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The adjustment of a nonlinear, quasigeostrophic, stratified ocean to an impulsively 
applied wind stress is investigated under the assumption that barotropic advection of 
vortex tube length is the most important nonlinearity. The present study complements 
the steady state theories which have recently appeared, and extends earlier, dissip- 
ationless, linear models. 

In terms of Sverdrup transport, the equation for baroclinic evolution is a forced 
advection-diffusion equation. Solutions of this equation subject to a “tilted disk” 
Ekman divergence are obtained analytically for the case of no diffusion and 
numerically otherwise. The similarity between the present equation and that of a 
forced barotropic fluid with bottom topography is shown. 

Barotropic flow, which is assumed to mature instantly, can reverse the tendency for 
westward propagation, and thus produce regions of closed geostrophic contours. 
Inside these regions, dissipation, or equivalently the eddy field, plays a central role. 
We assume that eddy mixing effects a lateral, down-gradient diffusion of potential 
vorticity; hence, within the closed geostrophic contours, our model approaches a state 
of uniform potential vorticity. The solutions also extend the steady-state theories, 
which require weak diffusion, by demonstrating that homogenization occurs for 
moderately strong diffusion. 

The evoiution of potential vorticity and the thermocline are examined, and it is 
shown that the adjustment time of the model is governed by dissipation, rather than 
baroclinic wave propagation as in linear theories. If dissipation is weak, spin-up of a 
nonlinear ocean may take several times that predicted by linear models, which agrees 
with analyses of eddy-resolving general circulation models. The inclusion of a western 
boundary current may accelerate this process, although dissipation will still play a 
central role. 
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1. INTRODUCTION 

It appears that the Sverdrup balance describes the large-scale north- 
south transport field, c! of the steady, wind-driven ocean circulation: 

where we is the Ekman divergence, because of favorable comparisons 
between observed and predicted transport (Leetma, Niiler and 
Stommel, 1977). Much of what we feel we know about the circu- 
lation of the world ocean has come from applying the above. Still, 
the Sverdrup balance is not a complete theory of the wind-driven 
circulation because it makes no statements about the vertical distri- 
bution of the transport. A theory which resolves this point has 
recently appeared (Young and Rhines, 1982; Rhines and Young, 
1982 a and b; hereafter RY a and b), the key elements of which are 
nonlinearity and dissipation. The theory is encouraging as it repro- 
duces several observed features of the North Atlantic, e.g. the 
northward migration of its deep gyre centers with depth and its 
basin-scale pools of homogenized potential vorticity (McDowell, 
Rhines and Keffer, 1982; Holland, Keffer and Rhines, 1983). To 
develop this theory, RY b solved the statistically steady, quasi- 
geostrophic equations in the asymptotic limit of vanishingly small 
eddy viscosity (i.e., large Peclet numbers for potential vorticity 
diffusion). In the present paper, their calculations are complemented 
by solving related initial value problems. The solutions will demon- 
strate the importance of nonlinearity and dissipation in the selection 
of, and the time scales of approach to, a steady state. We show that 
asymptopia is reached at rather small Peclet numbers. 

In many classical problems, the result of an inviscid spin-up 
calculation is essentially the same as the steady solution obtained 
with weak dissipation. Here, however, this is not the case. With 
realistic forcing amplitudes the problem is nonlinear, the steady 
inviscid problem is non-unique, and the spin-up, inviscid problem 
never reaches a steady state. 

The equations of motion 

Past studies of the wind-driven circulation have employed a variety 
of approximate equations (e.g. Anderson and Gill, 1975), yet most of 
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their behavior at the large scales may be deduced from the quasi- 
geostrophic equations. As discussed in RYa, quasigeostrophy ac- 
curately describes oceanic evolution on “fast”, non-climatic, time 
scales. We will employ these equations, however it is important to 
realize that by doing so, we cannot construct a theory which 
accounts for the basic state stratification; rather we linearize about it, 
and compute its perturbations due to the large scale wind-driven 
flow. Quasigeostrophy also requires that we ignore surface thermal 
structure as the theory is not equipped to handle surfacing iso- 
therms. This is not necessarily a damaging restriction as long as we 
confine our attention to the wind-driven flow. Pedlosky and Young 
(1983) and Rhines (1983) have concluded that there are many 
similarities between wind-driven gyres which are ventilated and those 
which are not. 

