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The dispersion of passive scalars by the steady viscous flow through a twisted pipe 
is both a simple example of chaotic advection and an elaboration of Taylor’s classic 
shear dispersion problem. In this article we study the statistics of the axial dispersion 
of both diffusive and perfect (non-diffusive) tracer in this system. 

For difusive tracer chaotic advection assists molecular diffusion in transverse mixing 
and so diminishes the axial dispersion below that of integrable advection. As in many 
other studies of shear dispersion the axial distribution ultimately becomes Gaussian 
as t + 00. Thus there is a diffusive regime, but with an effective diffusivity that 
is enhanced above molecular values. In contrast to the classic case, the effective 
diffusivity is not necessarily inversely proportional to the molecular diffusivity. For 
instance, in the irregular regime the effective diffusivity is proportional to the logarithm 
of the molecular diffusivity. 

For perfect tracer chaotic advection does not result in a diffusive process, even in the 
irregular regime in which streamlines wander throughout the cross-section of the pipe. 
Instead the variance of the axial position is proportional to tln t so that the measured 
diffusion coefficent diverges like lnt. This faster than linear growth of variance is 
attributed to the trapping of tracer for long times near the solid boundary, where the 
no-slip condition ensures that the fluid moves slowly. Analogous logarithmic effects 
associated with the no-slip condition are well known in the context of porous media. 

A simple argument, based on Lagrangian statistics and a local analysis of the 
trajectories near the pipe wall, is used to calculate the constants of proportionality 
before the logarithmic terms in both the large- and infinite-Piclet-number limits. 

1. Introduction and background 
When a very viscous fluid is pumped slowly through a straight pipe the velocity 

distribution is the well-known Poiseuille profile with a maximum at the centre of 
the duct and no motion at the wall. Taylor (1953) realized that because of this 
transverse shear a dissolved, passive solute is differentially advected so that initial 
gradients in concentration are amplified. The separation of two molecules initially on 
different streamlines increases linearly with time and consequently the mean-square 
displacement, 02(t), of the ensemble of molecules about the centre of mass, 2 ,  increases 
quadratically with time ( z  is the longitudinal or axial coordinate and a2(t) and 2 are 
formally defined in (1.9) below). 

t With an Appendix by J. F. Brady 
$ Present address: Department of Theoretical and Applied Mechanics, University of Illinois, 

Urbana, IL 61801-2935, USA 
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150 S. FK Jones and W R. Young 

Central to Taylor’s theory is the realization that both gradient amplification and 
quadratic growth of 02(t)  are ultimately arrested by the molecular diffusion of the 
tracer. This balance is achieved on times long compared to the diffusion time of a 
solute molecule across the transverse section of the pipe. Molecular diffusivity prevents 
the solute gradients from growing without bound and also makes the separation of 
molecules less efficient. In fact the mean square-displacement ultimately grows only 
linearly with time 

where D. is the effective axial diffusivity. For a circular pipe with cross-sectional area 
A = xu2 the effective diffusivity is 

c2(t) - 20, t as t + 00, (1.1) 

where W is the sectionally averaged axial velocity and Dmol is the molecular diffusivity. 
When the molecular diffusivity of the solute is small the last term in (1.2) is much 
larger than the second and the effective diffusivity is inversely proportional to the 
molecular diffusivity. 

This basic dispersion problem has been elaborated in many different ways. In 
this article we are concerned with the effects of a secondary flow in the trans- 
verse direction. Secondary circulation is generated by curving the pipe (Dean 1927, 
1928) and its effect on shear dispersion was assessed by Erdogan & Chatwin (1967), 
Nunge, Lin, & Gill (1972) and more recently by Johnson & Kamm (1986). The prin- 
cipal conclusion of these authors is that because the secondary flow produces trans- 
verse mixing it aids molecular diffusivity in preventing the growth of contaminant 
gradients. This enhanced transverse mixing reduces the effective axial diffusivity 
relative to that in a straight pipe. 

In these earlier works the trajectory of a perfect tracer particle (i.e. a particle 
that does not diffuse) is integrable. This is because the geometry of the pipe is 
simple and the streamlines are confined to streamsurfaces, or equivalently, KAM tori. 
Molecular diffusion is essential in enabling a solute molecule to escape from these 
two-dimensional surfaces and completely sample the transverse cross-section of the 
pipe. In fact, as in Taylor’s original investigation, 0 2 ( t )  for an ensemble of perfect 
tracer particles grows quadratically with time, while for diffusive tracer particles it 
eventually increases only linearly with time. And, as in (1.2), the effective diffusivity 
is inversely proportional to the molecular diffusivity. Jones, Thomas, & Aref (1989, 
JTA hereafter) consider the possibility that the trajectory of a perfect tracer particle 
is chaotic in the steady, three-dimensional velocity field within the pipe. This is 
an example of ‘chaotic advection’ (Aref 1984). JTA study steady viscous flow in an 
infinite ‘twisted pipe’ consisting of a sequence of semi-circular pipe segments as shown 
in figure 1. The twist arises because the plane of each semi-circular segment is at a 
fixed angle, x, to the preceding one. If x equals either 0 or 7c then the pipe lies in 
a plane and the resulting dynamical system for the particle trajectories is integrable, 
i.e. all of the streamlines are confined to two-dimensional streamsurfaces. We refer to 
this completely integrable flow as the regular regime. This is the case considered by 
Johnson & Kamm (1986) and virtually all preceding authors. 

However if x is not equal to either 0 or 7c then the pipe does not lie in a plane 
and the trajectories of particles advected by this steady flow can be non-integrable 
so that some streamlines are not confined to streamsurfaces and instead they wander 
through a three-dimensional subregion within the pipe. When the perturbation of the 
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+R----lal 

FIGURE 1. Perspective drawings of the periodic 'basic cell' used in this study. The cell is composed 
of two 180" curved pipe segments with constant radius of curvature. The coordinate system used to 
describe the flow is also shown (from JTA 1989, figure 1). 

integrable system is weak (e.g. x is close to 0 or TC) some streamlines remain confined 
to two-dimensional streamsurfaces, while others tangle in a three-dimensional region. 
As in dynamical systems theory (e.g. Lichtenberg & Lieberman 1982) the former 
streamlines define regions of regular motion ('islands') while the latter define regions 
of irregular motion (the chaotic 'sea'). This complicated structure, in which domains 
of regular and irregular flow coexist, will be referred to as the mixed regime. These 
features are generic to near-integrable dynamical systems and have been documented 
by JTA for the twisted pipe. 

