the
diffusivity has been halved from Fig. 3. (a) Streamfunction, (b) po-
tential vorticity.
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FIG. 5. (a) Zonal velocity u and (b) potential vorticity g through the recirculation region at x
= 0. Notice there is no jump in velocity near the northern boundary. All parameters as in

Fig. 3.

(1980) notes that in the westward recirculation the cur-
rents are both surface and bottom intensified. However
the currents at middepth are certainly comparable in
magnitude (10 cm s~!) and of the same sign as the top
and bottom velocities. Richardson (1985) has also em-
phasized the vertical coherence, down to the sea floor,
of currents in the recirculation zone (see especially his
Fig. 6b). Both of these studies suggest that it is the
transport produced by these weakly depth-dependent
currents which is responsible for the increase in Gulf
Stream transport. Thus, based on these observations,
the broadest conclusion one can draw is that recircu-
lation is a barotropic phenomenon.

Of course the model formulated in section 2, which
is barotropic from the outset, cannot explain the weak
depth dependence of the recirculation. But there is a
simple baroclinic extension which can be used to
quantitatively assess the effects of stratification. The
results of this multilayer model study, still in progress,
confirm the importance of relative vorticity in the dy-
namic balance and also show that the recirculation will
usually extend down to the sea floor.

Finally, while a detailed vorticity budget is not pos-
sible, Schmitz’s current meter observations provide
enough information to make an order of magnitude
estimate of relative vorticity and planetary vorticity in
the westward recirculation. One has

u,/By ~ U/BL?
andu=10cms™!,8=2X10"3cm™!s™!. To estimate

Brought

L we note that according to Schmitz the total width of
the westward flowing zone is 200 km. L must certainly
be less than this, say 100 km, and then U/BL? = Y,
which suggests that relative vorticity is dynamically
important.

d. Summary

Recirculation is the development of a virtually
barotropic, sub-basin-scale gyre in the northwest corner
of the subtropical circulation. The transport of this gyre
is usually observed to be larger than the Sverdrup
transport by at least a factor of three. As Boning (1986)
noted, the dominant balance in the barotropic potential
vorticity equation is between the advection of planetary
vorticity and the advection of relative vorticity. The
relative vorticity is as large as the planetary vorticity
even when the flow is westward. Although the dissi-
pative terms are subdominant their strength sets the
transport and size of the recirculation.

There are several questions suggested by these ob-
servations. What determines the latitudinal extent of
recirculation? What determines the value of potential
vorticity in the center of the homogenized gyre? It is
these two related questions which the present article
addresses. Additional questions such as the roles of
baroclinicity, bottom drag and topography are ignored,
but the model formulated in the next section can be
easily extended to investigate these issues.
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2. Formulation of the model

In order to highlight the essential features of the re-
circulation we will analyze a model which is as simple
as possible. Specifically we will make the following as-
sumptions:

1) The inertial recirculation is barotropic. One of
the main conclusions of Boning’s (1986) work is that
the essential features of the recirculation found in his
barotropic model are very similar to-the mean transport
fields of recent eddy-resolving general circulation
models. Schmitz (1980) and Richardson (1985) em-
phasize the vertical coherence of observed currents in
the Gulf Stream recirculation.

'2) Relative vorticity is of the same order as planetary
vorticity.

3) Diffusion is weak and can be represented as lateral
diffusion of potential vorticity.

4) There is no local wind forcing. Instead the forcing
is provided by prescribing the potential vorticity at the
boundaries. This mimics the effect of the potential vor-
ticity anomaly either produced by buoyancy flux or
carried by the boundary current.

