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The interaction of the barotropic tide with a tall, two-dimensional ridge is examined
analytically and numerically at latitudes where the tide is subinertial, and contrasted
to when the tide is superinertial. When the tide is subinertial, the energy density
associated with the response grows with latitude as both the oscillatory along-ridge
flow and near-ridge isopycnal displacement become large. Where f 6= 0, nonlinear
processes lead to the formation of along-ridge jets, which become faster at high
latitudes. Dissipation and mixing is larger, and peaks later in the tidal cycle when
the tide is subinertial compared with when the tide is superinertial. Mixing occurs
mainly on the flanks of the topography in both cases, though a superinertial tide may
additionally generate mixing above topography arising from convective breaking of
radiating waves.
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1. Introduction
The ubiquity of internal tides in the ocean has prompted extensive study of

their generation at topography, and subsequent radiation (Bell 1975; Baines 1982;
Llewellyn Smith & Young 2003). Their role in mixing the stably stratified ocean as
they dissipate is well established (Munk & Wunsch 1998), and global climate models
(GCMs) have provided insight into the remarkable sensitivity of large-scale ocean
circulation on the distribution and magnitude of the mixing (Hasumi & Suginohara
1999; Simmons et al. 2004; Jayne 2009). As a result, significant effort has been
expended developing physically based parameterizations for dissipative processes
associated with the superinertial internal tide, i.e. tidal motions with a period of
less than one pendulum day (Green & Nycander 2013). These parameterizations are
now being implemented in GCMs that are used to inform climate policy (e.g. Melet
et al. 2013). In contrast, the mixing associated with subinertial tidal constituents is
much less well studied and remains unaccounted for, despite large losses from the
subinertial barotropic tide (Egbert & Ray 2003; Müller 2013).

On a traditional f -plane, the internal wave dispersion relation disallows radiating
internal waves whose period is longer than that of the local pendulum day, which
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means that subinertial tidal constituents do not generate radiating internal tides
polewards of their turning latitudes (defined as where the tidal frequency matches
the local Coriolis frequency, and sometimes called a critical latitude). The inclusion
of ‘non-traditional’ Coriolis effects extends this latitudinal range by tens to hundreds
of kilometres, depending on stratification, enabling subinertial waves to propagate
over a limited range (Gerkema & Shrira 2005). However, in regions polewards of
this, subinertial tides generate a baroclinic response that is evanescent, decaying
exponentially away from topography. Globally these subinertial evanescent tides
account for less baroclinic energy than their superinertial radiating counterparts,
whose energy forms one of the dominant internal signals in the ocean. Nevertheless,
observational and regional modelling studies indicate that the nearfield mixing
associated with these trapped tides may be significant (Nakamura et al. 2000,
2010; Osafune & Yasuda 2013; Musgrave et al. 2016). To understand the role
played by tidal dissipation poleward of the turning latitude, it is necessary to have
an understanding of both the linear evanescent response and the typical nonlinear
responses that arise. In this paper we present an idealized study that explores in
detail the nature of the baroclinic response to subinertial tidal forcing at topography,
and contrast the physics and processes leading to mixing to those in the relatively
well-understood superinertial case.

In the first part of the paper we build on the work of Llewellyn Smith & Young
(2003), to derive an analytic solution for subinertial trapped tides generated at a tall,
infinitely thin ridge. We show that the baroclinic response is evanescent with a decay
scale that decreases with increasing latitude. Both the along-ridge velocity and the
near-ridge isopycnal displacement of the evanescent response grow with latitude away
from the turning latitude. As a result, for a constant-amplitude barotropic tide, the
total near-ridge energy density (i.e. kinetic plus potential) of the subinertial baroclinic
response grows with latitude, in direct contrast with the superinertial baroclinic
response which has a constant energy density at all latitudes.

We explore and verify these predictions in a series of idealized two-dimensional
numerical simulations where a 24 h oscillating tide interacts with a Gaussian ridge at
a range of latitudes. Of particular interest is the influence of latitude on the processes
leading to turbulence. In the two-dimensional simulations presented here, we use
mixing as a proxy for turbulence in the three-dimensional ocean. By performing
‘equivalent’ simulations at superinertial and subinertial latitudes, we find that transient
hydraulic jumps are the dominant mechanism for mixing in our simulations when
the tide is subinertial, and tidal lee waves formed from radiating constituents are
additionally important when the tide is superinertial.

We also investigate the generation of tidally rectified along-ridge currents, whose
energy is significant in the nearfield and increases with latitude. These have been
examined analytically for both unstratified tidal flows (Huthnance 1973; Loder 1980),
and stratified tidal flows over weak topography (Maas & Zimmerman 1989b; Brink
2011). The combination of tall topography and stratification places our simulations
beyond the parameter regime of prior theory, but nevertheless we find similar
qualitative results of strong along-slope flows, and weaker cross-slope and vertical
circulations in the Eulerian time mean. An explicit calculation of particle paths
show that particles near the ridge-crest undergo looping trajectories along the flanks
for f 6= 0.

Observations of enhanced subinertial frequency currents around topography have
motivated the investigation of trapped topographic waves (Rhines 1970; Chapman
1989; Brink 1990; Padman et al. 1992; Codiga 1997). These arise from a resonance



Stratified tidal flow 935

h

x

z

(a) (b)

z

FIGURE 1. Definition sketch. (a) The barotropic tide oscillates over a tall, narrow ridge.
(b) Density, ρ, increases uniformly with depth.

between the free modes associated with a certain topography and background
stratification, and an ambient forcing frequency. The solutions presented in this paper
are complementary, describing the forced response to subinertial tides which may be
expected even in the absence of a resonance. When the forced response projects onto
the free modes of a certain topography, a trapped wave may be resonantly generated.

The remainder of this paper is broadly divided into four parts: the first presents
theoretical results for subinertial tidal forcing of a stratified fluid over a knife-edge
ridge; the second presents a series of numerical experiments over a tall, narrow
Gaussian ridge aimed at verifying the theory, and extending the description to larger
amplitude, more nonlinear tides; and the third discusses the relevance of this work
to more general three-dimensional situations. In the fourth section we present a
summary.