As the strength of the perturbation increases, the volume occupied by regular 
regions decreases as streamsurfaces break up. In fact we show in 93 that when 
x equals n/2, and the secondary flow is sufficiently strong, the streamlines wander 
throughout the cross-section of the pipe. There may still be some small islands of 
integrability but these occupy a negligible fraction of the volume and they are no 
longer absolute barriers to the transport of perfect tracer particles in the transverse 
section of the pipe. We refer to this as the irregular regime. 

At this point we should note the study of Saxena & Nigam (1984), who measured 
the residence time distribution for a passive scalar advected through a series of helical 
coils that, like the twisted pipe, are joined with a non-zero angle between the axes 
of coiling. The results of their experiments indicate that periodically changing the 
orientation of the helical coil diminishes the effective diffusivity. 

Our goal is to understand the dispersion of both perfect and diffusive tracer 
particles in these three different regimes. Table 1 summarizes both our conclusions 
and those of earlier authors. The regular case is Taylor's classic shear dispersion 
problem and is well understood. The breakup of the streamsurfaces in the mixed 
case is discussed in detail by JTA. That work focuses on particle dispersion in the 
transverse plane of the pipe. Section 3 of the present paper emphasizes the axial 
dispersion of tracer in this mixed regime. The mixed regime is the most complicated 
of the three cases and our results are mostly direct numerical integration and scale 
analysis. Numerical experiments in the irregular regime are presented in 93. In this 
case there are no streamsurfaces to restrict transverse motion and it is possible to 
analytically calculate effective diffusivities and compare these with simulation. This is 
done in $4. Thus the irregular regime is easier to analyse than the mixed regime. 
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152 S. W Jones and W R. Young 

Flow geometry Perfect tracer Diffusive tracer 

Straight pipes Taylor (1953) Taylor (1953) 
(regular regime) d ( t )  - W2t2 d ( t )  - D,,1Pe2t 

Curved pipes No explicit references Erdogan & Chatwin (1967) 
(regular regime) d ( t )  - W2t2 Nunge, et al. (1972) 

Johnson & Kamm (1986) 
q2(t)  - D,,IPe?t 

Twisted pipes Jones et al. (1989) This paper 
(mixed regime) d ( t )  - W2t2 a2(t)  - D,,IPe2t 

Twisted pipes This paper This paper 
(irregular regime) 02(t)  - D,,,,J'e t In t 02( t )  - D,,lPe In P e  t 

TABLE 1. Selected papers on shear dispersion in pipes and the asymptotic ( t  -+ cc') scaling for the 
axial variance 

One might guess that this simplicity in the irregular regime arises because all 
of the essential ingredients of Taylor's original theory are present even for perfect 
tracer. There is an axial flow with a maximum in the middle of the channel and no 
motion at the walls. Complete transverse mixing is provided by the non-integrable 
secondary flow. This chaotic transverse mixing ensures that the velocity of the centre 
of mass of an ensemble of perfect tracer molecules is equal to the sectionally averaged 
axial velocity, W .  (This is not the case in the regular and mixed regimes where the 
ensemble-averaged velocity depends on the initial locations of the particles.) This 
same transverse mixing should act to prevent the growth of tracer gradients created 
by shear in the axial component of velocity. One is tempted to speculate that in the 
irregular regime 02(t)  for an ensemble of perfect tracer particles should grow linearly 
with time. Further, a tracer with a very small molecular diffusivity might behave 
effectively like a perfect tracer and disperse with an effective axial diffusivity that is 
independent of its small molecular diffusivity. This is in sharp contrast to the regular 
regime in which the effective diffusivity is inversely proportional to the molecular 
diff usivit y. 

These intuitively plausible expectations are frustrated by the results reported below. 
We find that 02( t )  for an ensemble of perfect tracer particles in the irregular regime 
grows slightly faster than linearly with time, as t lnt ,  and the concentration profiles 
are persistently skew. This is the case even when there is complete transverse mixing 
by the non-integrable velocity field. Further, the effective diffusivity of a solute with 
a very small molecular diffusivity is inversely proportional to the logarithm of the 
molecular diffusivity. 

One must conclude that the analogy between transverse mixing due to chaotic 
advection and molecular diffusion is faulty. Perhaps this is not entirely surprising but 
there is a second line of argument that also incorrectly concludes that 02( t )  for an 
ensemble of perfect tracer particles in the irregular regime should grow linearly with 
time. This reasoning was advanced by Taylor (1954) in the context of shear dispersion 
in a fully turbulent pipe flow. It was again employed by Erdogan & Chatwin (1967) 
to conclude, before any detailed calculation, that there is an effective axial diffusivity 
governing the dispersion of tracer in a curved pipe. 

This reasoning is based on Taylor's (1921) expression for the rate of change of 02( t )  
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Shear dispersion and anomalous dijiusion 

and the effective diffusivity D, : 

- do2(t) = 21 'V( t1 )d t l  -+ 20, as t + 00, 

dt 

153 

where V(t)  is the autocorrelation function of the axial velocity of a particle relative 
to the velocity of the centre of mass of the ensemble, W .  Denoting this relative axial 
velocity by w'(t) = w(t)  - W ,  we have 

%(t) = w'(O)w'( t ) ,  

where the overbar is the ensemble average used below in (1.9). 
The expression (1.3) requires that there is no variation in the statistical properties 

of the flow in the axial direction. The twisted pipe flow satisfies this assumption, at 
least on moderately long times when the ensemble is spread over many semi-circular 
segments. However the difficulty is that for perfect tracer particles the integral in (1.3) 
does not approach a constant as t --+ a. In fact we find below that in the irregular 
regime at large times 

P 
t 

V( t )  - -. 
From (1.5) it follows that 02( t )  - 2 p  t In t at large times. 

For diffusive tracer the correlation decays slowly as in (1.5) only when 

t < a 2 / Y .  (1.6) 

Here P e  - Y /Dmol, where Y is the magnitude of the streamfunction for the secondary 
flow in the transverse plane and P e  is the Peclet number of this secondary circulation 
(a more precise definition of P e  is given below in (2.12)). At longer times molecular 
diffusion becomes important and produces an exponentially decaying correlation 

V( t )  - e0" when t > a 2 P e ' I 3 / Y ,  where p-l  - a 2 P e ' I 3 / Y .  (1.7) 

The scaling in (1.6) and (1.7) is obtained with standard arguments based 
on a local analysis of the advection-diffusion equation near a no-slip boundary. 
And fortunately it is not necessary to calculate p in order to find the leading-order 
approximation to the effective diffusivity, D,. Substituting (1.5) into (1.3) and stopping 
the integration when t - Pe1I3a2 /Y  gives the leading-order result 

n 

(1.8) 
Y D, rn - In Pe. 
3 

Below we calculate p with a simple statistical argument and successfully compare 
(1.8) with simulations of particle dispersion in the irregular regime. 