With the above in mind we consider the quasi-geo-
strophic equation in a 3-plane box (—L/a < x < L/«
and ~-L <y <L)

%4 4 Jw, @)=, @

ot
where ¢ = 8y + V2y and « is the aspect ratio of the
box. The boundary conditions are ¢ = 0, g = gx(s)
where s is the arclength round the boundary. Thus, the
flow is forced by the nonequilibrium distribution of
potential vorticity which is prescribed at the boundary
(gz 7 By). This forcing could be the result of diabatic
effects or, as in wind-driven models, the result of a
subtle balance between dissipation and advection of
potential vorticity originating at lower latitudes. Be-
cause the latter process is much better documented in
the literature, we will compare our results with those
obtained in wind-driven ERGCMs.

The eastern and western boundaries represent the
actual eastern and western boundaries of the basin,
while the northern and southern boundaries are in-
tended as the meridional boundaries of the recircula-
tion. Implicitly we are restricting our attention to cases
such as that presented in Fig. 4, where the dissipation/

forcing ratio is small enough so that the recirculation

region goes all the way to the eastern boundary. We
discuss specific functional forms of gz in the next sec-
tion.

In the steady state, some general results, which are
relevant to our analysis, can be proved.

Integrating (2.1) over the area enclosed by any
streamline, and assuming a steady solution, we get

f Vg-ndl=0, (2.2)
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where n = Vy/|Vy|. That is, the total diffusive flux of

vorticity across a closed streamline is zero.
Multiplying (2.1) by ¢ and integrating over the area

enclosed by the box we obtain the energy equation

2 [Swras=—« [ aaor+x [@-pom-ar
2.3)

This shows that in the steady state the amount of rel-
ative vorticity available in the interior is proportional
to the relative vorticity circulated at the boundaries.
If, as a trivial example, gz = 3y, then the relative vor-
ticity must be identically zero everywhere in the interior
and therefore there is no flow. This emphasizes the role
of gz as forcing.

Equation (2.1) is analogous to an advection—diffu-
sion equation for the concentration of a passive tracer
with prescribed values at the boundaries. It is intuitively
clear that the concentration in the interior must have
values lying between the boundary values. That is, the
maximum and minimum values of g are on the
boundary. Nevertheless, since potential vorticity is not
a passive tracer, we will prove this result rigorously.
The following never uses the connection between
and ¢ and so applies equaily well to a passive scalar.

Suppose there is a point in the interior where ¢ is
larger (smaller) than any of the values of the boundaries.
If this occurs, such a point is a maximum (minimum),
Therefore, around this point there will be a nested set
of closed g contours. Integrating (2.1) over the area
enclosed by any such contour we get

0= szqu S ngq -ndl = J. Vqldl, (2.9

which is a contradiction. Hence, there are no closed ¢
contours and no extrema in the interior. From this
“extremum principle” we infer that there are no shear
layers' in the domain. In such a layer V2§ must become
very large so that the potential vorticity in the layer
would exceed the boundary values.

Notice that in deriving these general results we have
not made any assumption about the size of dissipation.
In order to make further progress we will examine the
limit in which diffusion is weak, a limit which is prob-
ably the most relevant for the oceanic recirculation.

3. Homogenized gyre filling the domain
In the steady state (2.1) can be written as
Ky, q)— Vg =0.

With simple choices of gz, we have solved the above
equation numerically using Newton’s method, which

! A shear layer is an internal boundary layer where a discontinuity
in velocity is smoothed over a distance which decreases as the dif-
fusivity, «, is reduced.
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is much more efficient than time integration. Specifi-
cally we have chosen

g5=(0n— QNy—L)/2L+ Oy, (3.1

where Q, and Q; are the (constant) values of g on the
northern and southern boundaries, respectively. The
specification of gz above is the simplest possible and
it is hoped to investigate other more realistic choices
at a later date. Typical steady state solutions are shown
in Figs. 6, 7 and 8. For some choices of @, and O, the
recirculating gyre fills the whole box, while for other
choices it is confined to part of the basin. In this section
we will analyze cases where the circulation fills the
whole domain as in Fig. 6. The more complicated and
interesting case typified by Fig. 8 will be analyzed in
section 4.