2. Theory

In this section we extend the results of Llewellyn Smith & Young (2003) (hereafter
LSY03) to include subinertial tidal forcings. A similar solution for superinertial tides
at a knife edge is presented by St Laurent et al. (2003). The problem is formulated
in two dimensions on an f -plane, with an imposed barotropic tide (ub = U0 cos ωt)
oscillating in the x-direction. The total fluid depth is h. At x = 0 the tide interacts
with an infinitely thin ridge of height z0, where z0 < h (figure 1). For simplicity
we consider only uniform stratification (N) in this study, though LSY03 additionally
presents solutions for the case of slowly varying N(z). The linearized equations are

ut − fv =−px,

vt + fu= 0,
pz = b,

bt +N2w= 0,
ux +wz = 0,


(2.1)

where velocities are (u, v, w), pressure is p and the Coriolis frequency is f . The
density, ρ, has been written in terms of the Brunt–Väisälä frequency, N, and the
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buoyancy, b:

ρ = ρ0

[
1− N2z

g
− b

g

]
, (2.2)

and pressure has been scaled by ρ0. Defining a stream function (u, w) = (−ψz, ψx),
the equations can be combined, and written as

ψzztt + f 2ψzz +N2ψxx = 0. (2.3)

Imposing a boundary condition of no-flow through the barrier means

ψ(x= 0, z< z0)=U0z cos(ωt), (2.4)

such that UT = ub + u=U0 cos(ωt)+ u= 0 on the knife-edge ridge.
In the linear limit we look for solutions which are time periodic at the tidal

frequency, ω:

ψ =U0Re{e−iωtφ}. (2.5)

Then, equation (2.3) can be written

N2φxx = (ω2 − f 2)φzz, (2.6)

with boundary conditions φ(x= 0, z< z0)= z, and φ(x, h)= 0. For superinertial flows,
ω2> f 2 and the equation is hyperbolic, however, for subinertial flows, ω2< f 2 and the
equation is elliptic. The solution is constructed from an infinite sum of the vertical
normal modes, defined by

d2an

dz2
+ N2an

c2
n

= 0, (2.7)

with an(0) = an(h) = 0, and
∫ h

0 an(z)am(z) dz = (h/2)δmn. A Green’s function solution
to (2.6) satisfies

N2Gxx − (ω2 − f 2)Gzz =G0δ(x)δ(z− z′), (2.8)

for a point source located at x = 0, z= z′. The normalization G0 will be determined
shortly for convenience. We write the vertical dependence of the separable solution in
terms of an infinite sum of vertical normal modes, an = sin(nZ),

G(x, Z, Z′)=
∞∑

n=1

Gn(x, Z′) sin(nZ), (2.9)

where Z = (πz)/h. For modal phase speeds cn = hN/nπ, we define two real wave
numbers corresponding to the superinertial ( ˇ : below the turning latitude) and
subinertial ( ˆ : above the turning latitude) cases:

ǩ2
n =

ω2 − f 2

c2
n

and k̂2
n =

f 2 −ω2

c2
n

. (2.10a,b)

The superinertial case is explicitly dealt with in LSY03, so here we concentrate on
the subinertial case, for which (2.8) can be written in terms of vertical modes

∂2Ĝn

∂x2
− k̂2

nĜn = 2
h

G0δ(x) sin(nZ′). (2.11)
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For x 6= 0, the solution is

Ĝn = A(z′)e−k̂n|x| =
{

Ae−k̂nx, x> 0
Aek̂nx, x< 0,

(2.12)

The constant, A, is determined by integrating (2.11) between x− < 0 and x+ > 0 and
matching solutions as x→ 0, giving

A=− G0

k̂nh
sin(nZ′). (2.13)

The subinertial Green’s function solution is

Ĝ=−G0

h

∞∑
n=1

1

k̂n

e−k̂n|x| sin(nZ′) sin(nZ). (2.14)

For comparison, LSY03 equation (3.8) is the superinertial Green’s Function solution

Ǧ= G0

h

∞∑
n=1

1

iǩn

eiǩn|x| sin(nZ′) sin(nZ). (2.15)

For consistency with LSY03, we define

µ̌= N√
ω2 − f 2

; ǩn = nπ

hµ̌
,

µ̂= N√
f 2 −ω2

; k̂n = nπ

hµ̂

 (2.16)

and we non-dimensionalize X =πx/µh. Defining G0 =−N2/µ we write

Ĝ(X, Z, Z′)=
∞∑

n=1

e−n|X̂|

nπ
sin(nZ) sin(nZ′), (2.17)

to be compared with LSY03 equation (3.11) for the superinertial case:

Ǧ(X, Z, Z′)=
∞∑

n=1

ein|X̌|

nπ
sin(nZ) sin(nZ′). (2.18)

The series in (2.17) can be expressed using the real function

FG (X, Z, Z′)= cos(Z + Z′)− cosh |X|
cos(Z − Z′)− cosh |X| (2.19)

and the Green’s function becomes

Ĝ(X, Z, Z′)= ln | FG |
4π

. (2.20)
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2.1. Streamfunction

The subinertial solution to (2.6) is represented in terms of the Green’s function as

φ̂(X, Z)= h
π

∫ Z0

0
Γ (Z′)Ĝ(X, Z, Z′) dZ′, (2.21)

where Z0=πz0/h, and Γ (Z′) is the source density. Evaluated on the knife edge where
the boundary condition is φ(0, z< z0)= z, this becomes

Z = 1
2π

∫ Z0

0
Γ (Z′) ln

∣∣∣∣∣sin( 1
2(Z + Z′))

sin( 1
2(Z − Z′))

∣∣∣∣∣ dZ′. (2.22)

LSY03 demonstrate this may be arranged to a standard form and solved for Γ :

Γ (Z)= 2

√
1− cos(Z)

cos(Z)− cos(Z0)
. (2.23)

Substituting (2.17) and (2.23) into (2.21), and using the identity

2
π

∫ Z0

0
sin nZ

√
1− cos(Z)

cos(Z)− cos(Z0)
dZ = Pn−1(cos Z0)− Pn(cos Z0)≡ PPn, (2.24)

where Pn is the nth Legendre polynomial, gives an expression for the streamfunction,
which decays exponentially with distance away from the ridge:

φ̂(X, Z)= h
π

∞∑
n=1

e−n|X̂|

n
PPn sin(nZ). (2.25)

For comparison, LSY03 gives the super inertial solution:

φ̌(X, Z)= h
π

∞∑
n=1

ein|X̌|

n
PPn sin(nZ). (2.26)

2.2. Explicit fields and relative phases

The general streamfunction, ψ , may be written

ψ = U0Re(e−iωtφ)

= U0φr cos(ωt)+U0φi sin(ωt). (2.27)

Two components of the velocity field are directly evaluated from the streamfunction:
(u, w) = (−ψz, ψx). The remaining fields are derived from (2.1). The superinertial
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fields are

ǔ=−U0

∞∑
n=1

PPn cos(nZ) cos(n|X̌| −ωt), (2.28a)

v̌ =− fU0

ω

∞∑
n=1

PPn cos(nZ) sin(n|X̌| −ωt), (2.28b)

w̌=−sgn(x)
U0

µ̌

∞∑
n=1

PPn sin(nZ) sin(n|X̌| −ωt), (2.28c)

b̌= sgn(x)
N2U0

ωµ̌

∞∑
n=1

PPn sin(nZ) cos(n|X̌| −ωt), (2.28d)

p̌=−sgn(x)
N2U0h
πωµ̌

∞∑
n=1

PPn

n
cos(nZ) cos(n|X̌| −ωt). (2.28e)

The subinertial fields are

û=−U0 cos(ωt)
∞∑

n=1

e−n|X̂|PPn cos(nZ), (2.29a)

v̂ = fU0

ω
sin(ωt)

∞∑
n=1

e−n|X̂|PPn cos(nZ), (2.29b)

ŵ=−U0 cos(ωt)
sgnx
µ̂

∞∑
n=1

e−n|X̂|PPn sin(nZ), (2.29c)

b̂= N2U0

ωµ̂
sgn(x) sin(ωt)

∞∑
n=1

e−n|X̂|PPn sin(nZ), (2.29d)

p̂=−N2U0h
πωµ̂

sgn(x) sin(ωt)
∞∑

n=1

e−n|X̂|

n
PPn cos(nZ). (2.29e)

Some important properties of the solutions are apparent by inspection, and are
illustrated in figure 2, where we set U0 = 0.006 m s−1 and N = 0.0017 rad s−1.
Subinertial solutions are evanescent and trapped to the ridge crest with a decay scale
1/k̂ that decreases with latitude. Superinertial solutions are radiating waves with
wavenumbers ǩ, and form characteristic internal wave beams at slopes determined by
the dispersion relation. At x= 0 the subinertial buoyancy field has a quadrature phase
relationship with the barotropic tide, indicating that the largest isopycnals at the ridge
occur during slack tide. Conversely, the superinertial buoyancy field is in phase, and
peak isopycnal displacements are associated with peak cross-ridge flows.

2.3. Energetics

Using the expressions obtained in the previous section, we evaluate the time and
depth mean kinetic and potential energy at the ridge-crest (x= 0) using the following
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FIGURE 2. Horizontal velocities non-dimensionalized by U0 (colour) and isopycnals
(contours) at t= 0 for (a) superinertial ( f10◦) and (b) subinertial ( f50◦) solutions.

definitions appropriate for hydrostatic dynamics:

KE= ρ0

2
1

Th

∫ T

0

∫ h

0
(u2 + v2) dz dt,

APE= ρ0

2N2

1
Th

∫ T

0

∫ h

0
b2 dz dt.

 (2.30)

The integrals are evaluated over the full water depth, capturing the energy associated
with the response on the flank of the ridge as well as above its crest. The superinertial
energies are

ǨE= 1
8
ρ0U2

0

(
ω2 + f 2

ω2

) ∞∑
n=1

PP2
n,

ˇAPE= 1
8
ρ0U2

0

(
ω2 − f 2

ω2

) ∞∑
n=1

PP2
n,

 (2.31)

and the subinertial energies are

K̂E= 1
8
ρ0U2

0

(
ω2 + f 2

ω2

) ∞∑
n=1

PP2
n,

ˆAPE= 1
8
ρ0U2

0

(
f 2 −ω2

ω2

) ∞∑
n=1

PP2
n.

 (2.32)

Figure 3 illustrates the strong influence of rotation on the ridge-top energies for
a 24 h tide with a fixed tidal amplitude U = 0.006 m s−1, a stratification of
N= 0.0017 rad s−1 (1 cph), in a depth of 1000 m for a ridge of height 500 m. Below
the turning latitude, the total energy density at the ridge has a fixed value of 2× that
of the barotropic tide for this particular choice of parameters. At f0◦ this corresponds
to a wavelike response with equipartitioned kinetic and potential energy. At higher
latitudes the waves have a reduced potential energy, but an increased kinetic energy
due to the along-ridge component whose speed increases with latitude as f /ω. Above
the turning latitude the response is evanescent, but the along-ridge oscillatory currents
continue to grow with latitude. In contrast to superinertial behaviour, the available



Stratified tidal flow 941

2

4

6

8

10

Latitude
0 10 20 30 40 50 60 70 80 90

KE

APE

FIGURE 3. Depth- and time-averaged kinetic and available potential energies at x= 0 as
a function of latitude, from theory.

potential energy of the evanescent response also grows with latitude as isopycnal
displacements in the near field become large. The result is that for a fixed-amplitude
barotropic tide, the ridge-crest energy density of the response increases with latitude
once the flow is subinertial.

The increase in energy density with latitude also holds if the near-ridge, rather than
ridge-crest, response is considered. Defining ‘near-ridge’ as within a distance of k−1

from the crest, and using the dispersion relations in (2.16), we see that lengthscale
of the response decreases linearly in f . However, the ridge-top energy increases as f 2,
causing the total near-ridge energy of the response to increase with latitude.