Flier1 (1978) has shown how the three-dimensional quasigeo- 
strophic equations can be reduced to an infinite, coupled set of two- 
dimensional equations. Each of those equations predicts the 
amplitude evolution of a vertical mode, and in total describe 
quasigeostrophic flow at all spatial scales. For our present purpose it 
is sufficient, and simplest, to use the two-mode truncation of this 
infinite set. Equivalently, the dynamics below describe large scale 
flow in a “two-layer’’ ocean. This last interpretation will be favoured 
throughout this article, although it is important to realize that our 
results, suitably interpreted, apply to an arbitrarily stratified ocean. 
On large spatial scales the two-layer quasigeostrophic equations are 

where subscripts denote the layers, ai the eddy effects in the ith 
layer. 

R,  =(g’Hl)”21fo, 

g’ = 2dP2 - P l ) M P l +  P2L 
(2) 

and Pi the pressure of the ith layer. The remaining terms are 
catalogued in Table I. We have made the additional, non-essential 
assumption that the average layer thicknesses are equal; H ,  = H ,  
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TABLE I 
Symbol definition 

______ ~~~~ 

Independent variables 
x, y 
z vertical coordinate 
t time 

Dependent variables 
a, 
ui ith layer velocity 
Pi ith layer pressure 
P barotropic pressure 
0 geostrophic contours 
p density 
pi ith layer density 
q i  
Parameters 

horizontal (East, North) coordinates 

horizontal amplitude functions from the layered model 

potential vorticity in the ith layer. 

Coriolis parameter 
North South gradient off 
average thickness of ith layer 
total fluid depth 
horizontal basin scale 
gravity 
reduced zravitv =- 

ZAP - PI) 
v ,  

(PI + P A  

= Rossby deformation radius 

Ekman pumping 
Eddy-flux of potential vorticity in the ith layer 
Scale of the Ekman pumping 
coefficient of diffusivity 
bottom drag coefficient 

- = non-dimensional radius of forcing 
L 

LJ 

= i H .  The most important simplification made in (1) is the neglect of 
relative vorticity, which is valid if UIpL2 6 1. 

This neglect “filters” the barotropic mode which translates into a 
statement that the development of the barotropic Sverdrup transport 
is instantaneous. This is reasonable physically as the barotropic 
mode propagates much faster than any baroclinic mode. 
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2. LINEAR DISSIPATIONLESS OCEAN SPIN-UP 

One technique for studying the spin-up of the wind-driven circu- 
lation, and the processes responsible for its vertical structure, is to 
solve an initial value problem. The solution picks out its own final 
configuration, which of course depends on the physical processes 
retained in the calculation. This approach has received much atten- 
tion in the past, and it is enlightening to summarize the results of 
earlier studies. 

Veronis and Stommel (1956) and Anderson and Gill (1975) 
discussed oceanic spin-up driven by an impulsively applied wind 
stress. They neglected nonlinearity and emphasized that spin-up was 
accomplished by baroclinic wave propagation. It was noted by 
Stommel(l957) that the passage of the wave confined the flow to the 
upper layer, which may be verified from the appropriate linear 
solutions of (1). Physically, the lower layer “switches off’ because the 
characteristics for the baroclinic wave, By, all strike the eastern 
boundary where there is no mass flux. Westward propagation 
communicates the no-flux boundary condition to the interior. Note 
that this process occurs in deep layers regardless of their number. On 
the other hand, the upper layer, which is directly forced, retains its 
motion, and in the steady state all the transport is confined to the 
surface layer no matter howfine it  is. 

Anderson and Kilworth (1977) considered the effects of bottom 
topography. The principle effect of this is to modify the character- 
istics by altering the fluid depth; however, because of the topography 
they chose, the interior was still everywhere joined to the eastern 
boundary by geostrophic contours. While the initial barotropic field 
is altered, the baroclinic wave eventually shuts down the lower 
layers, and the final state is exactly that of a flat-bottomed ocean. 