In the limit of weak diffusion, outside the thin
boundary layers which are close to the solid walls, the
potential vorticity is homogeneous (Fig. 6). This is a
consequence of (2.2) in the limit of small dissipation
(see Rhines and Young, 1982, for a detailed discussion).
But what is the constant value of potential vorticity
inside the recirculation region?

This question is answered in appendix A and the
conclusion is that the constant value of potential vor-
ticity in the interior is given by

E=§q3u-dl/§u-dl,

(3.2)

JOURNAL OF PHYSICAL OCEANOGRAPHY
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where both integrals are performed along the boundary
of the domain. A detailed derivation is given in ap-
pendix A, but the physical explanation of this remark-
able result is simple. As the fluid is advected along the
streamlines, potential vorticity is diffused from
streamline to streamline. Streamwise diffusion is always
negligible with respect to advection and cross-stream
diffusion. On the other hand, cross-stream diffusion is
more effective where streamlines are closer together,

‘i.e., where the velocities are larger (Roberts, 1977;

Young, 1984). This is why, in the determination of g,
the boundary values of g contribute more where the
velocities are larger. Notice that this “velocity
weighted” average is quite opposite to a time average
which would be weighted with the inverse of the ve-
locity. Thus, perhaps counterintuitively, the places
where the fluid spends the most time contribute least
to the value of g. |

As was noted at the end of the introduction, and
illustrated for the wind-driven case in Fig. 5, the ve-
locity at the boundary is essentially determined by the
interior dynamics where potential vorticity is constant.
In the present model this is guaranteed by the extre-
mum principle which excludes shear layers. In the in-
terior region the potential vorticity is uniform and the
flow satisfies

VY +By=4, (3.3)

with boundary conditions ¢ = 0 on x = *L/a and y

. '

=—0.30

(=il D,) |
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FIG. 6. (a) Streamfunction and (b) potential vorticity for the steady state resulting from the numerical

solutlon of 2.1). Q, = —2ﬂL/3 Q; =

cm? 57, Streamfunction is in units of 8L =

ﬁL L=300km,8=2X10"cm™" s, a =03, « =243 X 10°
5.4 X 10° m?

s~!, x axis in units of L/«, y axis in units of L.

Potentla] vorticity contour interval is 0.03. Notice the presence of small closed g contours, due to small

residual time dependence.
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FIG. 7. (a) Streamfunction and (b) potential vorticity for the steady state resulting from the numerical
solution of (2.1). Q, = —B8L/3,Q,= —BL, L =300km, 8 =2 X 1072 cm™' sec™!, a = 0.3, x = 2.43 X 10°
cm? 57!, Streamfunction is in units of BL3 = 5.4 X 10° m? s™!. x axis in units of L/a, y axis in units of L.
Potential vorticity contour interval is 0.05.
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FIG. 8. (a) Streamfunction and (b) potential vorticity for the steady state resulting from the numerical
solution of (2.1). @, = BL/3, O, = —BL, L =300km, 8 =2 X 1073 cm™ s}, @ = 0.3, « = 8.1 X 10° cm?
s~!. Streamfunction is in units of 8L = 5.4 X 10° m 251, x axis in units of L/a y axis in units of L.
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= L. Using this result and the choice (3.1), the
expression (3.2) for g can be put in the form

i=[asasa-o | [ana-pn. o

This result can be generalized for any choice of g5 at
the boundary as shown in appendix B. Evaluating the
trivial integrals above yields a simple quadratic equa-
tion for ¢ with solutions:

g=(0,+0Qy)/4+ [(Qn +‘Q:)2/16 —BL(Q,— Qs)/6]l/2'
3.5)

In deriving (3.5) we have implicitly assumed that
the solution of (3.3) and (3.5)

(i) fills the whole domain and
(ii) has only one gyre.