Despite the elevated near-topographic energy densities above the turning latitude, in
this inviscid, two-dimensional analytical model there is no conversion of energy from
the barotropic tide to the baroclinic response once the latitude is subinertial. In the
absence of dissipation, conversion may only arise by the generation of radiating waves,
whose phase-averaged energy flux is defined:

J = 1
T

∫ T

0

∫ h

0
up dz dt. (2.33)

In the subinertial solution, pressure and cross-ridge velocity have a quadrature phase
relation in time and as a result there is no outward radiating flux, in contrast to
the superinertial solution where the pressure and cross-ridge velocity are in phase.
However, in the subinertial solution pressure and along-ridge velocity are in phase,
suggesting the potential for along-ridge radiation in a three-dimensional solution.

3. Numerical simulations
3.1. Set-up

To test the above theory and explicitly illustrate the effects of changing latitude on
tidal flows over topography, we use the MITgcm (Marshall et al. 1997) and solve the
full nonlinear, non-hydrostatic equations for two-dimensional tidal flow over a steep
Gaussian seamount on an f -plane. For all runs we set the tidal period to be 24 h,
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and the Gaussian topography to have a height of 500 m in 1000 m of water, and a
horizontal e-folding scale of 1000 m. Stratification is constant in depth with a Brunt–
Väisälä period of 1 h (N = 0.0017 rad s−1).

For the finite width bathymetry in these simulations, a measure of the linearity of
the flow is given by a non-dimensional excursion length

εrdg = Uc

ωlrdg
, (3.1)

which compares the horizontal displacement of a fluid parcel each tidal cycle
(lexc = Uc/ω) to a characteristic width of the ridge (lrdg). Here Uc is the depth mean
speed at the crest of the topography. Simulations are divided into two categories:
the small excursion length simulations have a very small-amplitude barotropic tide
(U0= 0.006 m s−1), and the long excursion length simulations have a larger-amplitude
tide (U0 = 0.02 m s−1). Generating tidal excursion lengths at the ridge crest of 160
and 550 m, respectively. An appropriate characteristic ridge width is determined at a
depth from the crest determined by the vertical length scale associated with the flow:
δ=Uc/N (Winters & Armi 2013). For these parameters, we estimate the characteristic
ridge widths to be 240 and 430 m, respectively. As such, the small excursion length
simulations have εrdg < 1, and the large excursion length simulations have εrdg > 1.

A second important parameter is the topographic Froude number, which is
defined as

Fr= U0

Nz0
. (3.2)

All simulations presented in this study have very small values of Fr, which in the
ocean corresponds to tall topography where most of the tidal flow is unable to
surmount the crest during all phases of the tide. Much of the tidal transport above
the crest is accommodated in a relatively fast, thin, bottom intensified layer (Winters
& Armi 2013).

In these simulations the topography is supercritical at all latitudes where the tide
is superinertial, meaning that it is steeper than the characteristics of the fundamental
frequency internal wave response. The barotropic tide is approximated in the model
by the addition of a spatially uniform body force (Gu,Gv) to each of the horizontal
momentum equations such that in the absence of topography the flow is rectilinear in
the x-direction and oscillatory with frequency ω and amplitude U0 (Di Lorenzo, Young
& Llewellyn Smith 2006). Specifically, we set

(Gu,Gv)= (−U0ω sin(ωt),U0f cos(ωt)). (3.3)

In the real ocean, the barotropic tide itself may be subject to dynamics including
subinertial trapping (Longuet-Higgins 1968), however, its lengthscales are typically
determined by the barotropic Rossby radius, of order 1000 km. As these scales are
much larger than those being considered here, our spatially uniform approximation of
the tide in these simulations is justified. The inclusion of a more realistic background
tidal ellipse does not change the dynamics of these two-dimensional simulations,
but it imposes greater computational demand by restricting the time step. Eleven
small excursion length simulations are presented with f corresponding to latitudes,
θ = [0, 10, 20, 25, 35, 40, 50, 60, 70, 80, 90]◦. We use subscript notation to refer
to each simulation, where, for example, f50◦ indicates the simulation was performed
at a latitude of 50◦. Two large excursion length simulations are performed at 3.85◦
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and 44.7◦. These latitudes are chosen because the theory of § 2 predicts that the
amplitude of near-crest isopycnal displacement, and therefore the available potential
energy at the ridge crest, will be the same at each, even though the nature of the
response will be fundamentally different. At θ = 30◦ we are very close to the turning
latitude of a 24 h tide and the lengthscale, k−1, is too large to fit in the computational
domain, therefore we do not present results from this simulation.

We telescope our grids in the horizontal such that resolution is highest within 30 km
of the ridge. Small excursion length simulations have an isotropic resolution of 15 m,
and large excursion length simulations have an isotropic resolution of 5 m within this
high-resolution region. In all cases, the domain has a total width of 300 km and is
horizontally periodic. Baroclinic signals that reach the boundaries reenter the domain
at the opposite boundary at a time determined by the phase speed of the signals and
the width of the computational domain. We define an analysis region within ±4 km
of the ridge crest, and perform all analysis before these spurious signals reach the
boundaries of our analysis domain, which occurs at a time easily identified using
Hovmöller diagrams at fixed depth. For these simulations we have determined that
between 120 and 144 h, five periods after the simulation starts, flows in the analysis
region are uncontaminated by these reentrant waves.

As a check on the convergence of our numerical solutions, two of the small
excursion length simulations ( f10◦ and f50◦) are repeated with identical parameters
but doubled resolutions to ensure that our solutions are not quantitatively resolution
dependent. Evaluation of the kinetic energy budget in the double-resolution simulations
reveal differences of less than 3 % in the dominant terms, giving us confidence in the
quantitative results of our standard-resolution simulations. We achieve good closure
of the budget in the higher-resolution long excursion length simulations, where time
mean residuals in the energy balance are approximately four times smaller than
the smallest term in the kinetic energy budget (the dissipation rate). Closure of the
budget in the small excursion length simulations have residuals that are comparable
with computed dissipation rates, which themselves comprise around 1 % of the
largest terms in the budget. Residuals in this budget arise from spatial and temporal
discretization errors in our post-simulation evaluation of the terms, in addition to
numerical diffusion by the model numerical schemes.