Continuously stratified fluids fare no better. Charney and Flier1 
(198 1) argued from the density equation that linear, dissipationless 
equations were consistent only with a motionless interior. Young 
(1981) amplified these remarks by computing a continuously strati- 
fied ocean’s linear response to an impulsively applied Ekman pump- 
ing. He explicitly showed how the successive arrival of higher order 
baroclinic modes progressively brings the subsurface fluid to rest. 
The circulation is eventually confined to a delta-function singularity 
concentrated at z = 0 where the forcing is applied. 
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Although they demonstrate the importance of wave propagation 
in oceanic adjustment, linear, inviscid, models leave the flow confined 
to the uppermost layer. When the stratification is continuous this is 
pathological. We must be suitably cautious in the interpretation of 
layered model results given the subjectivity with which the depths 
are assigned to the interfaces. We may of course invoke dissipation, 
which traps higher modes to the eastern boundary, to inhibit surface 
“jet” formation. While this softens the delta-function singularity, the 
solution is still unsatisfactory, for it is sensitive to our viscous 
parametrization. Further, evaluation of the neglected nonlinear terms 
shows them to be as large as those retained. Linear, inviscid models 
simply do not seem to possess the necessary physics to determine an 
acceptable vertical structure of the wind-driven ocean circulation, so 
we must investigate the effects of nonlinearity. 

3. NONLINEAR OCEANIC SPIN-UP: ANALYTICAL 
SO LUTlONS 

Consider now the two-layer model described by (l), which as 
remarked earlier is equivalent to a two-mode truncation of the 
infinite set which describes a continuously stratified fluid (Figure 1). 
Also, for the moment, consider the fluid to be inviscid, i.e. the eddies 
to be weak. By adding ( la)  and (1b) we obtain an equation for the 
barotropic mode, a. = P ,  + P,, whose solution in terms of we is 

where we have satisfied the eastern no-flux boundary condition. 
Similarly, by subtracting (la) from (lb), we obtain a simple equation 
for the baroclinic mode, a, = P ,  - P 2 ,  which using (3) is 

where 0 = a. + Rjfl foy defines the geostrophic contours. These con- 
tours may actually close (see RYb), and thus produce regions which 
are isolated from the boundaries. This occurs when the barotropic 
advection of vortex tube length is comparable to f l , the planetary 
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THE TWO LAYER MODEL 

FIGURE 1 The dashed line represents the thermocline for the initial resting state. 
“d” is the deviation of the interface from the dashed line, and is related to the 
difference of the layer pressures, P ,  and P,. HI and H ,  are the average thicknesses of 
each layer, and are here assumed equal. p1 and p, are the layer densities. 

potential vorticity. Barotropic flow is then strong enough to reverse 
the tendency for westward propagation and closed zones ensue. 

For example, consider 

w, = - 2pxJL, 

we = 0, otherwise, 

if x 2  + y 2  _I L;, 
( 5 )  

where L is the size of the basin and L, the radius of the forcing. we 
in (5) is that used in RYb and resembles a titled disk. a, becomes 

a, = (f&/./PH L)(L; - x2-y2), if x 2  + y 2  5 L;, 

a, = 0, if x 2 + y 2 > L : ,  

and therefore 0 is 
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where 

The 0 contours inside L, are arcs of circles centered on (O,L/2fs) 
and, if this point lies within L,, will close. To insure this, we must 
have 

which we shall take for granted. We include a plot of 0 in Figure 2. 
Note that the closed region is smaller than the forced zone, with the 
largest closed circle possessing radius L, -(L/2a), and that outside of 
L,, the contours reduce to the zonal contours of the linear problem. 
The existence of closed geostrophic contours represents the main 
effect of the nonlinearity. 

GEOSTROPHIC CONTOURS FOR A NONLINEAR OCEAN 

FIGURE 2 The region of forcing, given by Eq. (5), is marked by a dashed line, and 
is a circle of radius 300 km. The closed geostrophic contours stand out as circles in 
the center of the diagram. 
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lnviscid spin-up 

Consider the solution to (4). Outside of the closed characteristics, the 
flow evolves as in all linear problems: the boundary conditions 
eventually propagate through, shut the lower layer down, and trap 
the flow to the surface layer. Within the closed contours, however, 
we obtain quite a different behavior. Transforming to polar co- 
ordinates, (r, 4), centered on (0, L/20), (lb) becomes 

where c = f ,p/(fiH,L), whose solution is 

which never becomes steady. The initial state within the closed 
characteristics is remembered indefinitely in the absence of dissip- 
ation: the generated baroclinic wave ceaselessly circumnavigates the 
closed contours. Thus we suspect that in a nonlinear initial value 
problem, as in the steady theories, eddies are essential to choose a 
unique solution. Stommel (1957) was the first to remark on the 
importance of eddy-generated viscosity, specifically lateral Reynold’s 
stress, in stratified circulation theory. We, however, shall assume the 
principal eddy effect is the vertical transmission of momentum 
through lateral potential vorticity flux. 