Both of these assumptions must be checked a posteriori
by solving (3.3) and (3.5). In this way certain unphysical
roots are eliminated. This task is simplified by noting
that (3.5) gives real solutions only for certain choices
of Q., Q; and L. Actually (3.5) depends only on the
two nondimensional parameters n = Q,/6L and s = Q,/
BL, and in Fig. 9 the parabola bounding the domain
of real solutions in the (n, s) plane is shown. Notice
the symmetry around the axis n = —s. Changing n + s
into —(n + s) keeping n — s constant just reverses the
sign of g. Therefore we only need to analyze the half-
plane n + s < 0. It should be noted that (3.5) is inde-
pendent of the longitudinal scale of the basin, a. This
is due to the choice for the boundary value of g in (3.1)
which does not depend on longitude.
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FIG. 9. Parabola bounding the domain of real solutions to (3.5) as
a function of n = Q,/BL and s = Qy/BL. Inside the parabola (3.5)
has complex roots. The dashed line is at s = —1.
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As we mentioned earlier, the homogenized value of
g in the interior of the basin, given by (3.5), must be
consistent with the assumptions made to derive this
result. Specifically it must be such that the solution of
(3.2) consists of only one gyre which fills the box.
Whether this is the case or not depends on ¢ and on
the geometry of the basin, i.e., «. Therefore the choice
of a specific geometry restricts the allowable values of
g and the values of # and s for which there is one gyre
which fills the domain. In other words, deciding which
solutions of (3.4) are physical is straightforward but
tedious. There is a three-dimensional parameter space:
n, 5, and «. Even after eliminating obviously spurious
solutions, such as complex values of g, or values which
lie outside the interval (Q;, Q,), the task is beyond the
scope of this paper and probably not very rewarding.
Instead, using physical arguments, we now restrict at-
tention to a certain portion of parameter space (s = —1,
n < 1, a < 1) which is particularly relevant to the wind-
driven models, which initially motivated (2.1).

In the wind-driven models the main source of vor-
ticity for the recirculation is the western boundary cur-
rent. As the flow rushes along the streamlines sur-
rounding the recirculation it carries low values of po-
tential vorticity while dissipation acts to bring potential
vorticity back to its local planetary value. Therefore,
at the northern boundary the potential vorticity has a
value lower than the local planetary vorticity (n < 1).

At the southern boundary the recirculation is bounded

by the Sverdrup interior where relative vorticity is neg-
ligible. Therefore we have concentrated our attention
on cases where the southern edge of the box containing
the recirculation is a “shearfree” latitude, ie., Q;
= —BL. In Fig. 9 this corresponds to the line s = —1.
Figure 10 is a summary of (3.5) for the choice s = —1,

as a function of n. For n < —¥; only one solution is’

physically acceptable, for —%3 < n < 5 both solutions
are complex and finally for » > 5 both solutions are
physically acceptable. .

For example, at the point s = —1, n = =%, (3.5)
gives two roots: ¢ = —0.768L and g = —0.0738L. The
latter is clearly unphysical because it gives a value for
the homogenized g, which is outside the boundary val-
ues. Figure 6 shows the numerical steady state solution
found by Newton’s method. In this run O, = —28L/3
and Q, = —BL. The agreement with the theoretical
prediction is very good. In this case the gyre fills the
whole basin and the homogenized value for g is between
—0.738L and —0.7606L.

4. Homogenized gyre with free boundary

The case which is most relevant to the wind-driven
experiments is when the forcing provided by the po-
tential vorticity boundary condition is weak. That is,
when the values of Q, and Q; are chosen such that (3.5)
does not have real roots. A trivial example of weak
forcing is the point n = 1, s = —1 in Fig. 9, which
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FiG. 10. The real part of ¢ as a function of n calculated from (3.5)
setting s = —1. The dashed curve represents unphysical solutions (7
complex or g outside the range of boundary values). The parameter
setting used in Figs. 6, 7 and 8 are indicated by the numbers in
circles.

would correspond to the choice g = By for the bound-
ary value of potential vorticity. Clearly no gyre can
develop for this choice because no forcing is applied
at the boundary.