The small excursion length simulations were performed with constant background
viscosities of 2 × 10−3 m s−2 corresponding to Reynolds numbers between 1500
and 5000, though the simulations are non-turbulent. The high-resolution long
excursion length simulations additionally employ a Smagorinsky turbulence closure
(Smagorinsky 1963), with a Smagorinsky coefficient of C2

s = 0.03. Diffusivities are
8 × 10−4 m s−2 for all simulations, and no-slip boundary conditions are enforced
at the topography. To minimize numerical diffusion, a seventh-order monoticity
preserving scheme is used for tracer advection (Daru & Tenaud 2004). Momentum
advection is by a centred second-order scheme.

3.2. Small excursion length simulations
3.2.1. Flow snapshots

Widefield snapshots of cross-ridge flow at 120 h are presented in figure 4 for the
simulations at latitudes of 10◦ and 50◦. In this and all subsequent snapshot figures the
spatially constant background tide, ub, has been removed. Parameters are the same as
used in the linear analytic solution presented in figure 2, enabling a direct comparison
of linear theory with model output. In the f10◦ simulation, the forcing frequency is
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superinertial and the domain is filled with baroclinic energy associated with energetic
radiating internal tides. Beams are present, formed from the superposition of linear
internal wave modes. Their angles are dependent upon wave frequency according
to the internal wave dispersion relation. Harmonics of the forcing frequency are
visible at steeper angles, arising due to advection by the background tide (Bell 1975).
In contrast, the subinertial f50◦ simulation has much less energy in the far field as
energy at the forcing frequency is unable to radiate at this latitude. Beams at angles
corresponding to harmonics of the fundamental frequency are present, indicating the
generation of some radiating energy, however, their energy content is small.

Nearfield snapshots of the simulations at 6 h intervals between 120 and 138 h are
shown in figures 5 and 6. Cross-ridge velocity, u, is presented in the upper panel,
and along-ridge velocity, v, in the lower panel. Consistent with the linear solution,
velocities in the along-ridge direction have an amplitude of fU0/ω and are therefore
much smaller at 10◦ (figure 5) than at 50◦ (figure 6). In the f50◦ simulation, the
quadrature phase relation between displacement and cross-ridge velocity is evident as
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isopycnal displacements occur with a 6 h lag behind cross-ridge flows. In agreement
with the theory of § 2, both along- and cross-ridge velocities are baroclinic away
from topography. The periodic nature of the symmetric tidal flow is demonstrated as
the third and fourth panels are mirror images of the first and second panels, with the
colors reversed. Time mean along-ridge jets form along the flanks of the ridge and
are most clearly visible at 0 and 12 h of the snapshots, and are discussed in detail
in the next section.

3.2.2. Phase-averaged flows
Despite the small amplitudes of the tide in these simulations, nonlinear effects

generate significant rectified along-ridge flows near the crest of the ridge whose
magnitude increases with latitude. In the deep ocean, tidally rectified flows arise
under the combined influence of a Stokes drift associated with the Coriolis turning of
a fluid parcel as it changes its water depth, and an Eulerian mean current (Huthnance
1973; Loder 1980). In the shallow water near the ridge crest, continuity and Coriolis
turning cause the tidal ellipse to be larger than in deeper water. The tidal Stokes
drift arises as fluid parcels advected between deep and shallow water each tidal cycle
experience asymmetric along-ridge flows, leading to a time-mean drift along the ridge
(in the northern hemisphere the drift is with shallow water to the left). However, in
the shallow water close to the crest fluid parcels experience greater friction than in
deeper water, and an Eulerian mean flow is established such that, combined with the
Stokes drift, fluid parcels experience no time mean accelerations or drag over each
tidal cycle. The Eulerian mean flow is in the opposite sense to the Stokes drift such
that along-ridge parcel velocity is enhanced in low friction (deeper) regions relative
to high friction (shallower) regions, and the net drag is zero. The resulting mean
Lagrangian current is in the same sense as the Eulerian current (shallow water to the
right, in the northern hemisphere), but is smaller due to the influence of the mean
Stokes velocity. The generation of these flows has been studied for a stratified fluid
over small-amplitude topography in some detail (Maas & Zimmerman (1989a) and
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Maas & Zimmerman (1989b), hereafter MZ88a and MZ88b, respectively). MZ88b
find that stratification causes the rectified flows to be bottom trapped, and associated
with Eulerian mean cross-isobath circulations. In this section we illustrate these flows
in our simulations from both the Eulerian and Lagrangian reference frame and find
good qualitative agreement between the small-amplitude topography theory presented
in MZ88b, and the rectified flows occurring in these finite-amplitude topography
simulations.

Eulerian time-mean along-ridge currents (colour), x–z streamfunction (grey
contours) and isopycnal displacements (black contours) from the analysis period
for the simulations at f10◦ and f50◦ are shown in figure 7(a,b). The Eulerian mean
streamfunction is computed by integrating the time mean cross-ridge component
in z, with the integration constant set to ensure continuity over the ridge. In all
simulations with f 6= 0, a mean flow develops that is predominantly composed of a
pair of along-ridge jets with anticyclonic vertical vorticity at the ridge crest, with a
general trend that the jets become faster as latitude increases (figure 7c). Peak jet
speeds in the f50◦ simulation are in excess of 3U0 and are located at around the depth
of the crest of the topography (note that at this latitude the oscillatory along-ridge
response has a magnitude of fU0/ω= 1.5U0). As predicted in MZ88b, these Eulerian
time-means exhibit secondary circulations in the x–z plane: jet-centred cells with peak
downwards velocities of around 0.25U0 at the crest, and weaker upward velocities
near the outside of each of the jets. The phase mean along-ridge jets in the f10◦

simulation are weaker and extend further in the horizontal.
We compute the Eulerian mean momentum balance by performing a Reynolds

decomposition of the fields such that they are composed of three parts: an Eulerian
phase-averaged component (angle brackets), the oscillatory baroclinic response
component (primes), and, in the case of the cross-ridge velocity, the spatially uniform
background tide (ub):

u= 〈u〉 + u′ + ub; v = 〈v〉 + v′; w= 〈w〉 +w′,
p= 〈p〉 + p′; b= 〈b〉 + b′.