The slow decay of the correlation function in (1.5) is an example of long-time 
correlations in a dynamical system. These persistent correlations can arise because 
irregular trajectories are trapped near regions of regular motion (islands of integra- 
bility) for long periods (Karney 1983; Meiss & Ott 1986). Here we propose a different 
trapping mechanism for the algebraic tail : because of the no-slip condition particles 
remain near the wall of the pipe for long sojourns. 

The 'no-slip' trapping mechanism is the same as in de Josselin de Jong's (1958) and 
Saffman's (1959) models of dispersion in a porous medium and the 'logarithmic' effects 
we have mentioned above are well known in this context. (The volume edited by 
Guyon, Nadal & Pomeau 1988 is a good survey of both theoretical and experimental 
studies of dispersion in porous media.) Indeed the results in (1.5)-( 1.8) are analogous 
to those reported by Koch & Brady (1985, 1987), Baudet, Guyon, & Pomeau (1985), 
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154 S. W Jones and W R. Young 

and Young & Jones (1991) in which an unconsolidated porous medium is modelled 
as a dilute ensemble of identical solid spheres (radius a) fixed at random points in 
space. Viscous fluid flows with a bulk velocity W around the spheres. Because of 
the no-slip condition tracer is trapped at the surface of the spheres for long intervals, 
and for perfect tracer this results in a correlation function with an algebraic tail as in 
(1.5) with p - cfia W ,  where cfi is the volume fraction of solid. The correlation function 
of diffusive tracer has a similar structure provided an inequality analogous to (1.6) is 
satisfied. At longer times the molecular diffusivity becomes important and produces 
the asymptotic results in (1.7) and (1.8) with Pe = aW/Dm,~. 

For reference we now note the standard definition of the centre of mass, and the 
mean-square displacement about this position, of an ensemble of particles. If N is 
the total number of particles in the ensemble and zi is the axial position of the ith 
particle then 

. N  . N  
1 1 

N N ~ ’ ( t )  = (z - 2)2 = - c ( z i  - 2)2, where 5 = - CzI. (1.9) 
I = 1  i=l  

2. The model flow 
We have studied the incompressible flow of a viscous fluid through a twisted pipe 

of circular cross-section. This flow yields chaotic particle trajectories. A complete 
description of the equations of motion and documentation of the chaotic behavior are 
presented by JTA. In this section we briefly review the essential features of relevance 
to this paper. 

The basic flow element is a section of curved pipe. This section is bent, with 
constant radius of curvature R, through 7c radians and is joined to a similar section 
with a pitch angle x between them. This two-section ‘basic cell’, shown in figure 1, is 
repeated periodically. x is the sole parameter governing the pipe geometry. For x = 0 
the twisted pipe degenerates to a torus. For x = n the pipe again lies in a plane and 
the basic cell is S-shaped. 

The equations of motion for flow through a curved pipe have been derived by 
Dean (1927, 1928) by means of a regular perturbation expansion in powers of the 
Dean number, De = Re2(a/R), where Re is the Reynolds number, Re = Wa/v, and 
v is the kinematic viscosity. The fundamental perturbation assumption is that the 
radius of the cross-section is much smaller than the radius of curvature ( a  4 R). Using 
primes to denote dimensional variables, the lowest-order solution for the transverse 
streamfunction and axial velocity is 

U and z 1 = 2 W ( 1 - $ ) ,  (2.1) 

where rt2 _= x ’ ~  + yt2.  Thus the scale of the transverse streamfunction used above in 
(1.6) and (1.7) is Y = vDe/72. To obtain the non-dimensional advection equations 
we introduce 

Wa2 w’ = -pJ, t R  
t = -t, (x’, y’) = a(x, y ) ,  W -. 

and to emphasize the correspondence between the axial coordinate and an angle we 
use the notation 

z1 = Re, (2.3) 
so that the unit cell is 0 < tl < 2n. In terms of these non-dimensional variables the 
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trajectory of a molecule of perfect tracer is obtained from 

where the non-dimensional streamfunction is 
Re 
72 

y = -(4 - r2)(1 - r2l2y, 

and r2 = x2 + y 2 .  
The model for perfect particles flowing through a twisted pipe consists of a sequence 

of Dean solutions and an appropriate rotation at the end of each segment. Thus 
the advection of a particle through one basic cell has the symbolic representation 
A = T M T M  where M is the mapping of a particle from the cross-section at 8 = 0 
to the cross-section at 6 = n and T is a rotation of the particle by an angle -x. For 
sufficiently large Re the flow is chaotic if 0 < x < 7c. The two limits x = 0 and n lead 
to integrable particle trajectories for all values of Re. For fixed Re the size of the 
regular islands diminishes as x approaches 4 2 .  

Note that in this model the flow possesses a velocity discontinuity at the intersection 
of curved pipe sections. The effects of this artifact of the model are more completely 
discussed in JTA. Here we remark that the feature responsible for the chaotic particle 
motion is the breaking of the toroidal symmetry of the pipe geometry. It is the twist, 
not the discontinuity, which introduces 6 dependence into the advection equations 
and makes them non-integrable. 