We have run our numerical model choosing Q,
= BL/3 and Q; = —BL. This corresponds to the point
n = Y and s = —1 in Fig. 9. In Fig. 8 we show the ¢
and ¢ fields resulting from our numerical run. There
is a narrow gyre pressed against the northern wall and
a very weak, O(x), flow filling the rest of the box. Al-
though we try to impose the scale of the gyre by spec-
ifying the box, the circulation picks its own boundary
and fills only part of the domain. The situation is il-
lustrated schematically in Fig. 11: the recirculation fills
only the portion of the basin from y; to L and south
of y, essentially no circulation occurs. Now the southern
edge of the recirculation is not a solid wall but a free
streamline and this imposes some constraints on the
flow. Specifically the tangential velocity has to be con-
stant on a free streamline y,, and in this particular
problem the constant is zero. If it were not zero, velocity
would be discontinuous at y, inducing large shears that
would violate the extremum principle.

Notice that because the tangential velocity is zero at

‘

S~

-L
-L/a

L/a

FIG. 11. Schematic picture of Fig. 8, showing the flow regimes in
different regions. South of the free streamline y = y,(x) the fluid is
at rest. North of y,(x) the fluid circulates with uniform potential
vorticity. At the free streamline, y,(x), both ¢ and Vy are zero.
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FIG. 12. Zonal velocity profile resulting from (4.3a). The minimum
velocity occurs at y — y, = (L — »,)/3 and the velocity vanishes at y
=¥ = 2L - y)/2.

the southern edge of the recirculation, the unknown
boundary value of ¢ at that location does not affect the
“velocity weighted” average (3.2). Therefore the ho-
mogenized value of g will be close to the northern
boundary value Q,, and indeed in Fig. 8, where O,/
BL = V3 and Q,/BL = —1, the homogenized value of
potential vorticity inside the gyre is g/6L = 0.3.

The condition that the southern edge of the recir-
culation, y, is a free streamline (¢ = 0 and Vy = 0)
sets a relation between the homogenized value of §and
the meridional scale of the gyre. Equation (3.2) gives
a second relation between y, and g. These two relations
determine completely the problem of finding y; and ¢
once the boundary value for g is specified on the west-
ern, northern, and eastern walls.

The solution of (3.3) in the case where the southern
boundary is an unknown streamline at which both ¥
and VY vanish is a very hard problem in an arbitrary
geometry. In the following we will obtain a simple ap-
proximate solution for gyres where the meridional scale
is much smaller than the longitudinal scale (« < 1). In
this small aspect ratio limit, and away from the eastern
and western walls, the problem is approximately one
dimensional. Thus (3.3) becomes

¥tBy=g, (4.1)

with boundary conditions ¢ = 0 on y = L, y,; and ad-
ditionally

¥,=0 on y=y,. 4.2)
Thus, we are imposing three boundary conditions on
the second-order problem (4.1). The problem has a
solution because y; is also an unknown.
The solution of (4.1) which satisfies the boundary
conditions is '
¥=—B(y—LYy—y)/6
q=B(L+2y)/3. (4.3)
In the approximation « < 1 the “average” value of
potential vorticity inside the gyre is simply given by
4= Qn,
and (4.3b) can be written as

(L—y)=3(BL— Q.)/28. “4.4)
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This shows that the width of the gyre is proportional
to the forcing, SL — Q,, applied at the northern wall,
and is independent of the size of the box.
For the simple solution (4.3) the maximum transport
is given by
Ymax = (BL— Q,)*/126°. 4.5)

Notice that 8L — Q, can be eliminated between (4.4)
and (4.5) so that the maximum transport is propor-
tional to the cube of the meridional extent of the gyre.
This result completes the analogy with the wind-driven
experiments. As the forcing increases (lower values of
g are introduced at the northern boundary) the recir-
culation gyre expands, the homogenized value of po-
tential vorticity decreases and the strength of the cir-
culation increases. Figure 12 shows the parabolic, zonal
velocity profile calculated from (4.3a). Note that the
region of westward flow is twice as wide as the region
of eastward flow. Further the maximum eastward ve-
locity is three times as large as the maximum westward
velocity. Let us now compare our theoretical prediction
for the homogenized value of potential vorticity g and
the meridional scale of the gyre (4.4) with the numerical
results shown in Figs. 7 and 8.