}
(3.4)
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These expressions are substituted into the nonlinear equations of motion, and averaged
over one tidal period:

〈u〉t + 〈p〉x − f 〈v〉 − ν∇2〈u〉 =−(〈ubu′〉x + 〈u′u′〉x + 〈w′u′〉z + 〈u〉〈u〉x + 〈w〉〈u〉z),
〈v〉t + f 〈u〉 − ν∇2〈v〉 =−(〈ubv

′〉x + 〈u′v′〉x + 〈w′v′〉z + 〈u〉〈v〉x + 〈w〉〈v〉z),
〈w〉t + 〈p〉z − 〈b〉 − ν∇2〈w〉 =−(〈ubw′〉x + 〈u′w′〉x + 〈w′w′〉z + 〈u〉〈w〉x + 〈w〉〈w〉z),
〈b〉t +N2〈w〉 − κ∇2〈b〉 =−(〈ubb′〉x + 〈u′b′〉x + 〈w′b′〉z + 〈u〉〈b〉x + 〈w〉〈b〉z),

〈u〉x + 〈w〉z = 0.


(3.5)

The advective terms are grouped on the right-hand side of the equations, and represent
forcing terms for the Eulerian mean fields. Three types of nonlinear interaction can
give rise to a momentum flux into the Eulerian mean: (1) self-interaction of the primed
fields (Reynolds stresses); (2) self-interaction of the mean fields; and (3) interaction
of the barotropic tide with the primed fields. Terms making up the momentum and
buoyancy budgets were computed at the beginning of the fifth period for the double-
resolution simulation at f50◦ in a region close to the crest of the ridge. The across-
ridge momentum and buoyancy budgets and are shown in figure 8, where (a,b) shows
the dominant terms and budget residual. All of the nonlinear terms are included in
〈Du/Dt〉 and 〈Db/Dt〉, respectively.
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Consistent with the expected balance for tidally rectified flows (e.g. Loder 1980),
the across-ridge (x) momentum balance for the Eulerian mean flow is predominantly in
geostrophic balance (figure 8a, pale blue dashed and grey solid lines), with a residual
supported by nonlinear terms. The terms corresponding to the rate of change of the
mean cross-ridge flow and viscous diffusion of mean x-momentum were found to be
negligibly small compared with the other terms and are not explicitly shown (the time
dependent terms make a small contribution to 〈Du/Dt〉 and 〈Db/Dt〉). The nonlinear
terms are broken down in figure 8(c–f ), and show that the dominant terms are the
Reynolds stresses, shown in figure 8(c).

Terms in the Eulerian buoyancy budget are shown in figure 8(b). Figure 8(a,b)
illustrates the balance between nonlinear terms and the Eulerian vertical velocity.
Once again, the time derivative and diabatic terms are small compared with the
others and are not shown. The smallness of the diffusive term confirms that despite
the relatively large Eulerian vertical velocities, fluid parcels do not cross isopycnals
in the time mean, underscoring the importance of a Lagrangian frame of reference
when considering time mean fluid motion in oscillatory flows. Eulerian mean vertical
velocities are mainly supported by Reynolds stresses (figure 8d), and to a lesser
extent by interactions of the Eulerian mean fields (figure 8f ).

Whilst the diabatic and unsteady terms are negligibly small in the across-ridge
momentum and buoyancy budgets, they are small but non-zero in the along-ridge (y)
momentum balance (not shown), indicating that the jets are slowly accelerating at
the time that the budget was diagnosed. Mixing results in a volume of intermediate
density fluid close to the crest of the ridge that slowly increases over the course of
the simulation (see § 3.3). Chen & Beardsley (1995) found similar processes to be
occurring in their simulations of stratified tidal flow over a shallow two-dimensional
ridge where it generated a tidal mixing front, which, through Rossby adjustment,
became associated with a frontal jet. The generation of mixed fluid in our simulations
provides a small but steadily increasing contribution to the rectified flows generated
by Coriolis turning and friction.

Individual particle trajectories were computed over one period for the flow as a post-
processing step by integrating the 10 min output fields using a Runge–Kutta fourth-
order scheme. Paths are dependent on the phase of the tide at which the particles were
seeded, and figure 9 shows nine paths initiated at slack tide before eastward flow in
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the f50◦ simulation. Particles close to the crest exhibit looping trajectories along the
ridge, as they move under the combined influence of Stokes drift and the Eulerian
mean flow, spending less time in shallower water (higher friction) than in deeper water
(lower friction) such that they experience no net drag. Short-wavelength oscillations
are apparent in some tracks as particles pass through nonlinear lee waves. Further
away from the crest, particles exhibit tracks that are much more elliptical, and close to
those expected from the zero-order linear solution. Particle tracks in the f10◦ simulation
(not shown) are qualitatively similar, but have smaller displacements along the ridge
crest due to weaker rectified flows.

3.2.3. Energetics
Tidal averages of kinetic and available potential energies in the region above the

topography are shown in figure 10(a). The finite width of the model ridge makes a
precise comparison with theory impossible, as such we present the spatial average in
a region 2 km wide and centred at the crest of the ridge. For comparison with the
theoretical results shown in figure 3, the kinetic energy is computed from only the
velocity field arising from the presence of the topography, i.e. with the time-dependent
but spatially constant background tide, ub, removed.

Consistent with theory, average ridge-crest energy is approximately constant below
the turning latitude, but increases with latitude where the barotropic tide is subinertial.
Where the tide is superinertial, the radiated wave field has a spatially constant energy
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density, and integrals over the analysis region compare well with the energy densities
predicted by theory. However, when the tide is subinertial the response is spatially
varying, and decays exponentially away from topography. In this case the influence of
the finite width of the topography on the spatial average causes the measured energy
density to be much smaller than that predicted for the knife-edge ridge.

Kinetic and potential energies associated with the Eulerian time mean flow are
shown in thin lines in figure 10(a). Even though the phase-averaged flows have
velocities comparable with the tidal amplitude, they constitute much less energy than
their time-dependent counterparts due to their limited spatial extent. The amplitudes
of these mean flows tends to increase with latitude up to 70◦ and is roughly constant
above that (figure 7).

