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The dynamics of a one-dimensional gas of inelastic point particles is investigated. To model 
inelastic collisions, it is supposed that the relative velocity of two colliding particles is reduced 
by a factor r, where 0 < I < 1. The constant r is the coefficient of restitution. Because the 
collisions are inelastic, particles can collide infinitely often in finite time so that the relative 
separations and velocities of adjacent particles on the line become zero. The minimal example 
of this “inelastic collapse” requires r < 7 - 4~3 =: 0.07 18. With this restriction, three particles 
condense into a single lump in a finite time: The particle in the middle is sandwiched between 
the monotonically converging outer particles. When r is greater than 7 - 4fi, more than three 
particles are needed to trigger inelastic collapse and it is shown that r is close to 1 the minimum 
number scales as - ln( 1 - r)/( 1 - r). The simplest statistical problem is the “cooling law” of 
a uniformly excited gas confined between inelastic boundaries. A scaling argument suggests 
that the mean square velocity (the “granular temperature”) of the particles decreases like I - ‘. 
Numerical simulations show that this scaling is correct only if the total number of particles in 
the domain is less than the number required to trigger collapse (e.g., roughly 88 if r = 0.95). 
When the number of particles is much greater than this minimum, and before the first collapse, 
clusters form throughout the medium. Thus a state with uniform particle density is unstable to 
the formation of aggregates and inelastic collapse is the finite-amplitude expression of this 
instability. 

I. INTRODUCTION 
Consider an ensemble of inelastic point particles, all 

with the same mass, moving on a line. We suppose that the 
collisions conserve momentum but dissipate kinetic energy. 
Thus the velocities after a collision, u; and us, are related to 
the velocities before collision, u1 and u2, by 

u;=jt1-m, +:(l+r)U2, 
(1) 

U;=f(l+‘)U, S$(l-IL)&. 

Here, O<r<l is the coefficient of restitution, i.e., 
U; - u; = - r(u, - u2 >. If r = 1, the collisions are per- 
fectly elastic and the system is the classical, one-dimensional 
perfect gas. If Y = 0, the collisions are perfectly inelastic and 
we recover the system studied in Ref. 1. In between these two 
extremes, the system is a simple model of a one-dimensional 
“granular medium.” 

Reference 2 is a clear discussion of the physical basis of 
continuum approximations for granular media and Ref. 3 is 
a recent review. The study of granular media is motivated by 
a variety of astrophysical,4 geophysical,5*6 and industrial’** 
problems. Elegant experiments with vertically vibrated 
granular layers provide unusual examples of pattern forma- 
tion.’ 

The one-dimensional idealization is a nontrivial adjunct 
to these more realistic studies and has recently been investi- 
gated in Ref. 10. One surprising result of this work, arrived 
at independently by us, is that, with the inelastic dynamics in 
Eq. ( 1 ), it is possible for an infinite number of collisions to 
occur in a finite time. l”*ll Thus the relative velocity (and the 
separation) between adjacent inelastic particles can go to 

zero in finite time. We refer to this as “inelastic collapse,” 
and in Sec. II, we study the phenomenon in more detail, 
paying particular attention to the elastic limit, r--t 1. We find 
that, as r becomes close to 1, inelastic collapse requires a 
number of particles that increases indefinitely. Thus the per- 
fectly elastic case is a singular limit. 

Section III discusses the simplest problem in the kinetic 
theory of granular media, viz., the cooling of a uniformly 
excited gas confined between inelastic walls.’ This problem 
was used in Ref. 2 as a pedagogical example and a simple 
scaling argument, which we recapitulate, suggests that the 
mean square velocity decreases ultimately as f - ‘. Our nu- 
merical simulations show that the scaling argument needs 
some qualifications in one dimension. The t - ’ law applies 
unequivocally only if the number of particles in the gas is not 
large enough to trigger inelastic collapse (e.g., less than 16 
when r = 0.8 and less than about 88 if r = 0.95). 

Finally, in our conclusion, we speculate that inelastic 
collapse, and the associated velocity correlations, occur in 
higher dimensions. It is possible that these are related to the 
development of “inelastic microstructure” observed in two- 
dimensional simulations of granular flo~.‘~*‘~ And the sin- 
gular nature of the limit r+ 1 points to difficulties with kinet- 
ic theories that draw an analogy between inelastic particles 
and molecules. 