For the run shown in Fig. 7, Q,, = —8L/3, Qs = —f(L:
our result (4.4) gives g = —8L/3 and y, = —L, i.e., the
recirculating gyre just fills the whole basin and the
southern solid boundary is a free streamline. The result
from the numerical experiment is ¢ = —4.68L and y;
~ —L.

For the run shown in Fig. 8, On = BL/3, our pre-
diction (4.4) gives g = SL/3 and y, = 0, i.e., the recir-
culation fills half of the basin, while the numerical ex-
periment gives ¢ = 0.38L and y, ~ 0. Both experiments
are in excellent agreement with the theoretical predic-
tion.

5. Conclusions

We have analyzed a simple analytical model which
highlights some essential features of the subbasin re-
circulating gyre appearing in many eddy-resolving nu-
merical models of the wind-driven general circulation.
The characteristics of the recirculation in these nu-
merical models are: (i) the recirculation is barotropic
to a first approximation; (ii) relative vorticity is as im-
portant as planetary vorticity even where the flow is
westward; (iii) the recirculation is driven by anomalous
values of potential vorticity carried northward (in the
subtropical gyre) by the western boundary current; and
(iv) the transport exceeds the Sverdrup transport by at
least a factor of three.

In formulating our model we have assumed that the
recirculation is inertial and barotropic and we have
simplified the driving mechanism by prescribing
anomalous values of potential vorticity at the edge of
the inertial gyre. Also we have isolated our model gyre
from the Sverdrup interior by enclosing it in a box of
simple rectangular geometry and ignoring the Ekman
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pumping and any diabatic effects.” Even after these
simplifications the problem is nonlinear because rela-
tive vorticity is essential. Some progress can be made
analytically in the limit of weak diffusion. In this limit
the prescribed boundary forcing induces a flow in the
interior whose potential vorticity is uniform. Because
there is no vortex stretching this implies that relative
vorticity balances planetary vorticity in such a way as
to keep total potential vorticity constant. Thus the rel-
ative vorticity is dynamically essential even where the
flow is westward.

We have calculated the homogenized value of g
without first solving for the explicit solution. In par-
ticular, we have shown that the homogenized value in
the interior is given by the averaged boundary values
of g weighted by the boundary values of the velocity.

In the case of weak boundary forcing the gyre is
confined to a sub-basin region. This case is the most
relevant to the wind-driven experiments. For weak
forcing we can calculate the size of the recirculation
region as well as the homogenized value of q.

In the wind-driven experiments the homogenized
value of potential vorticity decreases as the forcing gets
stronger or the dissipation weakens, while the size and
strength of the recirculation increase, e.g., Figs. 3 and
4. This is exactly what happens in our model gyre: as
the northern boundary value is lowered below the local
planetary value the meridional scale of the gyre in-
creases. Specifically, (4.4) shows that the size of the
gyre is linearly proportional to the relative vorticity at
the northern boundary. At the same time (4.5) shows
that the strength of the gyre increases as the cube of
the width. For a gyre 450 km wide and 2700 m deep,
our model predicts a maximum transport of 121.5 Sv
(Sv = 10° m*s™"), which is in good agreement with the
results of the numerical model of Robinson et al.
(1977).