Terms in the baroclinic energy budget are evaluated following (Kang & Fringer
2012) for the analysis region, and are shown in figure 10(b). The predicted rate
of conversion of barotropic to baroclinic energy by a knife edge ridge with the
same parameters (stratification, tidal amplitude and height) are also shown, and the
conversion predicted at θ = 0 is used to non-dimensionalize all values (Llewellyn
Smith & Young 2003). Modelled conversion is remarkably well predicted by the
knife-edge model, despite the nonlinearities and finite width of the numerical
simulation. Conversion decreases with latitude up to the turning latitude, and is
negligible beyond, as the evanescent response does not extract energy from the
barotropic tide in steady state. At superinertial latitudes, model baroclinic fluxes
are comparable with conversion as most of the converted energy radiates out of
the domain in the form of internal tides. Differences between the conversion and
baroclinic flux arises from the dissipation of baroclinic energy within the domain.
When the tide is subinertial, radiated fluxes are negligible, and all converted barotropic
to baroclinic energy is dissipated locally.

3.3. Long excursion length simulations
Nearfield mixing can arise through both breaking tidal lee waves and transient
hydraulic jumps (Musgrave et al. 2016), influencing the overall tide-topography
energy budget by dissipating energy in the nearfield, and reducing the radiated
internal wave flux (Klymak, Legg & Pinkel 2010; Rapaka, Gayen & Sarkar 2013). In
this section we present the results of two simulations having relatively long excursion
lengths (lexc ≈ lrdg), and contrast the development of nearfield mixing when the tide
is subinertial, then superinertial. The tidal amplitudes of these flows are 0.02 m s−1,
which is small, even in the deep ocean. Though the cross-ridge kinetic energy of
the response is the same at all latitudes, the along-ridge kinetic energy and available
potential energy depends on latitude. These simulations were performed at latitudes of
3.85◦ and 44.7◦, where theory predicts that the amplitude of the ridge-top buoyancy
anomaly (potential energy) will be the same, enabling as close to an equivalent
comparison as possible.

Snapshots of the flow at 6 h intervals during the fifth period of the simulation are
shown in figures 11 (superinertial) and 12 (subinertial). As in the small excursion
length simulations, the superinertial tide generates radiating energy at the fundamental
frequency and its harmonics which forms beams at characteristic slopes emanating
from the topographic crest. Close to the crest, the wavefield constructively superposes
during peak cross-ridge flow to form tidal lee waves: time-dependent beam-like
features that have slopes that change with the tide as the composite frequencies
disperse (Bell 1975; Musgrave et al. 2016). The subinertial simulation has some
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energy at harmonics, but the response at the fundamental frequency is trapped and
associated with large-amplitude along-ridge flows. The quadrature phase relation
between ridge-top flow and isopycnals is more obvious in these large-amplitude
simulations, with the subinertial simulation having large isopycnal displacements
during slack tide (hours 6 and 18). In hours 0 and 12, isopycnals very close to the
crest of the ridge on its upstream side exhibit vertical displacements that are not
predicted by the linear theory in § 2, and are associated with the phase-averaged jets.

Area integrated dissipation rates within ±4 km of the ridge crest are presented
for each simulation during the fifth period in figure 13(a). In these two-dimensional
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simulations, computed dissipation rates are not representative of dissipation associated
with fully turbulent, three-dimensional flows at high Reynolds number. Nevertheless,
their relative values and timings provide insight on which of the two simulations are
more dissipative, and when during the tidal cycle the dissipation occurs. Dissipation
rates take larger values and peak later in the tidal cycle for the subinertial simulation
compared with the superinertial simulation. In the superinertial simulation tidal
transport is in phase with isopycnal displacement at the ridge crest, and peak
dissipation lags peak tidal flow by around an eighth of a period as dissipative
processes in the hydraulic jump continue to grow even once the cross-ridge tidal
transport starts to decrease. In the subinertial simulation isopycnal displacement
lags tidal transport by a quarter period at the ridge crest, and peak dissipation
rates are both larger than in the superinertial simulation, and lag peak tidal flow
by almost a quarter of a period, occurring significantly later in the tidal cycle than
in the superinertial case. As the cross-ridge transport relaxes, the combination of
upward-moving isopycnals on the upstream side, and downward moving isopycnals
on the lee side causes the near-bottom, hydraulically controlled jet to persist for
longer, with the hydraulic jump developing in a region of relatively low stratification
(associated with large isopycnal displacement) and generating a more dissipative
hydraulic jump than in the superinertial case. In the latter situation, the relaxing tidal
transport is associated with increasing downstream stratification.

We assess the vertical distribution of mixing in each simulation within the analysis
domain (±4 km of the ridge crest) by defining an evenly spaced set of temperature
classes, then computing the volume of fluid occupied by each temperature class at
the beginning of the simulation, and at 120 h of the simulation. Figure 13(b) shows
the volume of fluid occupied by each temperature class, non-dimensionalized by its
initial volume for both the sub- and superinertial simulations. Volumes different
than one indicate that diabatic processes have mixed fluid into or out of that
temperature class. Both simulations show distinct mixing peaks at depths of ∼500 m,
corresponding to relatively weakly stratified fluid that develops close to the peak.
Adjacent temperature classes occupy a reduced volume of fluid, indicating relatively
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high stratifications surrounding the mixed fluid. The superinertial simulation has a
second, smaller peak at around 430 m depth. The temperature classes which have
grown (non-dimensional volumes greater than one) are outlined in green contours
in figures 11 and 12. Musgrave et al. (2016) distinguish between mixing arising
from hydraulic jump-like features which occur on the flanks of topography, and
mixing arising from convective instability of the radiating lee wave component,
which occurs at shallower depths, mainly above the ridge crest. The lack of a
second, shallower peak in the subinertial simulation is consistent with the evanescent
(non-radiating) fundamental frequency response, and consequently a much smaller
radiating component than in the superinertial case. The dominant mixing mechanism
here is a transient hydraulic jump of the bottom trapped cross-ridge jet, forming on
the flanks of the ridge each tidal cycle. In the superinertial simulation, the constructive
interference of the fundamental and harmonic responses is of large enough amplitude
to generate breaking and mixing in a radiating tidal lee wave, forming a second,
smaller peak in mixing above the top of the ridge. It is notable that the subinertial
simulation is more dissipative, despite the relative contribution from the radiating
component being much smaller in this case.