II. INELASTIC COLLAPSE 

In this section, we document a phenomenon that is cen- 
tral to the statistical mechanics of a one-dimensional inelas- 
tic gas. We show that it is possible for inelastic particles to 
collide infinitely often in finite time. Because relative veloc- 
ities approach zero exponentially with the collision number, 
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and the number itself becomes infinite, a group of adjacent out of the octant defined by U, > 0, u2 > 0, and u3 < 0 and so 
inelastic particles acquire exactly the same velocity in finite the group disperses. But the number of collisions required to 
time. In addition, the interparticle separations also vanish rotate u through an order one angle scales as 
completely. Of course, this is what happens when two per- (r- rc) - *‘2> 1, and the three particles separate very slow- 
fectly inelastic particles’ (r = 0) collide. Thus, even when r ly when r slightly exceeds r,. These analytic results were 
is nonzero, inelastic particles have a collective dynamics that confirmed by numerical simulation of the three-particle 
is, in a sense, perfectly inelastic. problem. 

A. Inelastic collapse with small numbers of particles 

The simplest example of inelastic collapse requires 
r< 7 - 4fi~O.0718 and involves just three particles, as 
shown in Fig. 1 (a). The two outer particles move monotoni- 
cally toward each other and the one in the middle bounces to 
and fro in between. Because there are an infinite number of 
collision in finite time, the three particles condense into a 
single lump. 

One can easily show that, after the two collisions in Fig. 
1 (a) the relation between the final and initial velocities is 
u’ = -&II, where UE (ul ,u2,u3 ) T and &Y is a 3 X 3 matrix 
whose entries are quadratic polynomials in r. For collapse to 
occur, this matrix must have a least one real eigenvalue in the 
interval (0,l ), so that the cycle in Fig. 1 (a) endlessly re- 
peats, but with geometrically smaller space and time scales 
in each successive cycle. This is the case when 
r < r, s 7 - 4KX When r is slightly greater than r,, the rel- 
evant eigenvalue becomes complex with an imaginary part 
proportional to (r - r, ) 1’2. This means that u rotates 
through a small angle after each cycle and eventually passes 

When r is greater than 7 - 4v”J, inelastic collapse re- 
quires the collective participation of more than three parti- 
cles. Figures 1 (b)-1 (d) show two particles colliding with an 
inelastic wall (because of symmetry, this is equivalent to an 
interaction between four inelastic particles). When 
r > 0.346 015, there is “quasispecular” reflection [Fig. 
1 (b) ] in which the inner particle bounces off the wall twice. 
When r = 0.346 015, the inner particle is stationary after its 
second collision with the outer particle [Fig. 1 (c)l. If r is 
less than 0.346 015, then the inner particle bounces three (or 
more, as r decreases) times before it escapes from the wall. 
Finally, in Fig. l(d), when r<r,E3 -2flzO.171 57, the 
two particles collapse on the wall in finite time, i.e., there are 
an infinite number of bounces in finite time. And again, 
when r slightly exceeds r,, the number of collisions required 
to disperse the four particles scales as (r - rc ) - ““$1. 

The critical coefficient of restitution for four-particle 
collapse, r, = 3 - 2~2, was also given in Ref. 10. Both our 
calculation and that of Ref. 10 used the matrix method out- 
lined at the beginning of this section. 

6. Inelastic collapse with large numbers of particles 
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FIG. 1. Schematic examples of particle world lines (position, x, as a func- 
tion of time, t). (a) Three particles collapse. Provided that r < 7 - 4~3, the 
two outer particles will keep moving together while the inner particle 
bounces back and forth in the middle. (b) Two particles bouncing off an 
inelastic wall when r> 0.346 015. In this case, the inner particle collides 
with the wall twice. There is another collision between the two particles 
(not shown in this figure) at larger times. (c) At the critical value 
r = 0.346 015 shown in this figure, the inner ball is stationary after its sec- 
ond collision with the outer ball. (d) When r< 3 - 2\rz, the two particles 
collapse on the inelastic wall, i.e., there are an infinite number of collisions 
in finite time. 
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As the coefficient of restitution r increases toward 1 so 
that the gas becomes more elastic, the number of particles 
required for collapse increases. For instance, with r = 0.8, 
we find that N = 16 particles bouncing off an inelastic wall 
collapse in finite time, but N< 15 particles do not. 

Figure 2 shows the position-time trajectories of N = 14 
and iV= 15 particles as they collide with an inelastic wall 
located at x = 0. We use a “domino” initial condition in 
which the N - 1 particles closest to the wall are almost sta- 
tionary and then the outer particle crashes into the end of the 
chain with u = - 1. 

An important distinction between N= 14 in Fig. 2(a) 
and N = 15 in Fig. 2(b) is the direction of the particle fur- 
thest from the wall at t = 4. In Fig. 2 (a) the outer particle is 
moving away from the wall, while in Fig. 2(b) it is moving 
toward the wall. In the former case, the whole group is dis- 
persing slowly. In the latter case, there is another medley of 
collisions at around t = 15.3, when the outer particle crashes 
into the bunch of 14 particles near the wall for the second 
time. However, this second burst of collisions does not pro- 
duce inelastic collapse, and at t = 16, after 12 500 collisions, 
all 15 particles are moving away from the wall with very 
small velocities. This information is summarized in Fig. 3, 
which shows the number of collisions as a function of time 
for calculations with N = 14, 15, and 16 particles. 