The parametrization of eddy effects 

Rhines and Holland (1979) have argued that the resultant effect of 
the eddies on the large scale is the down-gradient transport of 
potential vorticity. Following them we assume that the proper 
parametrization of this phenomenon is 

i.e. lateral diffusion of potential vorticity. 
It is important to note that dissipation is necessary and this 

parametrization will determine the steady state we obtain. A different 
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mechanism (e.g. vertical density diffusion) would most likely result in 
a different final state. 

The rate of approach to the steady state will, of course, depend on 
the strength of the mixing. In any case, dissipation eventually damps 
the trapped planetary wave, and thus the unsteady solution in the 
previous section will be impossible. Including dissipation, baroclinic 
evolution is governed by 

(acx,/at)+f;'J(+@,cc,) = -- :grwp +m2CI,, 
which is an advection diffusion equation. 

An aside: topographically closed geostrophic contours 

At this point it is convenient to interrupt our description of the 
stratified circulation problem to point out an analogous homo- 
geneous circulation problem. 

Equation (8) is similar to that equation governing the circulation 
of an unstratified fluid over topography 

where P is the pressure of the fluid and A a bottom drag coefficient 
(Welander, 1969). The above may be put in the form of (8) if we 
define 

and 

and is then precisely the equation considered by Anderson and 
Killworth (1 975). The primary difference between the homogeneous 
and stratified problem is that for the homogeneous fluid we and b 
are independent [recall (6 ) ] .  

Topographic 0 contours can close although this was not con- 
sidered by Anderson and Killworth. For example, closed regions of 
f / h  are found in the vicinity of the mid-Atlantic Rise. The steady- 
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state solution to (9) may therefore be found using the same 
techniques as in R Y  a, and is given inside the closed zones by 

(Young, 1981), where the area integral is over a region bounded by a 
closed 0 contour, and n is a unit normal of the bounding curve. The 
flow outside of the closed 0 characteristics is essentially in Sverdrup 
balance and independent of A.  Note that the flow inside the closed 
regions is O( 1/A) % 1 with respect to the exterior. This is because the 
interior flow balances wind forcing against dissipation, which re- 
quires relatively large interior velocities. A similar balance holds f o r  
the baroclinic amplitude in stratified spin-up, showing t h a l  c \  cn 
rather weak eddy stresses may efficiently accelerate baroclinic Ilou 
within closed contours. The analogy is useful here, but is someuh'tt 
limited in scope. The equations lose their resemblance if more than 
two layers are included. We now return to the stratified spin-up 
problem. 

Lower layer potential vorticity 

While (8) is a simple governing equation for baroclinic amplitude, it 
is convenient to transform it into an equation for the more 
oceanographically familiar quantity, potential vorticity. This is done 
using the connection between we and 0, 

to eliminate we from (8) 

where q2 =Pf& + R: 2a1 and is the lower layer potential vorticity 
from (1). The above equation expresses potential vorticity conser- 
vation in the lower layer. The Jacobian term contains both the 
advection of lower layer vortex stretching by the barotropic flow, the 
only component of u2 capable of non-trivial advection of stretching, 
and the advection of planetary vorticity. The last term represents the 
dissipation suggested by Rhines and Holland. 
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In the present model, dynamic evolution is analogous to the 
advection-diffusion of a passive tracer, thus allowing us to interpret 
the behavior of this system kinematically. We can thus anticipate 
some features of the response of the system to the impulsively 
applied wind stress of (5 ) .  The contours of potential vorticity in the 
lower layer, initially by, will get wrapped around by zo, the 
barotropic flow. Combatting the twisting of the contours is the 
diffusion of potential vorticity which “reconnects” the geostrophic 
contours after they are broken at the outermost closed @-contour. 