To model the motion of diffusive particles the deterministic flow solution described 
above is augmented by a series of stochastic displacements. Thus the dimensional 
equations of motion become the generalized Langevin equations 

jc‘ = u’(x‘, t’) + l f ( t ’ ) ,  (2.6) 

where the velocity vector, u’, is given by the dimensional form of (2.5) and the 
stochastic term 5’ is a set of Gaussian random deviates with autocorrelation 

[:(ti)[j(ti) = 2Dm01 6, d(t; - t;). (2.7) 

We have confined our attention to tracer that diffuses only in the pipe cross-section. 
A non-dimensional molecular diffusivity, D ,  is obtained from the dimensional 

molecular diffusivity, Dmol, by consideration of the tracer conservation equation in 
dimensional variables 

cr + J(w’, c)  + 2 w  czf = Dmo1(air + a;,) c, (2.8) 

where the Jacobian, J(a, b), is 

Using the scalings in (2.2)-(2.4) the non-dimensional advection4iffusion equation is 

c, + J ( W ,  c)  + 2( 1 - r2) ce = o(a: + a;) c, (2.10) 

where y (x ,y )  is defined in (2.5) and the non-dimensional diffusivity is 

(2.11) 

In $1 we introduced the Peclet number of the transverse flow. We can now give a 
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more precise definition of this crucial non-dimensional parameter. It is the ratio of 
the coefficent of y in the second term in (2.10) to the coefficent of the last term. That 
is 

Re 1 a W2a2 De v - - -- - P e -  ~ - 
720 72 R vD,,I 72 Dmol' 

(2.12) 

3. Simulation of shear dispersion in a twisted pipe 

dispersion in the twisted pipe. 
In this section we present numerical simulations of both diffusive and perfect tracer 

3.1. Axial dispersion 
In JTA the coupling between chaotic motion in the transverse direction and the axial 
dispersion of tracer was examined qualitatively. It was suggested that the dispersion 
of perfect tracer by the flow in a twisted pipe might provide a deterministic anologue 
of the shear dispersion mechanism described by Taylor (1953). In this section we 
illustrate the axial dispersion in the three regimes discussed in the introduction and 
examine the effects of small molecular diffusion. 

Poincare sections are computed by recording the intersections of particle trajectories 
with the pipe cross-section after every basic cell. This construction illustrates the 
segregation of the flow cross-section into regular and chaotic regions. 

Four Poincark sections for the non-integrable cases that have been used in this 
study are shown in figure 2. The parameters x and Re are different in each of the four 
cases and the tracer is perfect. Note that there is a line of symmetry that is oriented at 
an angle x/2 with respect to vertical (JTA). Panels 2(a-c) illustrate the mixed regime. 
In each of these cases there is a single chaotic trajectory whose repeated intersections 
with the end of each cell fill in a two-dimensional subregion of the pipe cross-section. 
In addition to this non-integrable trajectory we show several trajectories in regular 
regions. These trajectories lie on streamsurfaces and their intersections with the end 
of the cell lie on one-dimensional curves. 

Shown in figure 2 (d )  is a single chaotic trajectory that wanders throughout the 
cross section of the pipe. This is an example of the irregular regime in which there are 
no streamsurfaces to restrict the orbit of a particle of ideal tracer. Of course, there 
are stable periodic points in this flow; however their volume is very small so their 
effect on tracer dispersion is probably negligible. This assumption will be justified a 
posteriori. 

To give a qualitative indication of the effect of chaotic trajectories on the axial 
dispersion of perfect tracer 5000 particles are sequentially positioned along a diameter 
of the pipe that coincides with the axis of symmetry of the Poincare section. The 
particle index is a unique label of the particle's initial position. These particles are 
advected for a fixed duration of time and each particle's final axial position, measured 
in radians, is plotted versus the particle index. A comparison of integrable and chaotic 
advection is shown in figure 3. Each panel of figure 3 shows the evolution of the axial 
distribution of particles at three different times. 

The distribution in figure 3(a) for 71 = 0 is a smooth function of initial position, 
as expected for integrable advection. The two-humped profile arises because the 
initial line of tracer is stretched from the top of the pipe cross-section to the bottom, 
through the centres of the two counter-rotating vortices. The particles near the 
dividing streamline between these two vortices are rapidly swept into the slow-moving 
fluid near the wall of the pipe and they do not progress very far down the pipe. 
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FIGURE 2. Poincare sections of the flow through a twisted pipe for several values of the parameters. 
(a) Re = 25, ,y = ~ / 4 ;  ( b )  Re = 25, x = n/2; (c) Re = 62.5, x = n/4; ( d )  Re = 62.5, x = n/2. 

The particles near the centres of the vortices never approach the wall and thus are 
transported much farther downstream. 

Dispersion in the mixed regime is shown in figures 3(b-c). In contrast to the 
regular regime of figure 3(a) the distribution of particles in irregular regions is erratic 
and displays a sensitive dependence on the initial position. The smooth portions of 
these panels correspond to the islands of regular motion in the Poincark sections of 
figures 2(b) and 2(c). Perfect tracer is trapped forever in these regular islands and the 
result is coherent motion along the axis of the pipe. For the mixed regime, with initial 
placement of perfect tracer particles uniformly throughout the section, this results in 
a2(t) - +t2,  where 4 is the fraction of the pipe occupied by islands. If the tracer is not 
perfect then the initial placement is ultimately irrelevant because the tracer diffuses 
into and out of the islands. 

Finally figure 3(d) ,  which corresponds to the PoincarC. section shown in figure 2(d), 
is an example of the distribution in the irregular regime. There are no smooth 
regions, and no coherent axial motion that can be resolved with a particle spacing of 

When molecular diffusion is introduced particles that start in regular regions can 
diffuse into irregular regions and vice versa. The top row of figure 4 shows the 

4 x 10-4a. 
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Particle index Particle index 
FIGURE 3. Axial dispersion of perfect particles. Abscissae are the particle indices. Ordinates are the 
axial position measured in radians. The three curves per panel are at times 6.25, 18.75, and 62.5. 
In the upper panels Re = 25 and (a) x = 0 ;  ( b )  x = 7 ~ 1 2 .  In the lower panels Re = 62.5 and ( c )  
x = n/4; ( d )  x = ~ 1 2 .  

dispersion of diffusive tracer in the regular regime (figure 3a). It is clear that as the 
molecular diffusivity is increased the axial dispersion of particles is diminished. The 
bottom row of figure 4 shows the same trend in the mixed regime of figure 3(b).  

When D is large the distributions of particles in the regular and mixed cases are 
quite similar because diffusive tracer is not confined to certain regions of the cross- 
section by streamsurfaces. However the approach to the Taylor limit is different in 
the two cases. In the regular regime (the top row) the initially smooth distribution 
becomes blurred by diffusion while in the mixed regime (the bottom row) the erratic 
distribution is focused into a relatively narrow band. Scaling arguments such as those 
of Koch & Brady (1985) suggest that the leading-order dependence of the effective 
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e 60 60 

0 2500 5000 0 2500 5000 0 2500 5000 

120 120 

60 60 

0 2500 5000 0 2500 5000 0 2500 5000 

Particle index Particle index Particle index 

FIGURE 4. Axial dispersion of diffusive particles for the parameter values and times shown in 
figures 3(a) and (b). The top row shows the dispersion of diffusive tracer in the regular regime. The 
bottom row shows the dispersion of tracer in the mixed regime. Across each row D is lop6, lop4 
and lo-*. (a)-(c) x = 0 ;  ( d ) - ( f )  x = n/2. 

diffusivity on the molecular diffusivity in this mixed case is 

+U2a2 
D ,  N -, 

D l l l O l  
(3.1) 

where 4 is the volume fraction of the regular motion. This is simply Taylor’s result 
weighted by the fraction of the pipe occupied by regular trajectories. 