We believe that N = 16 is the minimum number of par- 
ticles required for collapse when r = 0.8. Thus, in Fig. 3, the 
dotted curve, labeled 16, rises forever at about t = 9.0. In 
practical terms, we stopped the calculation after 411 500 
collisions when the particle velocities were of order 10 - 64. 
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FIG. 2. Particle world lines for two calculations with Y = 0.8. To emphasize 
the particle identities, every second world line is dashed. (a) A cushion of 
13 stationary particles is struck by a rapidly moving particle at t-0.6. This 
triggers a collision wave that passes through the cushion and reflects off the 
inelastic wall at x = 0. The collision wave passes back through the cushion 
and reaches the outer particle at about t = 2.2. The outer particle is left 
moving slowly away from the wall after the wave hits it. (b) This calcula- 
tion differs from that of part (a) because the cushion now has 14 particles. 
At t = 4 the outer particle is still moving toward the wall and so it collides 
with the cushion again at about t= 15.3 (not shown). 

At this time, both the outermost particle and the center of 
mass are still moving toward the wall. 

An analytic estimate of the minimum number of parti- 
cles required for collapse when YZ I is of interest. In Ref. 10, 
this minimum number of particles, Nmi, (r), has been esti- 
mated using an “independent collision wave” (ICW) ap- 
proximation. We use the notation 

p=(l fr)/2, q=(l -r)/2 (2) 
in terms of which the ICW estimate” is 

Nmi, (r) m-/2q as q-to. (3) 

In Sec. II D we present an alternative estimate of Nmi, (r) 
(the “cushion model”), which leads to 

Nmi” (r) zln(2/q)/2q as q-0. (4) 

Our numerical simulations support Eq. (4) when r--r 1 and 
we conclude that the ICW approximation is inaccurate in 
this elastic limit. However, in the complementary limit r-+0, 
the ICW becomes exact-it reproduces the earlier expres- 
sions for r, with N = 3 and N = 4. From a number of simula- 
tions, it seems that the ICW approximation is accurate when 

FIG. 3. Number of collisions as a function of time for three calculations. 
The curves labeled “14” and “15” refer to the simulations in parts (a) and 
(b) of Fig. 2. In both of these cases, the particles eventually disperse and the 
total number ofcollisions is finite. By contrast, the curve labeled “16” sum- 
marizes a calculation in which a cushion of 15 stationary particles is struck 
by a rapidly moving particle. In this case, inelastic collapse occurs at f-9.0. 

0 < r < 0.8, but by r = 0.9 it begins to fail. 
Notice that, when r = 0.8 (q = 0. 1 ), Eq. (3) gives 

Nmin (0.8) z 15.71 and Eq. (4) gives Nmi, (0.8) ~14.98. We 
indicated above that the numerical simulation gives 
Nmin (0.8) = 16. Thus one must go to smaller values of q, 
and larger numbers of particles, to distinguish between Eq. 
(3) and Eq. (4) and to reach the asymptotic regime. 

The results from a series of calculations are summarized 
in Table I. In these simulations the Nparticles were project- 
ed at the inelastic wall as a “parallel beam.” Thus, in the 
initial condition, all N particles are equally spaced and have 
the same velocity ui = - 1. (Actually, to avoid the coding 
problems, the velocities were perturbed from - 1 by adding 
increments of 10 - 6. ) 

Table I shows that, when r = 0.9 and N = 36, the group 
disperses after 6.14~ 10” collisions and the final mean 
square velocity is 4.58~ lo-“. Notice that the ICW esti- 
mate in (3) predicts that collapse should have already oc- 
cured at N = 32 or 33. In fact, we fmd that it is when N = 37 
that the collision number increases indefinitely in finite time, 
i.e., the threshold for inelastic collapse has finally been ex- 
ceeded. We stopped the simulation after 9.3 X 10’ collisions 
and at this time the outermost particle (and many others) 
were still moving toward the wall. The very small kinetic 
energy (compared to that left in the dispersing cluster with 
N = 36) suggests that the addition of an extra particle has 
resulted in a qualitative change in the dynamics. The iinal 
column of the table shows that Nmi,, (0.9 ) is accurately esti- 
mated by Eq. (4). 