4. NONLINEAR OCEANIC SPIN-UP: NUMERICAL 
SOLUTIONS 

Scaling 

We consider the given scales to be the basin width “L”, the size of 
the Ekman divergence, p, and the environmental parameters fo, P, 
and H .  x and y are scaled by “L” and the barotropic mode by the 
Sverdrup balance 

where the * denotes that a, is nondimensional. This scaling is also 
used for the baroclinic mode. The geostrophic contours, 0, are 
scaled by PL, and time by L(PR$)-’, which is the time necessary for 
a long baroclinic wave to transit the basin, about 400 days. The 
non-dimensional form of (8) is (dropping *’s) 

where 

@ = y + (Ta,, 

and 

The nondimensional form of q2 is 
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92 = y + aa,. 

The explicit form of we is 

we = - 2x, 

and of a. 

CIO = ( y  2 -x2 -y2), y= L,/L. 

The condition for closed contours is 

Using L = 1000 km, HI = 500 m (reflecting our interest in the wind- 
driven gyres above the main thermocline), and typical values for the 
remaining parameters, a-O(1). We have used a value for 6 of 0.01. 
Note that although 6 is indeed small, the effective Peclet numbers, 
based on gyre diffusion and transit times, range from O(10) to 0(1), 
or from conditions where the transit time around the gyre greatly 
exceeds that necessary for cross-gyre diffusion, to those where the 
two are comparable. Thus, we consider cases with weak to moderate 
diffusion. 

Equation (12) was solved using a pseudo-spectral technique of the 
type outlined in Gottlieb and Orszag (1971). With an efficient fast 
Fourier transform algorithm, the advantage of this method is that 
the nonlinear terms are evaluated in physical space and transformed 
to spectral space, thus avoiding costly explicit convolutions. Many 
other advantages of spectral solutions of partial differential equations 
have been outlined elsewhere [Orszag and Israeli (1974), Haidvogel 
(1977), Haidvogel and Rhines (1982)], the most important of which 
include their rapid convergence (of so-called “infinite order”) and 
zero phase error for resolved waves. 

For the present problem, we used a doubly periodic domain, and 
therefore the double Fourier expansion, 

for all variables. We have also employed a semi-implicit centered 
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leapfrog time step evaluating the viscous terms at the immediate 
future and immediate past times to insure stability (Roache, 1977). 
Integration was initiated using an Euler time step, and the com- 
putational mode (Haltiner, 1972) was suppressed by using an Euler 
time step at every 50th iteration. We used grids corresponding to a 
physical basins of 2000 km x 2000 km, 2560 km x 2560 km, and 
2560 km x 2000 km. Further information about the various runs is 
given in Table 11. 

TABLE I1 
Numerical experiments. 

Expt. no. c y 6 6 X  6 y  6t Basin size Duration 

1 10 0.2 0.05 31.25 31.25 19 2000x 2000 2.2 
2 5 0.3 0.01 31.25 31.25 43 2000x 2000 2.2 
3 5 0.4 0.01 20.00 20.00 19 2560 x 2560 0.5 
4 5 0.4 0.01 20.00 31.25 19 2560 x 2000 3.5 

The parameters u, 7, and 6 are non-dimensional, 6x and 6 y  are in kilometers, 6t is in hours, basin sire in km, 
and duration in years. 

In Figures 3 and 4, we plot a sequence of diagrams which typify 
oceanic spin-up. In Figure 3 we catalog baroclinic evolution, and in 
Figure 4 the time history of potential vorticity. Recall that the 
displacement of an interface can be related to baroclinic amplitude; 
hence, Figure 3 contains information about the thermocline. Figures 
3a-d and f come from an experiment with o= 10 and y =0.2, while 
Figure 3e is characterized by o = 0.5 and y = 3. Figure 4 comes from 
the same experiment as Figure 3e. 