In all the cases presented in this work a very simple
form of boundary forcing in (3.1) has been used. Spe-
cifically the boundary condition for g is constant along
the northern boundary of the basin. Therefore our re-
circulating gyre occupies the whole basin in the lon-
gitudinal direction. On the other hand, the boundary
forcing along the eastern and western boundaries de-
creases with decreasing latitude and sometimes the gyre
occupies only part of the basin in the meridional di-
rection. Additional numerical experiments, which will
be reported in a separate paper, show that if the forcing
on the northern boundary is also decreasing in the pos-
itive x-direction then the gyre is confined to the north-
western corner of the basin. This is consistent with the
observation that in the wind-driven experiment, for
moderate values of diffusion, the gyre is separated from
the eastern boundary as in Figs. 1 and 2 (remember
that the forcing in these experiments is provided by
the western boundary current).

The “g-driven” model we have presented here can
be extended in a number of directions. For example
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different, and perhaps more realistic, boundary distri-
butions can be used to force the flow. The effects of
baroclinicity can be assessed in a straightforward way
by adding layers. Bottom drag and topography are eas-
ily included. The question that one is avoiding is how
to relate gx(s) to the boundary layer dynamics or dia-
batic processes, which one supposes are responsible for
the anomalous potential vorticity at the rim of the cir-
culation. This is an important open question that the
preceding discussion has ignored. But this is also a
strength of the g-driven model. It enables one to de-
crease the diffusivity while holding the boundary forc-
ing fixed. This is not possible in the wind-driven models
where a reduction in dissipation simultaneously
changes both the boundary layer potential vorticity
transport and the inertial recirculation produced by it.
In this wind-driven case it is therefore impossible to
perform a controlled experiment in which structure of
the nonlinear, sub-basin-scale mode is cleanly revealed.
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APPENDIX A

Derivation of the “Velocity Weighted”
Average, (3.2)

The result (3.2) holds if instead of potential vorticity
we consider the more general problem of a generic pas-
sive tracer which satisfies the advection diffusion equa-
tion

J,8)=«V’0

¥v=0, 6=205 on the boundary. (Al)

Multiplying by y and integrating over the area of the
box we eventually obtain '

fdonzw = ?\HBUB . dl.

In the limit of small diffusion, ¢ will be given by its
homogenized value § everywhere except in narrow
boundary layers close to the edge of the gyre. Therefore,
in this strongly advective limit the left-hand side of
(A2) can be approximated.

(A2)

f dAOVHY ~ 8 f dAVYY,

and (A2) becomes

(A3)

fﬂBuB- dl

fug'dl

6= (A4)
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This result is implicit in Roberts’ (1977) work. His der-
ivation made use of local coordinates to express the
dominant balance in (A1), while we prefer the integral
balance (A4) because it provides an explicit formula
for the interior homogenized value of the tracer con-
centration. The velocity weighted average (A4) is con-
firmed by the numerical experiment of Musgrave
(1985). In his work he showed that a passive tracer
satisfying (A1), in the presence of a western intensified

Aflow, would homogenize in the interior to the value on

the western boundary. Interestingly enough, the deri-
vation that leads to (A4) can be used for potential vor-
ticity, which is not a passive tracer. Because of the ex-
tremum principle the relative vorticity is bounded by
its boundary values and so is finite everywhere in the
domain, including the boundary layers. Therefore the
approximation (A3) holds for potential vorticity as well
as for a passive tracer. Moreover the velocity at the
boundary, ug, can be approximated with the interior
velocity just outside the boundary layer, and this allows
the complete determination of the homogenized value
of potential vorticity without a detailed boundary layer
solution.

APPENDIX B
How to Find ¢ without Solving for the Flow

The velocity weighted average (3.2) can be written
as

_ $ 4x(¥9)-na
” thp-ndl

Since gp is only defined on the boundary we have
the freedom of defining a function g everywhere in the
domain such that

V2¢=0 in the interior and
g = qp on the boundary. (BI)

With this choice and using Gauss’ theorem, § g
X (V) - ndl becomes | d4gV?y and the expression for
the averaged q is

i fdAg(ti —BYy)

" [as@-pn

where g is a known function, independent of , which
satisfies (B1).
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