C. The effect of initial conditions 
We were troubled by the possible effect of initial condi- 

tions on N,i” (r). To address this point we experimented 
with three different initial conditions: - 
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TABLE I. A summary of the numerical calculations. In each block of en- 
tries, we show the number of collisions required for a beam of Nparticles 
impinging on an inelastic wall to eventually disperse at that value of r. In the 
last line of each block, the number of collisions required for dispersion is 
certainly greater than the number indicated. This is our numerical estimate 
of N,,,, (r). The sudden drop in Uz (relative to the penultimate entry) 
shows that there has been a qualitative change in the dynamics. An excep- 
tion is the final block (r = 0.95) where the collision numbers were too large 
to allow a conclusive check of Bq. (4). 

r N Collisions ln(2/q)/2q 

14 2.68 x 10) 
0.8 15 9.93 x 10’ 

16 >4.ox 105 

20 1.65X IO4 
0.85 21 3.45 x lo4 

22 ,1.68X 106 

33 6.72X 10’ 
34 1.43x lob 

0.9 35 3.01 X lo6 
36 6.14x 10’ 
37 7 9.3x 10’ 

44 1.5x 10’ 
46 6.58 x 10’ 

0.92 47 1.35X 10” 
48 3.08 x 10’ 
49 ,2.0X IO9 

60 6.85X IO’ 
0.95 65 1.31x10’ 

70 3.07X 10s 

1.35X lo- ” 
3.26x IO-‘* 14.98 
< lo- ‘IS 

2.38X 1O-9 
1.14x 10-x 21.89 
< 10-20’ 

2.41X10-” 
9.53x10-’ 36.89 
2.13X lO-7 
4.58x lo- ” 
< lo-‘a 

1.49x 10-6 
2.51X10-’ 48.90 
6.43x10-* 
7.11x10-” 
<lo-” 

9.51x10-s 
7.50x lo-6 87.64 
4.15x10-$ 

(a) the “domino” configuration shown in Fig. 2; 
(b) the “parallel beam” summarized in Table I and de- 

scribed above; 
(c) an ensemble of 100 “random beam” simulations. 

We have already indicated in our discussion above that both 
(a) and (b) led to the conclusion that Nmi, (0.8) = 16. In 
case (c), we took 100 different initial conditions, with posi- 
tions uniformly distributed between 0 and 1, and velocities 
uniformly distributed between - 0.1 and - 1.1 (to ensure 
all particles were moving toward the same wall). All simula- 
tions ran until either t = 100 or the collision count exceeded 
4~ 10’. With r=== 0.8 and N= 15, all 100 realizations 
stopped at t = 100 and at this time the mean square velocity 
defined in the fourth column of Table I, U2, ranged from 
10m3’ to 10-r’. The number of collisions was between 
8X lo3 and 1.6~ 104. But with r = 0.8 and N= 16, all 100 
runs were halted because the collision count reached 4~ 105. 
At this point all 100 realizations had U2 < 10 - lo’. Thus the 
threshold for inelastic collapse is not sensitive to initial con- 
ditions. 

D. The cushion model 
To motivate our approach to the estimate of Nmin in Eq. 

(4) we refer to Fig. 2 and consider a “domino” initial condi- 
tion in which N - 1 balls are initially stationary and the Nth 
ball collides with the end of the chain and triggers the colli- 
sion wave, which then passes through the assembly and re- 

flects from the wall. The collision wave passes back through 
the chain and when it reaches the end it leaves the last ball 
either moving away from the wall [Fig. 2(a) with N = 141 
or toward the wall [Fig. 2 (b) with N = 151. 

Our assumption is that the N,i, (r) can be estimated by 
requiring that this last ball is moving toward the wall after 
the arrival of the reflected collision wave [Fig. 2(b) with 
N = 15 1. Thus the inner N - 1 balls act as a “cushion” for 
the outermost ball. Actually N = 16 balls are needed for col- 
lapse SO that the cushion model does not lead to a precise 
value of Nmi, (0.8). But the results in the final column of 
Table I indicate that the estimate is accurate as r-* 1. 

We now calculate the critical number of balls required 
for collapse using the cushion model. We suppose that there 
are N balls and that positive velocities are directed toward 
the wall. Before any collisions occur 

u1 = 1, “, = gJ3 = * * ’ = UN = 0, (5) 
and then after the first collision u, = q, u2 = p, and all of the 
other velocities are still zero, i.e., the collision wave is now at 
ball 2. It is now straightforward to follow the collision wave 
through N - 1 collisions so that 

0, =P n-‘q ‘(n<N- l), UN ==pN-l. (6) 
Note that, at this stage, the collision wave is at ball Nso that 
the next interaction is with the inelastic wall. 

When ball N reflects off the wall, its new speed is 
vN = - rp N- I. Now we can follow the collision wave as it 
makes its way back out through the assembly of N - I slow- 
ly moving balls, i.e., ball N collides with ball N - 1 so that 
UN-1 = - rpN+pN-z 2 q . (It is not necessary to calculate 
the velocities of the slowly moving balls, such as uN, after 
they have interacted with the collision wave twice-they all 
have small velocities toward the wall.) When the wave final- 
ly emerges at the end of the chain, one finds 

v, = -rp 2(N--) f q*[ (1 -p2’+‘))/(1 -p2)]. (7) 

The critical condition is now obtained by requiring that u, in 
Eq. (7) is zero. Using q ( 1 and N$ 1 to simplify the result- 
ing equation gives our estimate of Nmin in Eq. (4). 