The principle features in Figure 3 are the rotation of the thermo- 
cline structure within the closed characteristics and the westward 
propagation of the wave on the open characteristics. The thermo- 
cline responds by forming a low pressure center (elevation) in the 
western half of the forced zone, where the Ekman pumping is 
directed upward, and a high pressure center to the east. We may 
think of the advection as moving the western (eastern) columns in 
the lower layer to the north (south) where they must lengthen 
(shorten) in order to conserve their potential vorticity. The defor- 
mations of the thermocline are not, however, advected by the flow. 
This is evident in Figure 3b which shows the thermocline one-half 
revolution after initialization. The structure intensifies as time pro- 
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gresses (compare Figures 3a and 3d). Were this calculation inviscid, 
the centers would rotate indefinitely and the amplitude of the 
pressure extremes would oscillate. Lateral potential vorticity diffu- 
sion, however, halts the rotation so that the thermocline asymptotes 
to states like those in Figures 3d and e. The main structure inside 
the closed characteristics consists of a linear deepening of the 
interface from north to south. In Figure 3e this is sufficient to cancel 
the By contribution to the lower layer potential vorticity, thus 
producing a pool of homogenized q. Note that in Figure 3e, the 
rotation of the thermocline is not quite as pronounced. A perspective 
plot of the thickness of the upper layer from Figure 3d is contained 
in Figure 3f and shows that the deepest penetrations of the 
thermocline occur in the southeastern quadrant and the shallowest 
in the northwest. The corresponding picture for Figure 3e would 
look quite similar. 

Comparable plan and perspective views of q2 are shown in Figure 
4 [rotation period of 1.2 time units (480 days)]. The by contribution 
to the potential vorticity appears as the zonal stripes in the plan 
views and as the ramp in the perspective plots. The near conser- 
vation of q implies that its isolines will be swept around the closed 
characteristics by 0. This is implicit in Figure 4b which is roughly 
one-half rotation period after initiation. Outside of the closed 
characteristics, fluid simply moves along the geostrophic contours 
with some slight diffusive modification occurring mostly west and 
north of the forced zone. As the inner contours are wrapped around, 
diffusion eats away the structure until the final well-mixed state is 
achieved. This is reflected in Figure 4h by the plateau in the p- 
hillside. 

It is instructive to comment more fully on the differing results 
from the two experiments in Figure 3. The primary contrast between 
them occurs in Figures 3d and e, where we note that the thermocline 
is oriented in different directions. In Figure 3e, the thermocline is 
distorted sufficiently so as to homogenize q; a situation which 
obviously does not occur in Figure 3d. We can understand this 
result in terms of the Peclet numbers which describe these experi- 
ments. The Peclet number, defined as r2a/27d (essentially gyre 
diffusion time divided by circulation time), where r is the radius of 
the largest closed geostrophic contour, is 0.75 for Figures 3a-d 
(y = 0.2) and 3.2 for Figure 3e (y = 0.3). Thus the y = 0.2 experiment is 
more diffusive than the y = 0.3 experiment, which homogenizes. The 



184 W. K. DEWAR, P. B. RHINES AND W. R. YOUNG 

012 

FIGURE 3 Figures 3a-3e represent a typical sequence for an adjusting thermocline. 
Figures 3a-d are from an experiment with c= 10 and y=0.2. The disk of non-zero 
forcing is of radius 200km. A time unit corresponds to 400 days and one rotation 
period of the closed characteristics is 240 days. The diffusivity parameter 6 is 0.05, and 
the plots are at times 40 days (a), 160 days (b), 320 days (c), and 480 days (d). Figure 
3e is from an experiment with ( r = 5  (rotation period of 480 days), and y=0.3 
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1 -.03 

(31) 

THE EVOLUTION O F  THE THERMOCLINE 

(L,=300km), and corresponds to a time of 600 days. Finally, we present in "f" a 
perspective view of the upper layer thickness from the experiment of Figure 3 a 4 .  
(f) corresponds to (c), a time of 320 days. The perspective is that of a viewer looking 
towards the east at, and slightly down on, the interface. The Peclet number of Figure 
3a-d is 0.75, while that of Figure 3e is 3.2. 
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THE POTENTIAL VORTICITY OF THE LOWER LAYER 

FIGURE 4 a=5, and y=0.3 (or a rotation period of 480 days and a forced zone of 
radius 300 km). The plots are from times 40 days, (a), 240 days (b), 360 days (c), and 
520 days (d). Directly under them in “e” through “h” are perspective views of the 
same information. The perspective is that of a viewer looking slightly down on the 
z=O plane from the south-west toward the north-east. 
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stronger the diffusion, the more effect the external f ly  potential 
vorticity has on the interior steady-state q, until homogenization 
becomes impossible. It is interesting that q is homogenized in the 
y = 0.3 experiment (Peclet number = 3.2). Here diffusion is moderate 
and yet, for this particular, simple streamline pattern, homogeniz- 
ation still occurs. Obviously, the drive for homogenization is power- 
ful, holding down to Peclet numbers of order one. 