4. Trapped internal tides in three dimensions
The distinctly different nature of the evanescent compared with the radiating

response results in changes not only to the magnitude and spatial distribution of
tidal energy near topography, but also the timing, structure and evolution of nearfield
tidally driven mixing. In addition, nonlinear effects generate fast along-ridge time
mean currents, even when tidal amplitudes are small. A natural question that arises
is to what extent these idealized two-dimensional results apply in a more general
three-dimensional setting, and whether additional phenomena may become important.

Our imposition of two-dimensional solutions excludes a priori features with
along-ridge variation, including trapped topographic waves, which have been observed
at several high-latitude locations (Padman et al. 1992; Kunze & Toole 1997). The
structure of these trapped waves can be determined for specific topographies and
stratifications by numerically solving an eigenvalue problem whose eigenmodes
correspond to the resonant modes of the topography (Huthnance 1978; Brink 1989;
Codiga 1997). Trapped modes have discrete subinertial frequencies, and propagate
anticyclonically around bathymetry. When the eigenfrequencies of the trapped modes
are close to that of a tidal constituent, trapped tides at that frequency may be
resonantly excited, generating relatively large-amplitude tidal currents close to the
topography (Chapman 1989). Unlike the two-dimensional forced solutions discussed
in this paper, the eigenmodes corresponding to trapped tides are constructed such that
they individually satisfy a boundary condition of no-flow through the boundary.
Conversely, in the forced tidal problem, solutions are required to add to the
background tide such that there is no flow through the boundary, which means that
the solutions themselves have a component perpendicular to the boundary. Despite
this distinction, we note that in the subinertial solution, the phase relation between
displacement and along-ridge flow is consistent with propagation along the ridge
(if along-ridge variation was allowed). As a result, the forced response described in
this paper will resonantly excite the trapped eigenmodes of the topography if the
topographic length scales and ambient stratification are such that the eigenfrequencies
of the topography are close to the forcing frequency. For isolated topographies, the
potential for such resonant forcing may have important consequences for nearfield
mixing and dissipation, as a large-amplitude response is subject to nonlinearities and
breaking.
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Even in the absence of a resonance between the forced response and the eigenmodes
of the topography, we expect that the characteristics of the subinertial forced solutions
described here are relevant in three dimensions, generating strong along-ridge flows
that are phase locked with the background tide and having displacements and
velocities that increase, and off-ridge length scales that decrease at higher latitudes.

5. Discussion and conclusions

In this paper we have examined the two-dimensional response of a stratified
ocean to subinertial tidal forcing, and contrasted it to the relatively well-studied
response to superinertial tidal forcing. Analytic solutions for a tall, infinitely thin
barrier predict a latitudinal increase in the energy density at the ridge-crest when the
tide is subinertial, arising from large along-ridge flows and isopycnal displacements.
This is confirmed in a series of numerical simulations, which additionally illustrate
the distinctive evanescent nature of the response. The elevated energy density of
near-ridge subinertial tidal flows may strongly influence regional mixing at high
latitudes, affecting critical climate processes including ice melt and ocean–atmosphere
heat exchange.

All simulations with f 6= 0 generate along-ridge rectified currents, demonstrating
the importance of nonlinearity in these flows despite the small barotropic amplitudes.
The speed of the Eulerian mean currents increase with latitude, with peak speeds
reaching 4u0 at latitudes of 80◦, though the jet speeds continue to increase during
our simulations. The time mean flows are primarily associated with the Coriolis
mechanism described by Huthnance (1973), whereby Coriolis turning and frictional
drag cause fluid parcels to acquire relative vorticity. Additional routes for nearfield
dissipation may be associated with these currents in three dimensions, either by
interaction with along-bathymetric features which could lead to along-ridge hydraulic
processes, or even via the generation of Kelvin–Helmholtz-type instabilities. Using
the Eulerian mean field at f50◦ , and with N = 1 cph, we estimate a vertical shear
of ∼9 × 10−4 s−1, which results in a Richardson number of around 3.7. However,
the influence of nearfield mixing on locally reducing stratification, combined with
time-dependent changes in shear and stratification has the potential to reduce the
Richardson number during some phases of the tide such that instabilities in the
along-ridge flow may play an important role. In addition, the Lagrangian transport
associated with these jets may be important for high-latitude coastal processes,
transporting and mixing water masses across the shelf-break and providing a pathway
for the regional transport of tracers and biological material (Flexas et al. 2015).

A pair of simulations with larger-amplitude tides (0.02 m s−1) at latitudes that are
superinertial and subinertial for the 24 h tide show that the subinertial simulation is
relatively more dissipative, with peak dissipation occurring around π/2 after peak
barotropic velocity in the subinertial case, compared to around π/4 in the superinertial
case. Enhanced mixing in the subinertial simulation is due to reduced stratification
downstream of the crest when the transient hydraulic jump is developing. The
vertical distribution of mixing in both simulations is similar, though the superinertial
simulation has more mixing higher in the water column, associated with the radiating
lee wave response. In both simulations, most of the mixing occurs on the near-crest
flanks of the ridge, and is associated with hydraulic control of a bottom intensified
cross-ridge jet.

The generation of evanescent wave responses is not restricted to subinertial
frequencies. Maas (2011) shows that certain topographic shapes may be expected
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to generate evanescent baroclinic signals at specific frequencies, even when the tidal
forcing is superinertial. As such, the enhanced nearfield mixing that we observe in
this study may have a broader relevance to superinertial evanescent responses.

The idealized nature of this study invites further, more realistic investigation. In
particular, the influence of three-dimensional topography and a varying stratification
are relevant in an oceanic context. Our restriction to constant stratification is
applicable in the deep ocean, where a trapped response may not extend as far
as a pycnocline. However, in shallow water this is not the case, and an understanding
of how variations in stratification might affect the solution may be important. The
effects of three-dimensional topography, and particularly the interaction of the forced
response discussed here with three-dimensional trapped subinertial free modes may
lead to significantly more nearfield dissipation and mixing compared with when the
tide is superinertial. This additional complexity may indicate that parametrizing the
dissipation of subinertial tidal constituents may prove more complicated than their
superinertial counterparts.
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