III. COOLING OF A UNIFORMLY EXCITED GRANULAR 
MEDIUM 

The simplest statistical problem for the one-dimension- 
al inelastic gas is to suppose that N$ 1 inelastic particles are 
confined within the interva1 0 <x < I by inelastic walls. By 
analogy with Refs. 2 and 3 we speak of a “granular tempera- 
ture,” which is just the mean square velocity 

U2(t) =+ ;$Nuf(t), 
I 1 

(8) 

Here, ui (t) is the velocity of the ith particle at time t. We 
suppose that the walls have the same coefficient of restitu- 
tion as the particles and are not moving. The gas is uniformly 
excited by picking ui (0) from some probability density func- 
tion with zero mean and finite variance. 

A. A scaling argument 

We begin by recapitulating a simple scaling argument’ 
that suggests U-t - * as the gas “cools.” Numerical simula- 

499 Phyo. Fluids A, Vol. 4, No. 3, March 1992 S. McNamara and W. R. Young 499 

Downloaded 18 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



tion shows that the argument is correct, provided that the 
number of particles in the gas is below the threshold for 
inelastic collapse. 

The mean square velocity satisfies a rate equation 

CL -jJ- -1 u’, (9) 
dt 

where r - 1 is a collision frequency and c is a dimensionless 
constant. The idea is that each collision dissipates some frac- 
tion of the kinetic energy of the two participants. One also 
has the straightforward estimate r - ’ = U/a, where a E 1 /N 
is the average distance between particles. Putting this into 
JZq. (9) and solving the rate equation gives U-2a/et as 
t+ CO. We show below that this argument is incomplete be- 
cause it makes no allowance for the strong velocity and posi- 
tion correlations that develop as precursors of inelastic col- 
lapse. 

This scaling argument hints at a continuum explanation 
for the initial stages of inelastic collapse. If the particle den- 
sity (proportional to l/a) is increased in some neighbour- 
hood, then in that region the medium will cool more rapidly, 
because the collision rate is locally elevated. Thus the pres- 
sure falls more quickly where the density is high, and so 
particles in adjacent regions will be pushed by the resulting 
pressure gradient into those places with high density. Conse- 
quently, the density perturbations, which are responsible for 
nonuniform cooling, are reinforced by macroscopic motion. 
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FIG. 4. The mean square velocity as a function of time for a cooling inelastic 
gas with Y = 0.8. We show four realizations with N = 10 and 20. The t ‘... ’ 
regime is clear for realizations with N = 10. But in the other cases, the t -’ 
regime is transient and is halted by inelastic collapse (indicated by the heavy 
dots). 

B. Numerical simulations of the cooling inelastic gas 
with A!= 10 and 20 

We simulated the cooling gas using r = 0.8 and different 
numbers of particles (N= 10, 20, 40, and 80) randomly 
placed in the interval 0 < x < 1. The initial velocities are uni- 
formly distributed in the interval - V? < uj < v3, so that 
U’( 0) z 1 (with fluctuations of order N - “‘). The walls at 
x = 0 and x = 1 are also inelastic. The results are summar- 
ized in Figs. 4 and 5. 

Figure 4 shows U’(t) for eight realizations. The four 
realizations with N = 10 fully confirm the t -* law. How- 
ever, if Nexceeds the threshold for inelastic collapse [which 
is Nmin (0.8) = 161, some of the particles come to rest in 
fmite time. This is the case for the four realizations with 
N= 20. These all stop at the time of the first collapse when 
plots such as Fig. 3 show a vertical rise. (Of course, our 
collision-based simulation cannot evolve past this time. ) But 
even when N = 20 there is a t - ’ transient regime before the 
finite-time singularity stops the simulation. Simulations 
with N = 60 and iV = 80 showed a similar behavior, and it is 
not surprising that the finite time singularity occurred ear- 
lier with larger numbers of particles. 

Figure 5 shows two panoramic views of the cooling gas. 
In Fig. 5(a), with N = 10 particles, there is no collapse and 
the gas cools as damped collision waves pass back and forth 
through it. The N = 10 particles do not bunch up. In Fig. 
5 (b), with N = 20 particles, collapse occurs near the wall at 
x = 1. The particles near x = 0 do not participate in this 
event and so graphs of U* vs t, such as Fig. 4, show there is 
still some kinetic energy left in the gas after collapse. 
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FIG. 5. Two examples of cooling simulations. Every second world line has 
been dashed to emphasize the particle identities. (a) In the upper panel, 
where N= LO, collapse does not occur. The collision waves passing back 
and forth through the gas are apparent and the particles do not bunch up. 
(b) In the lower panel, where N = 20, the gas collapses against the inelastic 
walIatx= 1. 
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FIG. 6. Three realizations of a cooling simulation with r= 0.8 and 
N= 1000. (a) The granular temperature as a function of time. There is a 
rough t - ’ fit but, because collapse brings all of the simulations to a halt, 
this tentative regime is not convincingly demonstrated. (b) Collision num- 
ber as a function of time. The vertical rise indicates that collapse has oc- 
curred. 