Continuing with Figure 4, the disturbance outside of the closed 
contours propagates as a nondispersive planetary wave at a speed of 
flRj. After 520 days (Figures 4d and 4h), it has traversed a little 
more than one non-dimensional spatial unit, or dimensionally 
1000km. Note also that the q appears to exit the closed zone in the 
northwestern quadrant, where there is an effective stagnation point. 
This point is located at the spot where eastward barotropic advec- 
tion exactly matches westward f l  propagation; it is at this point in 
our fixed frame that the 0 velocity identically vanishes. Potential 
vorticity is actually diffusing out of the closed zone all along the 
limiting contour. We notice it in the northwestern quadrant because 
the external flow sweeps first south and west and then north and 
west around the closed zone, and concentrates the diffused potential 
vorticity near the stagnation point. 

These figures show that with nonlinearity and dissipation we 
obtain a solution which approaches a steady state. Although the 
final state depends on the down-gradient mixing of q, the well mixed 
potential vorticity pool arrives at a value determined by the exterior 
q field and is therefore independent of the actual value of the 
dissipation coeJficient. These features of the current model were 
lacking in the linear and/or inviscid models mentioned earlier. 

One of the important implications of these experiments concerns 
the time scale, z, of oceanic spin up. The z’s suggested by the linear 
initial value problems mentioned earlier depended essentially on the 
transit time of baroclinic waves, which in the present experiments 
corresponds to a non-dimensional time span of 1 (400 days). In 
Figure 5,  we show q plots from an experiment in which it is quite 
evident that the ocean is still in a period of transition after two non- 
dimensional time units have elapsed. While baroclinic propagation is 
obviously a major feature of the time-dependent solution, other 
effects are responsible for the transition to a steady state. 

Recalling that the area inside the closed regions is in solid body 
rotation, the last few plots of Figure 5 demonstrate that the eddy 
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flux of q is the important process in the approach to steady state of 
the present model. It is clear that the q inside the gyre is being eaten 
away by diffusion, so that by time 2.4 we are no longer able to 
distinguish any structure. This numerically computed spin-up time is 
in excellent agreement with that time necessary for diffusion to 
penetrate a distance r to the center of the closed zone 

The nondimensional radius of the closed 0 region in Figure 5 is 
(0.3), and 6=0.01; thus, T,=2.25. Similar agreement was found for 
all the experiments listed in Table 11. 

Possible effects of shear 

The barotropic advection field in these experiments is in some ways 
rather special. The Ekman pumping produces a barotropic flow 
which rotates uniformly, and is unable to augment the dispersal of q 
as would occur if the flow had a non-trivial shear (Taylor, 1953). It 
is therefore useful to determine how the effects of shear might 
influence our results. 

We show in Figure 6 an experiment on the advection and 
diffusion of a passive tracer in a sheared velocity field. The evolution 
of the tracer patch is governed by (11). The primary difference 
between this experiment and the previous ones is that the initial 
distribution for the tracer is a Gaussian, which differs from the initial 
planetary distribution of potential vorticity, By. Otherwise, this 
experiment is useful for demonstrating how more complicated or 
realistic wind stress distributions might affect spin-up. The stream 
function, 0, in Figure 6 is given by 

and possesses closed characteristics (see Figure 6a). The center of the 
closed area is in solid body rotation; however, as we move towards 
its flanks, the velocity field develops strong shear. 
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THE TIME-SCALE OF ADJUSTMENT 
FIGURE 5 u = 5  and y=0.4 (rotation period 480 days and radius of forced zone of 
400km). “a” corresponds to 480 days, “b” to 880 days, “c” to 920 days, and “d” to 
960 days. With respect to the resolution of these diagrams (contour interval=0.02) all 
structure is lost at time t=960 days which agrees well with the diffusive time scale of 
900 days. The Peclet number here equals 9. 
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t=  14 days 