3.2. D ifus io n coefic ients 
The preceding subsection gave a qualitative indication of how chaotic trajectories 
affect the axial distribution of particles advected by a shear flow. In this subsection a 
quantitative measure of these effects is introduced. This is the function D,(t)  defined 
by 

where 02(t)  is defined in (1.9). The limit of the function D,(t) as t t m is the diffusion 
coefficient, D,.? Alternatively the diffusion coefficient may be determined from (1.3). 
The evolution of D.(t) for several parameter values is shown in figure 5. 

The function L ( t )  will always include the argument. The absence of the argument indicates 
that the asymptotic value of this function is intended. 

6-2 
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0 150 300 
t 

0.8 0.24 

0 150 300 0 
t 

150 300 
t 

FIGURE 5. The convergence of the function D.(t) to  its asymptotic value for Re = 25 and ( a )  
D = lop4; ( b )  lop3; (c) In ( a )  and (b) the upper curve is for x = 0, the middle curve is for 
x = n/4 and the lower curve is for x = n/2. In  (c) the upper curve is for x = n/2, the middle curve 
is for x = 7t/4 and the lower curve is for x = 0. Note the change of verticle scale between panels. 

To construct this figure 2000 particles are positioned randomly in the pipe cross- 
section at 8 = 0 and then integrated (i.e. advected and diffused). To evaluate the 
relative contribution of chaotic trajectories to the shear dispersion observed in figure 4 
the diffusion coefficient is measured for several values of x and D. For D = lop4 
(figure 5a) chaotic advection substantially reduces the dispersion coefficient relative 
to the integrable case, x = 0 (the upper curve). However, for D = the values of 
D, are similar (figure 5c). These data are consolidated in figure 6 where D, is plotted 
versus log D. 

3.3. Dispersion of perfect tracer 
In this subsection we show that the dispersion of perfect tracer is fundamentally 
different from that of diffusive tracer. The evolution of D,(t)  for perfect tracer is 
shown in figure 7. The lower curve is computed for R e  = 62.5, x = n / 2  and the upper 
curve for R e  = 62.5, x = n/4. Clearly, neither curve has approached an asymptote by 
the end of the integration. Recall that the lower curve corresponds to the irregular 
Poincark section (figures 2d and 3d)  while the Poincark section associated with the 
upper curve shows the growth of variance when particles are in both regular and 
chaotic regions (figure 2c). 

To help understand the results of figure 7 we have constructed histograms of axial 
particle position at t = 375. Figure 8(a) shows the distribution of axial positions 
for the irregular flow. This distribution is skewed with a tail composed of particles 
lagging behind the centre of mass. Thus it is plausible that the failure of the lower 
curve in figure 7 to asymptote is due to particles that are trapped in a region of 
slow-moving fluid near the pipe wall. We examine this case analytically in $4 below. 

In the mixed regime, when islands of regular motion are present (figure 8h), the 
no-slip trapping mechanism still operates and consequently there is still a tail of 
laggardly particles. But in addition a significant fraction of the particles lie well 
downstream of the centre of mass and the distribution is polymodal. It is plausible 
that tracer particles in regular islands move coherently relative to the centre of mass 
and this produces the downstream modes seen in the histogram in figure 8(h). 

The correspondence between the downstream modes and the regular islands is 
verified by figure 9. In figure 9(a) we plot the initial positions of particles that make 
up the main mode of the distribution in figure 8(b) (0 - $ < 60 rad). Figure 9(b)  
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161 

10-4 10-3 10-2 

log D 
FIGURE 6. The measured value of D, plotted versus log D .  X, Re = 25, x = 0; f, Re = 25, x = ~ ~ 1 4 ;  

A, Re = 25, x = n/2. 

8 

0 
t 

FIGURE 7. The evolution of D.(t) for perfect particles. The upper curve is for the mixed regime, 
Re = 62.5, = n/4. The lower curve is for the irregular regime, Re = 62.5, x = 7~12. 
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i l  
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8-6 
FIGURE 8. Histograms of axial position at t = 375. Ordinates are the fraction of particles, fr, in 
each bin. Abscissae are longitudinal position relative to the centre of mass in bins of 10 rad. In 
panels (u)-(c) Re = 62.5 and (a )  x = x/2, (h, c) x = ~ / 4 ;  (d)  D = Re = 62.5, x = K/2. In (b) 
particles are positioned uniformly in the cross-section. In (c) particles are confined to the chaotic 
regions of the cross-section. 

shows the initial positions of particles in the downstream mode 80 < 6 - < 90 rad, 
while figure 9(c) shows the initial positions of particles that have been advected more 
than 160 rad. It is clear from a comparison of this figure with the Poincare section 
in figure 2(c) that the regular islands transport particles in a coherent manner and 
produce the downstream modes. 

Figure 8(c) shows the axial distribution produced when the initial position of 
particles is restricted to the chaotic sea. Because no particles are initially in the 
islands the downstream peaks have disappeared. The absence of these peaks in 
figure 8(a), where the initial distribution of the particles was uniform, supports our 
earlier contention that there are no regular islands in this simulation. 

Finally, for comparison, figure 8(d) shows a distribution for diffusive particles in 
the irregular regime. This distribution looks more Gaussian than those obtained 
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FIGURE 9. The initial positions of particles whose longitudinal position relative to the centre of 
mass in figure 8(b)  is (a) 6’ - 8 < 60 rad, (b) 80 < 6’ - 8 < 90 rad, ( c )  6 - 8 > 160 rad. 

using perfect tracer. The distribution is more symmetric, and there is only one mode. 
Moreover the tracer is concentrated in a smaller range of axial position (note the 
change of vertical scale). 