C. Numerical simulations of the cooling inelastlc gas 
with N= 1000 

In most applications, there are very large numbers of 
particles and the threshold for collapse is exceeded by many 
orders of magnitude. As an illustration of this regime we 
show in Fig. 6 the results of three simulations, all with 
N = 1000 and r = 0.8. Again there are inelastic walls at 
x = 0 and x = 1 and in each of the three realizations the 
initial conditions have uniformly distributed positions with 
0 <x < 1 and uniformly distributed velocities with 
- v!? < zc <VT. The simulations eventually stop evolving be- 

cause of collapse. It is interesting that, with N = 1000 parti- 
cles, the t - 2 cooling law no longer applies, even as a tran- 
sient scaling regime. Instead, as we have indicated in Fig. 
6(a), there seems to be a rough t - ’ fit. We return to this 
point below. 

The “phase space” plots in Fig. 7 are a useful way of 
visualizing the cooling of this many-particle gas. The posi- 
tion and velocity of each particle is represented by a dot and 
the four parts of this figure, (a)-(d), correspond to the 
points indicated by (a)-(d) in both parts of Fig. 6. Thus Fig. 
7(a) is essentially the initial condition in which the points 
are uniformly strewn in the rectangle 0 <x < 1 and 
- VZ < zl < ~‘5. The subsequent evolution to Fig. 7 (d) shows 
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FIG. 7. The postion-velocity phase space of an N = 1000 realizations from 
Fig. 6. The four panels, (a)-(d), are indicated by the corresponding labels 
in Fig. 6. The final panel, (d), is on the vertically rising part of Fig. 6(b) and 
shows the velocity and position correlations accompanying collapse. 

the formation of strong velocity and position correlations in 
the inelastic gas. The scaling argument in Sec. III A fails 
because of these correlations. 

Figure 8 (a) shows a histogram of the particle positions 
for the state in Fig. 7 (d). The interval 0 <x < 1 was divided 
into 100 bins and the number of particles in each bin was 
counted. It is obvious that there is a significant clustering of 
particles: although the average number of particles in each 
bin is ten, the standard deviation is much greater than the 
Poisson value, 0. In particular, there are 38 particles in bin 
45 and it is this largest clump that is responsible for the rising 
collision count in Fig. 6(b). This peak, and the second and 
third largest, are unchanged if the number of bins is in- 
creased to 200. The clumps in Fig. 8 (a) are roughly of the 
size we would expect on the basis of the arguments from Sec. 
II. That is, with Y = 0.8 it takes at least 16 particles bouncing 
against an inelastic wall, or 32 in the middle of the gas, to 
trigger collapse. 

Figure 8 (b) shows a histogram of the particle velocities 
from the state in Fig. 7(d). The kurtosis of this distribution, 

(10) 

is 2.97, i.e., very close to the Gaussian value of 3. In Fig. 9 we 
show Ku( t) for six N = 1000, r = 0.8 simulations. The three 
simulations that begin with Ku- 1.8 are the three simula- 
tions in Fig. 6. The other three have initial velocity distribu- 
tions chosen to give Kus6. The six realizations have all 
reached the Gaussian value by the time of collapse. Al- 
though the kurtosis of the data in Fig. 8(b) is close to the 

501 Phys. Fluids A, Vol. 4, No. 3, March 1992 S. McNamara and W. R. Young 501 

Downloaded 18 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



8 
i? 

do 
-f ; 
P 
‘sg 
%I 
-ii! =rB z 

9 
0 

10 20 30 40 60 60 70 00 go 
Bin number 

04 

-0.06 0.00 0.86 
U 

FIG. 8. (a) This figure shows a more detailed view of the particle density in 
Fig. 7(d). The position axis, 0 < x < 1, is divided into 100 bins and the num- 
ber of particles in each bin is counted. There is obvious clumping and, in- 
deed, the largest agglomerations are unchanged if the bin size is halved. (b) 
The velocity distribution of the particles from Fig. 7 (d) . 