(dl  

THE EFFECT OF SHEAR O N  PASSIVE SCALAR DIFFUSION 
FIGURE 6 The governing equation was (12) with b=0.04, w,=O, and the advection 
field 0 as shown in "a". The initial condition for the scalar was chosen to be a delta 
function located within but near the edge of the trapped zone. The evolution of the 
scalar is shown in "b" through " d .  The circulation time of the trapped zone is 2 days. 
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The dispersant is rapidly homogenized on those streamlines near 
the edge, i.e. where the flow is strongly sheared. Indeed, this spread 
along streamlines turns out to be the primary effect of shear- 
augmented dispersion. Diffusion causes the material to spread across 
the streamlines, and then differential velocity accelerates its transport 
along them. Because these streamlines are closed, the marked fluid 
returns to its initial point with the tracer having been wrapped 
around the contours in the process. Isolated bits of tracer are 
“averaged” around the streamlines in this manner. Rhines and Young 
(1983) have argued that the time scale of this smoothing for gyres 
without western boundary currents is given by: 

T,= (Lf - ) (UnL,)li3; 

which in our case is substantially faster than diffusion time. 
The initial condition q = by, when combined with a north-south 

symmetric advection field such as we are using, is in some ways 
doubly special. The “average” q on any streamline is independent of 
the streamline; thus, when shear dispersion is in operation the 
homogenization of the entire closed region will occur, almost by 
default, in an averaging time. This also characterizes the experiments 
of Weiss (1966) and Moffatt and Kamkar (1983). It is doubtful 
however that the ocean is characterized by this rather special 
configuration, with a wind field and ambient potential vorticity 
related such that the average q over any geostrophic contour is the 
same. If this special relationship is broken, the shear-dispersion 
averaging process, which will still operate, will not entirely homogen- 
ize the region, but only average the q around streamlines. 

An example of this is given in Figure 6. We still see structure in 
the tracer field towards the end of the experiment. At the flanks of 
the trapped zone, very little of that structure occurs along the 
streamlines. In that state, shear dispersion is disabled. Further 
evolution of tracer field, including its eventual homogenization 
across the streamlines, will occur by diffusion. Thus gyres without 
boundary currents have a rapid adjustment phase, intermediate 
between the diffusion time and the advection time, and then a slow 
phase of mixing across streamlines, requiring a diffusion time. 
Estimates (Young, 1983) suggest that boundary currents can act as a 
“mixing valves” and homogenize tracers much more rapidly. 
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5. SUMMARY 

In the present paper, we have studied a nonlinear model of the spin- 
up from rest of a stratified ocean subjected to an impulsively applied 
wind stress. The unnatural constraint on the wind that it input no 
net potential vorticity at any latitude removes the need for western 
boundary layers. 

The essential ingredients in the present model are the nonlinear 
interactions of the barotropic and baroclinic modes and the dissip- 
ation. Nonlinearity, equivalent to barotropic advection of vortex 
tube length, affects the ambient potential vorticity of the lower layer. 
For realistic wind strengths, this effect can overcome the tendency 
for westward propagation due to planetary vorticity and produce 
regions of closed geostrophic contours. Since the characteristics, or 
paths of wave propagation, for these regions do not strike lateral 
boundaries, the no-flux conditions there do not determine the lower 
layer flow. Rather, as the flow evolves, the baroclinic wave is trapped 
within these contours and diffusion becomes essential for the produc- 
tion of a steady state. Our particular choice for dissipation assumes 
that the eddies effect a lateral diffusion of potential vorticity, hence, 
our solutions approach the state of uniform q predicted elsewhere 
(RYa). We have also shown that homogenization occurs well into 
the range of moderate dissipation. We stress that a different dissipat- 
ive mechanism would lead to different results. 

Finally, the time scale for spin-up was shown to depend on 
dissipation. This view differs from that suggested in linear models, 
where the transit time for the baroclinic wave was the lapse 
necessary for the ocean to adjust. Dissipation, or the eddy field, is 
generally considered weak; therefore, spin-up time should exceed that 
necessary for baroclinic wave propagation. Holland (1 982), using 
eddy resolving circulation models, has found spin-up times of 
roughly 10 years. The present model, using somewhat smaller basins, 
requires anywhere from 1 to 4 years. We have also discussed the 
implications of our uniformly rotating advection field and have 
argued using numerical examples that the inclusion of shear disper- 
sion does not alter the basic results of this paper. The fundamental 
difference between our results and those in the most general problem 
is that the intermediate stage of spin-up is characterized by a rapid 
adjustment to a state of homogenous q on streamlines. Once the 
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potential vorticity is pinned to the streamlines, the homogenization 
of q across streamlines proceeds only by diffusion, unless, of course, 
the initial q distribution is uniform when averaged about streamlines, 
or boundary layers are present. 
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