The skewness of the distributions shown in figure 8 has been computed using the 
definition 

In Taylor’s theory the axial distribution of tracer becomes Gaussian at large times so 
all of the odd moments asymptote to zero. We first note that the skewness of the axial 
distribution of perfect tracer in figure 8(a) is non-zero and has the value Sk = -2.1. 
In figure 8(b) the distribution is more symmetric, S k  = -0.2, because the tracer in 
islands ‘balances’ that in the boundary region. Figure 8(c) has the intermediate value 
-1.4 and figure 8(d) ,  for diffusive tracer, is the most symmetric with a skewness of 
-0.1. 

In figure 10 the time evolution of the measured value of l s k l  is compared for perfect 
and diffusive particles. Aris (1956) predicts that as t + GO the skewness of diffusive 
tracer decays like t-1/2. Indeed, the lower curve in figure 10 does decay slowly but we 
have not attempted a quantitative test of the t-1/2 scaling. The growing skewness of 
perfect tracer in figure 10 differs qualitatively from the slowly decaying skewness of 
the diffusive tracer. The temporal evolution of the skewness is the subject of $4.2 and 
the Appendix by J. F. Brady. 

4. Dispersion in the irregular regime 
In this section we study the effect of the no-slip condition on dispersion in the 

irregular regime. Our numerical results have suggested that this boundary condition 
might be responsible for the non-convergence of the effective diffusivity evident in the 
lower curve on figure 7. Thus the trailing tail of laggardly particles in figure 8(a) is 
likely to be responsible for both the anomalous diffusion in figure 7 and the growing 
skewness in figure 10. We show below that the Lagrangian velocity autocorrelation 
function for perfect tracer decays slowly as in (1.5) and we calculate p .  This explains 
the anomalous diffusion: the function D , ( t )  G a2(t)/2t in the lower curve on figure 7 
is increasing as In t. 
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3.0 

1.5 

I . . , , , ,  

0 150 300 
t 

F I G U R ~  10. The opposite value of the normalized skewness, -Sk plotted versus time. The upper 
curve is for perfect particles advected in the irregular regime, Re = 62.5, x = 7t/2. The lower curve 
is for the same flow parameters, but for diffusive particles with D = 

4.1. Time evolution of the variance 
We use a Lagrangian approach to calculate the constant p in (1.5). Taylor’s formula, 
(1.3), then shows that the effective diffusivity for ideal tracer particles diverges like 
a2(t) - 2ptlnt. For diffusive tracer this divergence is removed and scale analysis 
shows that the effective diffusivity is given by (1.8). 

The velocity correlation function is an ensemble average of lagged Lagrangian 
velocities : 

. N  
1 

V(t )  EE - c wj(O)wj(t). 
i= 1 

N 

In the irregular regime we assume that as t + m the only non-zero terms in the sum 
(4.1) are due to particles that remain in a thin region near the pipe wall for the entire 
interval. In the mixed regime there are additional sources of long-time correlations, 
such as trapping near regular islands, which greatly complicate the calculation of the 
correlation function (e.g. Karney 1983; Meiss & Ott 1986). Here we restrict attention 
to the irregular regime and suppose that the only significant long-time correlations 
come from particles trapped in the slowly moving fluid near the wall of the pipe. 
This assumption is tested by a successful comparison of our analytic calculation with 
numerical simulation. 

We suppose that a large number of molecules of perfect tracer are uniformly 
distributed across the pipe at t = 0 and we focus attention on those in a thin annular 
strip, 1 - E < Y < 1, near the wall of the pipe. At large times we approximate (4.1) by 

q t )  % (b) (2EN) (g) (-1) 2 = A(t) -. 
7t 

Here A ( t )  is the transverse area of the fluid initially in the strip that is still in the 
strip at t. The first factor in (4.2) is division by the total number of particles in 
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0 t n  
# 

FIGURE 11. Streamlines of the local streamfunction given by (4.5) 
Only half of the strip is shown here. 

the ensemble: this is the 1/N immmediately on the right-hand side of (4.1). The 
second factor is the number of particles in the strip at t = 0. The third factor is the 
fraction of particles initially in the strip which are still in the strip at t. The product 
of the second and third terms is the number of non-zero terms in the sum (4.1) at 
time t. The final factor is the value of each of these non-zero terms and in the strip 
w'(0) w w'(t) w -1 so this value is unity. The goal of the subsequent analysis is to 
determine the unknown function A(t )  and this is done with a local analysis of (2.4) 
and (2.5). 

In the boundary strip we simplify the advection equations (2.1) by introducing the 
local coordinates 

s = r - 1 ,  $ z arctan(x/y) 
and using Is1 4 1. The result is 

Re . 
6 

s = -tpb = -s  sin$, Re 
c$=y - -scos$, 

s -  3 
where 

Re  2 V(S, $) = -s cos 4. 
6 

e = -4s 

(4.3) 

(4.4) 

(4.5) 

Because the motion is steady particles remain on their original streamlines, i.e. Q = 0. 
This local approximation of the streamfunction is sketched in figure 11. 

It is easy to calculate the time taken to completely traverse a streamline starting at 
(s, $) = (-m, n/2) and finishing at (s, 4) = (-a, -n/2). One finds 

where 

(4.7) 

We can invert (4.6) and express the streamfunction in terms of this traversal time 

P2 y = 2. 
T 
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Now imagine that the fluid in the strip at t = 0 is dyed red so that A ( t )  is the area 
of red fluid still in the strip at t. As t -, co the red fluid leaves the strip through 
a shrinking window centred on q5 = -n/2 and defined by the intersection of the 
streamline in (4.8) with the open boundary of the strip, s = --f. The flux of red 
fluid out of the strip, J ( t ) ,  is just the value of the streamfunction that instantaneously 
defines the window: 

2P2 J(t) = 2lp(t) = -. 
t2 

(4.9) 

The factor of 2 in the above expression arises from the symmetry of the streamfunction 
about 4 = -n/2. The area of red fluid that remains in the strip at time t is related 
to this flux by 

(4.10) 

so that at large times A(t) = 2p2/t. 

ratio 
The probability that a particle remains in the strip for an interval of length t is the 

A( t )  - p2 13.13 
2x6 net d R e  

m -. (4.11) 

This estimate has neglected the effects of the twists and it is of interest to compare 
it with a complete calculation. This is done in figure 12 where we show the fraction 
of particles that remain in a strip of width E = 0.05 if Re = 62.5 and x = n/2. With 
these values of Re and 6 the right-hand side of (4.11) is 4.20/t and there is good 
asymptotic agreement between this law and the numerical results. 