Gaussian value, it fails the Kolmogorov-Smirnov testI for 
a Gaussian distribution. We believe this happens because the 
velocities of the particles are not independent random vari- 
ables; they are grouped into clumps where all particles have 
almost the same velocity. Thus, although there are 1000 par- 
ticles, there are not 1000 independent samples from the same 
velocity distribution. Furthermore, it is not surprising that 
the velocities of the clumps would have a Gaussian distribu- 
tion. Since collisions conserve momentum, the velocity of a 
clump will just be the average velocity of all the particles that 
fall into the clump as it forms. By the central limit theorem, 
we expect this average to have a Gaussian distribution. 

Finally, in Fig. 10 we examine the effects of changing the 
coefficient of restitution. The six simulations all have 
N = 1000 particles and the same initial condition. In all six 
cases inelastic collapse brings the simulation to a halt and it 
is not surprising that this happens earlier when T is smaller. 
We mentioned before in our discussion of Fig. 6 that there is 
a possible f _ ’ cooling regime in the r = 0.8 simulations. 
Figure 9 shows that, if a simple cooling law exists before 
collapse occurs, then the exponent seems to be a function of 
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t 
lo” lo“ 

FIG. 9. The kurtosis, defined in IQ. (lo), as a function of time for six real- 
izations of the r = 0.8 and N = 1000 inelastic gas. The three simulations 
that begin with Ku- 1.8 are the three simulations in Fig. 6. The otherthree 
have a piecewise constant initial velocity distribution, constructed to give 
Ku-6 and U’Z 1. By collapse time, all six realizations are close to the 
Gaussian value Ku = 3. 

r. In particular, the more elastic simulations have steeper 
slopes. For instance, the case with r = 0.9 is slightly steeper 
than the straight line of slope - 1. And if N is fixed and r is 
increased toward 1, then we eventually expect to recover the 
t - 2 regime demonstated in Fig. 4. Indeed, a simulation at 
N = 800, r = 0.995 (this is below the threshold for collapse) 
clearly showed t - 2 cooling. 
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FIG. 10. Cooling laws for N = 1000 particle gases with various coefficients 
of restitution r. In all six cases, the simulations are halted by inelastic col- 
lapse. There is some evidence of a transient scaling regime with a slope that 
steepens as r approaches 1. 
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IV. CONCLUSION AND DISCUSSION 

We emphasize that, because of collapse, the model de- 
fined by the binary collision rule in Eq. ( 1) is not well formu- 
lated past a finite time. To advance simulations past this 
point we need to either append additional rules, encompass- 
ing simultaneous multiparticle collisions, or alter the dy- 
namics. For instance, one might suppose that the coefficient 
of restitution is a function of the relative velocity of the im- 
pact so that very gentle collisions are either perfectly inelas- 
tic (r = 0) or perfectly elastic (r = I ) . It seems likely that 
both of these choices will eliminate the singularity. Other 
alternatives include “particle-overlap” strategies, such as 
those described in Ref. 12. A thorough exploration of these 
possibilities is beyond the scope of this work. However, it 
seems that any reasonable scheme that finesses the barrier of 
an infinite collision count must retain the strong position 
and velocity correlations that develop as precursors of this 
phenomenon. These correlations are an inevitable conse- 
quence of inelastic dynamics in one dimension. 

The development of position and velocity correlations is 
obvious when the number of particles in the gas, N, is much 
greater than the minimum number required for collapse, 
N,i”. Thus, in Fig. 7, we see the formation of clusters of 
particles of size N,i,. [Here, we refer to conditions in the 
middle of the gas, so that N,i” is twice the value of Eq. (4). ] 
The implication of this is that a state of uniform density is 
unstable to the formation of aggregates and that the wave- 
length of the instability is roughly aN,,, , where a is the aver- 
age interparticle separation. This length scale is evident in 
Figs. 7(d) and 8(a) as the separation between the clusters. 

A referee has suggested that “an infinite number of colli- 
sions in a finite time” is just another way of saying “in con- 
tact.” It is true that, as a consequence of an infinite collision 
count, particles do come into contact, which is a well-known 
phenomenon in granular flows. However, we believe that 
inelastic collapse is a distinct process that differs from what 
is usually intended by saying that the particles come into 
contact. Inelastic collapse is a process that can occur in the 
heavily idealized model described in the first paragraph of 
this article: smooth particles with no static friction between 
them. At the very least, it serves as a counterexample to the 
view that sustained contact can result only from finite-sized, 
rough particles sliding relative to one another. 

We emphasize the important restriction of our results to 
one dimension. We do not know if inelastic collapse occurs 
in two and three dimensions. But it is an interesting empiri- 
cal factx*9 that a vertically vibrated granular bed does not 
bounce when it collides with the base of the containing ves- 
sel. In Ref. 9, where the bed consists of glass spheres with 
r> 0.8, the collision with the base is completely inelastic. 
These experimental results are consistent with the notion 
that an ensemble of particles, each with r rather close to 1, 
can have a collective behavior that is perfectly inelastic. 
However, a completely convincing experimental demonstra- 
tion of inelastic collapse would require one to show that the 
bed does bounce when its thickness is below a well-defined 
threshold, and moreover, that the threshold thickness in- 
creases as r+ 1. We have not found any published experi- 
ments bearing directly on this. 