Using (4.1 1) we now return to (4.2) and obtain for the non-dimensional correlation 
function 

as t -+ co. 
26.26 
Re t 

V ( t )  m ~ (4.12) 

(In dimensional variables this implies that the constant p in (1.5) is p = 26.26vR/a.) 
In the numerical simulation in figure 7, Re = 62.5 so V(t) = 0.42/t and from (1.3) we 
have a prediction for the anomalous growth of variance in the twisted pipe: 

02(t)  c 0.84t In t (4.13) 

or in terms of the diffusivity introduced in (3.1) 

D,(t) m 0.42 In t. (4.14) 

This result is compared with the simulation in figure 13. 
The introduction of small molecular diffusivity truncates the tail of the correlation 

function and results in a finite diffusivity as t -+ co. In fact our expression in (4.2) for 
the correlation function is correct even if the tracer is diffusive. However the preceding 
calculation of A( t )  is invalid at large times because molecular diffusion accelerates the 
escape of the red fluid from the strip so that at large times A( t )  decays exponentially. 
A detailed calculation of A(t) requires the solution of the local approximation to the 
tracer conservation equation (2.10) 

Re 
6 

C, + -s2 sin +cS + 
with an initial condition C(s ,4 ,0)  = 1 
C ( E , $ , ~ )  = 0. Thus at t = 0 there is 

Re 
3 

--s cos 4C4 = DC,, (4.15) 

and an absorbing boundary condition 
a uniform concentration of red fluid in 
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FIGURE 12. A comparison of the analytical result given by (4.11) with a 5000 particle simulation 
for Re = 62.5, x = n/2. 107 particles remain in the strip at t = 200. 

the strip and when molecules reach the boundary they are removed from the ensem- 
ble. Then the amount of red fluid that has not been evacuated from the strip at t 
is 

A( t )  = C(S, 4, t ) d 4  (4.16) s 
where the integral is over the whole strip. 

Our earlier calculation of A( t )  took D = 0, evaluated the flux J(t) of red fluid out 
of the strip at s = c, and then inferred A(t) from (4.10). With molecular diffusivity 
this approach fails because at large times molecules near the wall diffuse into regions 
which have been mechanically evacuated at earlier times. Considerable progress 
towards a solution of (4.15) can be made using the transformations given by Acrivos 
& Goddard (1965), but the calculation is intricate and here we only employ the 
scaling arguments from this reference to obtain a leading-order approximation to 
the diffusivity. We rescale s and t in (4.15) so that there are no non-dimensional 
parameters in the tracer conservation equation. The new variables are 

B = Pe-'I3s, 3 = RePe'I3t, (4.17) 
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2t In t 
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t 

FIGURE 13. A comparison of the analytical result for the variance at long times, given by (4.13) 
(dashed line), with a twisted-pipe simulation for Re = 62.5, x = n/2. The numerical result was 
produced by averaging 10 runs, each consisting of ensembles of los particles. 

where Pe  is defined in (2.12). Provided E P ~ - ' / ~  + 1 and 1 Q 1 our earlier calculation 
of A ( t )  is valid. However when 2 - 1 diffusion becomes important and assists in 
the evacuation of the strip so that A ( t )  and V ( t )  decay exponentially. This rapid 
decay makes the integral in Taylor's expression for the diffusivity, (1.3), converge and 
the leading-order approximation is obtained by stopping the integration when 2 N 1. 
This gives D, - (p/3) In Pe  - - ( p / 3 )  In D as D + 0. Figure 14 shows a comparison 
of this result, D, = -0.141nD = -0.32log,,D, with numerical simulations in which 
Re = 62.5 and p = 0.42. The filled circles are the data points determined from the 
numerical simulation. The dashed line has slope - p / 3  = -0.32 and the solid line is 
the least-squares fit to the data points which has slope -0.34. (The unknown intercept 
of the dashed line is chosen so that the intersection with the least-squares fit occurs 
at D = lop6.) We have performed numerical experiments for different values of Re 
and consistently find good agreement between theory and numerical simulation. 

4.2. Time evolution of the skewness 

One can use our derivation of D,( t )  and the transport theory developed by Koch & 
Brady (1987) to predict the time evolution of the skewness. Details are provided in the 
Appendix written by J. F. Brady. To simplify the analysis we use the unnormalized 
skewness 

. N  

(4.18) 

The Koch & Brady transport theory (1987) gives the leading-order expression 

S ( t )  = -3p t2. (4.19) 

A comparison of this calculation with our simulations is shown in figure 15. Although 
the transport theory correctly predicts the t2 growth of the skewness the measured 
constant of proportionality is closer to 1.4 than 3p = 1.26. This discrepancy may be 
an effect of undersampling the tail of the concentration distribution. 
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FIGURE 14. The large-Peclet-number behaviour of D, as a function of logD for Re = 62.5, 
x = n/2. The filled circles are the values determined by numerical experiments, the solid line is a 
least-squares fit to these points and the dashed line is the analytical result D. = -0.32logD + c 
where the undetermined constant c is chosen so that the two curves intersect at D = lop6. The 
slope of the solid line is -0.34. 

5. Discussion and conclusion 
From our results it is clear that the no-slip condition is crucially important in the 

twisted-pipe dispersion problem. In the irregular regime the no-slip condition results 
in a ‘non-mechanical’ effective diffusivity, i.e. D, does not become independent of 
molecular diffusivity as P e  -+ co, and for perfect tracer the mean-square displacement 
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about the centre of mass grows as t In t. These points have been made in the context 
of dispersion in porous media (e.g. Saffman 1959; Koch & Brady 1985) and we 
reiterate their importance in the problem of dispersion by chaotic advection. 

In the irregular regime we have been able to analytically calculate the constant of 
proportionality for the growth rate of the position variance. However, in the mixed 
regime the dispersion of tracer is more complicated and our results are restricted to 
numerical simulations and scale analysis. Because the flow domain consists of regions 
of regular motion and chaotic motion the long-time dispersion of perfect tracer is a 
function of initial position. If perfect tracer is released in both the islands and the 
sea then the coherent motion in the islands dominates and 02( t )  - $t2,  where 4 is 
the volume fraction of the islands. If perfect tracer is initially restricted to the chaotic 
sea then the asymptotic growth of the variance is difficult to predict: in addition to 
the no-slip condition, long-time correlations are produced by trapping near islands 
(Karney 1983; Meiss & Ott 1986). This trapping results in diffusion which is more 
anomalous than t In t ,  such as 02( t )  - ta,  where 1 < CI < 2. The tail of the correlation 
function, taF2, depends on the details of the flow structure near the islands, rather 
than the wall of the pipe. In fact this is a frontier issue in dynamical systems theory. 
Thus the dispersion of perfect tracer in the mixed regime of chaotic advection can 
differ from that in a porous medium, a point also made by Koch et al. (1989). 

In summary, the effect of chaotic advection on the axial dispersion of diffusive tracer 
is to reduce the value of the dispersion coefficient. This reduction is a consequence 
of chaotic trajectories permitting particles to more rapidly sample the axial velocity 
profile. The dispersion of perfect tracer by chaotic advection is also slower than 
that of integrable advection. In the irregular regime the variance of axial position 
grows like t In t with a coefficent which can be calculated exactly using the reasoning 
in 94. The measured skewness also grows with time, like t2 (figure 15). Again we 
can use the Lagrangian analysis in 94, in concert with the macrotransport theory of 
Koch & Brady (1987) to find the coefficient that precedes the t2 scaling. 
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Appendix. Skewness of the anomalous t In t diffusion 

By J. F. Brady 
Division of Chemistry and Chemical Engineering, California Institute of Technology, 

Pasadena, C A  91125, USA 

Here we show that the non-local theory of Koch & Brady (1987) can be used to 
predict the skewness of the dispersion profile in the anomalous diffusion regime 
caused by the no-slip boundary condition at the walls of the tube. 

The dispersion of a passive tracer, denoted by the concentration c, flowing in a 
tube can be expressed in terms of the moments of the concentration distribution 

((2 - t )")  = l I ( z  - t)"(c(z, t ) )dz 
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Here, the flow direction is denoted by z and without loss of generality the mean 
velocity of the tracer in the flow direction has been set equal to unity. The second 
equation follows from application of the convolution theorem, with the ̂ denoting the 
transform in both space and time. The angle brackets denote an average over the 
realizations of the velocity field and the initial distribution of tracer, which we take 
here to be uniform across the cross-section of the tube. 

Koch & Brady (1987) developed a general, spatially and temporally, non-local 
theory for dispersion processes applicable to diffusive and non-diffusive tracers in any 
flow. Applying this theory to the anomalous diffusion caused by the no-slip boundary 
condition at the walls of the tube for a perfect, non-diffusive, tracer leads to the 
following expression for the transform of the average concentration field (cf. $4 of 
Koch & Brady 1987): 

where the ‘diffusivity’, 6, in the anomalous regime is given by 

D = -2p’ln liwl, (A 4) 

and p is defined in the text in equation (1.5) and in (A6) below. 
By straightforward work using (A 3 )  and (A 4) the first three moments are 

( ( 2  - t ) )  = 0, 
( ( z  - t )2)  = 2p t  In t + ~ ( t ) ,  

( ( z  - t )3 )  = --3pt2 + ~ ( t  In2 t) .  

The third moment is the skewness reported in (4.19). 

REFERENCES 

ACRIVOS, A. & GODDARD, J. D. 1965 Asymptotic expansions for laminar forced-convection heat 

AREF, H. 1984 Stirring by chaotic advection. J .  Fluid Mech. 143, 1-21. 
ARIS, R. 1956 On the dispersion of solute in a fluid flowing through a tube. Proc. R. SOC. Lond. A 

BAUDET, C., GWON, E. & POMEAU, Y. 1985 Dispersion dans un kcoulement de Stokes. J .  Physique 

DEAN, W. R. 1927 Note on the motion of fluid in a curved pipe. Phil. Mag. 4, 208-223. 
DEAN, W. R. 1928 The streamline motion of fluid in a curved pipe. Phil. Mag. 5, 673-693. 
ERDOGAN, M. C. & CHATWIN, P. C. 1967 The effects of curvature and buoyancy on the laminar 

dispersion of solute in a horizontal tube. J .  Fluid Mech. 29, 465484. 
GWON, E., NADAL, J.-P. & POMEAU, Y. (eds.) 1988 Disorder and Mixing. Kluwer. 
JOHNSON, M. & KAMM, R. D. 1986 Numerical studies of steady flow dispersion at low Dean number 

JONES, S. W., THOMAS, 0. M. & AREF H. 1989 Chaotic advection by laminar flow in a twisted pipe. 

JOSSELIN DE JONG, G. DE 1958 Longitudinal and transverse diffusion in granular deposits. Trans. 

KARNEY, C. F. F. 1983 Long-time correlations in the stochastic regime. Physica D 8, 36C380. 
KOCH, D. L. & BRADY, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427. 
KOCH, D. L. & BRADY, J. F. 1987 Nonlocal dispersion in porous media: nonmechanical effects. 

and mass transfer. Part 1. Low speed flows. J .  Fluid Mech. 23, 273-291. 

235, 66-77. 

Lett. 46 L991GL998 (in french). 

in a gently curving tube. J .  Fluid Mech. 172, 329-345. 

J .  Fluid Mech. 209, 335-357 (referred to herein as JTA). 

Am. Geophys. Union 39, 67-74. 

Chem. Engng Sci. 42, 1377-1392. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

94
00

28
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112094002880


172 S. W Junes and W R.  Young 

KOCH, D. L., Cox, R. G., BRENNER, H. & BRADY, J. F. 1989 The effect of order on dispersion in 

LICHTENBERG, A. J. & LIEBERMAN, M. A. 1982 Regular and Stochastic Motion. Springer. 
MEISS, J. D. & O n ,  E. 1986 Markov tree model of transport in area-preserving maps. Physica D 

NUNGE, R. J., LIN, T.-S. & GILL, W. N. 1972 Laminar dispersion in curved tubes and channels. 

SAFFMAN, P. G. 1959 A theory of dispersion in a porous medium. J. Fluid Mech. 6, 321-349. 
SAXENA, A. K. & NIGAM, K. D. P. 1984 Coiled configuration for flow inversion and its effect on 

TAYLOR, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196-212. 
TAYLOR, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. 

TAYLOR, G. I. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. 

YOUNG, W. R. & JONES, S. W. 1991 Dispersion in an unconsolidated porous medium. Phys. Fluids 

porous media. J .  Fluid Mech. 200, 173-188. 

20, 387402. 

J .  Fluid Mech. 51, 363-383. 

residence time distribution. AlChE J .  30, 363-368. 

Soc. Lond. A 219, 186-203. 

A 223,446-468. 

A 3, 2468-2470. 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

94
00

28
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112094002880