Computer simulations of two dimensional granular me- 
dia, such as those in Refs. 12 and 13, are another approach to 
this question. The “hard-disk” simulations in Ref. 13 do 
show the development of a spatial correlations between par- 
ticle positions, but there is no indication that these are ac- 
companied by an unbounded collision count. It may be that 
the total number of particles in these simulations (about 40) 
is below the threshold for inelastic collapse in two dimen- 
sions. 

Insofar as they resemble the peaks in Fig. 8 (a), the “mi- 
crostructural agglomerations of discs” described in Ref. 12 
are suggestive of inelastic collapse. Also, these agglomer- 
ations are more obvious when the coefficient of restitution is 
small and this is consistent with our one-dimensional intu- 
ition. But the algorithm used in Ref. 12 steps in discrete time 
intervals, so that, while it might accurately represent the 
initial development two-dimensional inelastic collapse, it 
cannot follow this phenomenon to its singular tinale. 
Further, in both Refs. 12 and 13, the granular medium is 
subjected to external shear and presumably the associated 
stresses tend to disrupt the formation of lumps. The cooling 
simulations described in Sec. III are probably the most fa- 
vorable conditions for inelastic collapse. 

One certain conclusion of the present work is that the 
continuum theories of Refs. 2 and 3 do not apply to the 
strictly one-dimensional gas, except perhaps in a double lim- 
it in which r+ 1 and N- CO so that one is always below the 
threshold for collapse. 

ACKNOWLEDGMENTS 

We thank Lisa Stockinger for her assistance with the 
computations and Stephan Fauve and Glenn Ierley for use- 
ful suggestions and constructive criticism. 

This research was funded by Office of Naval Research 
Grant No. N00014-90-J-1201. 

‘G. F. Carnevale, Y. Pomeau, and W. R. Young, “Statistics of ballistic 
agglomeration,” Phys. Rev. Lett. 64, 2913 (1990). 

“P. K. Haff, “Grain flow as a fluid-mechanica phenomenon,” J. Fluid 
Mech. 134,401 (1983). 

’ C. S. Campbell, “Rapid granular flows,” Annu. Rev. Fluid Mech. 22, 57 
(1990). 

‘G. Wetherill, in The Formation and Evolution of Planetary Systems 
(Cambridge U. P., Cambridge, 1988). 

5 T. G. Drake, “Structural features in granular flows,” J. Geophys. Res. 95, 
Part B, 8681 (1990). 

“B. T. Werner, “A steady-state model of wind-blown sand transport,” J. 
Geol. 98, 1 (1990). 

“P. K. Haff and B. T. Werner, “Computer simulation of the mechanical 
sorting of grains,” Powder Technol. 48, 239 (1986). 

*R. G. Guttman, “Vibrated beds of powders part I: a theoretical model for 
the vibrated bed,” Trans. Inst. Chem. Eng. 54, 174 ( 1976). 

“S. Douady, S. Fauve, and C. Laroche, “Subharmonic instabilities and de- 
fects in a granular layer under vertical vibrations,” Europhys. Lett. 8,621 
(1989). 

“B. Bernu and R. Mazighi, “One-dimensional bounce of inelastically col- 
liding marbles on a wall,” J. Phys. A: Math. Gen. 23, 5745 ( 1990). 

” An elementary example is an inelastic ball bouncing on a flat surface with 
coefficient of restitution r. The time for the first complete bounce is 2u/g, 
where u is the upward speed with which the ball leaves the table and g is 
the acceleration of gravity. It is easy to see that the ball comes to rest after 

503 Phys. Fluids A, Vol. 4, No. 3, March 1992 S. McNamara and W. R. Young 503 

Downloaded 18 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



an infinite number of bounces at T= 2u/g( 1 - r). The bouncing fre- I3 C. S. Campbell and C. E. Brennen, “Computer simulation of granular 
quency is ( - l/hr I) ( T- t) - ‘, which is the “sound of the singularity” shear flows,” J. Fluid Mech. 151, 167 (1985). 
as the ball stops. I4 W. H. Press, B. P. Plannery, S. A. Teukolsky, and W. T. Vetterling, Nu- 

I’M. A. Hopkins and M. Y. Louge, “Jnelastic microstructure in rapid merical Recipes: The Art of Scientific Computing (Cambridge U. P., Cam- 
granular flows of smooth disks,” Phys. Phrids A 3,47 (1991). bridge, 19861, p. 472. 

504 Phys. Fluids A, Vol. 4, No. 3, March 1992 S. McNamara and W. R. Young 504 

Downloaded 18 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp


