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The larvae of many species in the butterfly family Lycaenidae associate with
ants (for review, see Hinton 1951; Atsatt 1981; Cottrell 1983). Although few
studies have attempted to assess the actual costs and benefits of the association
for both partners (e.g., Ross 1966; Pierce and Mead 1981; Pierce 1983; Pierce and
Easteal 1986), lycaenid butterflies and ants appear to exhibit all three kinds of
interaction: mutualism, commensalism, and parasitism. Consideration of the natu-
ral history of lycaenid-ant associations has led us to develop a model in which the
presence of lycaenids affects the equilibrium density of their attendant ants, and
the presence of ants influences both the growth rate and equilibrium density of the
butterflies. This single model can describe facultative as well as obligate interac-
tions. Moreover, even when the association is mutualistic, the model possesses
globally stable equilibria.

The main emphasis of our model is the observation that one of the species in the
association exhibits two dramatically distinct life stages, interacting with its
partner during only one of those stages. Thus, in the particular example discussed
here, the butterflies are holometabolous, and only the immature stages interact
with ants. This is just one example of a general characteristic of many symbioses,
including plant-pollinator relationships, certain homopteran-ant associations, and
a great variety of interactions in marine systems. In lycaenid-ant associations, the
presence of ants influences the fraction of pupae that eclose into adults. The
subsequent dynamics of the butterfly population is not affected by ants. In
particular, the number of butterflies that survive to lay eggs is not altered by the
ant population. However, the effect of lycaenids on attendant ants is character-
ized by the more traditional notion that food supplies affect the number of ant
colonies capable of existing in a given environment. In other words, the equilib-
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rium density of the ants is raised in mutualistic associations and lowered in
parasitic ones.

A possible example of a mutualistic interaction between lycaenids and ants
is that of the Australian lycaenid Jalmenus evagoras and its attendant ants,
Iridomyrmex sp. 25 (Australian National Insect Collection, anceps group; see
Pierce 1983). The immature stages of J. evagoras secrete substantial food rewards
in the form of sugars and amino acids that the ants harvest. For example, 67
juveniles of J. evagoras living on a single food plant secreted approximately 400
mg of dry biomass for their attendant ants over a 24-h period (Pierce 1983). In
return for this food, ants protect larvae and pupae against parasitoids and preda-
tors. Field experiments with this species showed that parasitism of and predation
on the immature stages are so intense that without attendant ants, populations of
J. evagoras would not survive (Pierce 1983). Ants are sufficiently important in the
life history of J. evagoras that females use them as cues in selecting sites for
oviposition (Pierce and Elgar 1985).

A likely commensal relationship between lycaenids and ants is that of De-
loneura ochrascens (Jackson 1937). The larvae of this butterfly are found with
ants of the species Crematogaster castenea among lichens on tree bark (Acacia
stenocarpus). The larvae feed on the lichen and do not interact with the ants.
Nevertheless, larvae often nestle in the entrances of the ant galleries, probably
gaining protection from their proximity to the ants. Other African species such as
Iridana incredibilis and 1. perdita marina have similar life histories (Jackson
1937).

Finally, a clear case of lycaenid-ant parasitism is that of the large blue,
Maculinea arion, and its attendant ant, Myrmica sabuleti (Frohawk 1903; Chap-
man 1916; Thomas 1980; Cottrell 1983). Larvae of M. arion secrete substances
that mimic ant-brood recognition signals. A developing larva feeds on flowers of
thyme, Thymus drucei, until after the third molt, whereupon it drops to the ground
and awaits discovery by a worker of M. sabuleti. As soon as a worker finds the
larva, she picks it up, carries it into the nest, and places it with the brood.
Undetected by the ants, the larva becomes predaceous and feasts upon the brood.
It grows to a large size, overwinters, and pupates in the ant nest.

ASSUMPTIONS OF THE MODEL

Our model stresses the following features of the natural history of lycaenid-ant
interactions.

1. Mutualistic lycaenids supply nutrients for the ants, thereby increasing the
number of ant colonies that can survive in a given environment. Nutrition is
important to both the survival of queens and the production of new queens (e.g.,
Wilson 1971; Brian 1983). Hence, the presence of mutualistic lycaenids could
raise the equilibrium density of the ant population. Commensal interactions have
no effect on the equilibrium density of the ants, but parasitic interactions decrease
the equilibrium density (fig. 1).

2. Our previous remarks about holometaboly suggest that there are really three
interacting populations in our model: immature lycaenids, adult lycaenids, and
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FiG. 1.—Three cases of the equilibrium density of the ants, A(b), as a function of the
butterfly population density, b: if the interaction is mutualistic, A(b) increases with b; if the
interaction is commensal, A(b) is constant; if the interaction is parasitic, A(b) decreases as b
increases. In all cases, the effect ‘‘saturates’’ and A(b) approaches a constant as b approaches
infinity.

ants. For simplicity we have lumped the first two into a single variable, the density
of adult lycaenids, and assumed that this variable also reflects the population
density of immature stages: the more butterflies present, the more larvae there are
to feed the ants. It is possible to construct a three-variable model with one
variable for each stage, but the additional complexity of the mathematics obscures
the presentation. If our goal were detailed quantitative prediction rather than
qualitative understanding, such a construction would be useful.

3. The primary effect of the ants on the butterflies is to protect the immature
stages. This protection alters the growth rate of the butterfly population (fig. 2) by
increasing the realized fecundity of individual butterflies: in the presence of ants, a
larger proportion of the eggs laid by any one butterfly will survive and eventually
emerge as adults. Again, the natural history feature emphasized here is that the
ecological niche occupied by juveniles is different from that occupied by adults. In
this case, ants interact with the larvae and pupae of lycaenids, but not with the
adults. In our model, the “‘birth™’ rate of butterflies is equivalent to the number of
pupae that eclose. Because ants protect the larvae and pupae, mutualistic interac-
tions with ants increase the survival of immature stages, thereby increasing the
eclosion rate of the butterflies. The presence of ants does not affect the survival of
butterflies, however, since ants do not interact with the adults. In the parasitic
case described above (Maculinea arion), ants provide larvae with food and pro-
tection, and we can consider the ant nest itself analogous to a womb for the
developing butterflies. The effect of the ants that nurture the larvae within the nest
is to raise the eclosion rate of the butterflies.

4. Because lycaenid butterflies are holometabolous, a large fraction of each
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FiG. 2.—The intrinsic growth rate of the butterflies, S(a), as a function of the ant population
density, a. At low ant densities S(a) is negative because of intense parasitism and predation.
There is a critical size of the ant population, a., at which the growth rate of the butterfly
population becomes positive. At large values of a, the effect saturates (all larvae survive) and
S(a) approaches a constant.

individual’s life is spent as an egg, larva, and pupa. The majority of the foraging
responsible for growth and eventual gamete production occurs in the larval stage,
and this life history stage is probably most vulnerable to predation and parasitism.
Hence, the equilibrium density of the butterflies is strongly influenced by the
number of juveniles that survive to eclosion, and survival rate depends on the ant
population size. In addition, the equilibrium density of the butterflies will be
regulated by density-dependent controls, such as predation and shortages of food
supplies, that are independent of the number of ants. Both of these ant-dependent
and ant-independent effects have been incorporated into our model.

THE MODEL

The model we propose is an extension of the classical Lotka-Volterra equation
for population growth, and is expressed as

daldt = ra — rla*/A(b)] ¢))
dbldt = S(a)b — So(b*/B), 2)

where « is the population density of the ants (in terms of numbers of ant colonies);
b, the population density of the butterflies; r, the intrinsic growth rate of the ants;
A(b), the equilibrium density of the ants, which depends on the butterfly popula-
tion density (fig. 1); S(a), the intrinsic growth rate of the butterflies, which
depends on the ant population density (fig. 2); S¢/B, a constant of the environment
regulating the population density of the butterflies; and BS(a)/S,, the equilibrium
density of the butterflies, which depends on the ant population density.

Note that S(a) is negative if a < a.; a. is the critical ant population density
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required to ensure that the growth rate of the butterfly population is positive. If
there are not enough attendant ants, parasitism and predation on larvae are so
intense that the butterfly population has a negative growth rate and becomes
extinct. The model can also describe facultative mutualism by simply assuming
that S(a) is always positive and that there is no critical number of ants necessary
for the butterflies to survive.

In constructing the model, we decided to use the form in equation (2) rather
than a superficially similar form:

dbldt = S(a)b — S(a)b*/B. 3)

The difference between the two is most easily appreciated by considering the
behavior of the butterfly population density when

b/B >> 1 4)

(i.e., a butterfly epidemic). In this case, equation (2) reduces to db/dt = — So(b*/B),
and the decrease in density is independent of the ant population density. We
introduce the symbols S,/B separately rather than as a single constant so that the
analogy with the standard Lotka-Volterra equation is more apparent. Dimensional
analysis is also made easier: S, has the dimension 1/time and B has the dimension
butterfly population size.

Alternatively, in the limit (4), equation (3) gives db/dt = — S(a)b*/B, and the rate
of decrease of the butterfly population is influenced by the population density of
the ants through S(a). This latter possibility seems unrealistic in view of the
natural history of the system: the ants increase the growth rate of the butterflies by
ensuring that a larger fraction of the larvae survive and metamorphose into
butterflies. Since the ants have no effect on the mortality of butterflies, they
cannot influence the rate at which epidemic populations of butterflies decrease.
Other processes signified by the constant S¢/B that are independent of the ant
population density, such as predation or starvation, are the controls that deter-
mine the equilibrium density of the butterflies under these situations. Hence, the
system described by equations (1) and (3) has several biologically unreasonable
equilibria whose existence is due solely to ant-dependent behavior of the butterfly
population when (4) is satisfied. The system of equations (1) and (2) is a more
faithful translation of biological intuition into mathematics.

~ Several further refinements to our model might be considered. It is possible that
butterflies also affect the growth rates of ants by increasing the numbers of
reproductives produced by ant colonies (for discussion, see Wilson 1971; Brian
1983). This effect could be included by positing that » in equation (1) is a function
of b. In addition, the larvae and butterflies could be treated as separate variables
using a three-component model (see above). In the same vein, one could convinc-
ingly argue that for a species in which single generations are clearly separated by a
seasonal cycle (as with Glaucopsyche lygdamus in Colorado; see Pierce and
Easteal 1986), a difference equation might be a more appropriate model than
equation (1). Even for species whose generations overlap (as with Jalmenus
evagoras in Australia; see Pierce 1983), the time lag between egg deposition and
the emergence of the reproductives might be important as a stabilizing mecha-
nism, and it could be modeled using delay-differential equations.
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Some of these embellishments, such as the possible effect of butterflies on ant
growth rate, are easily included but lead only to quantitative changes: the struc-
ture of equilibrium solutions and the separatrices in the phase planes remain
unaltered. Others, such as time lags, have complicated consequences that might
alter the conclusions of the model. Although it would be straightforward to
construct a model that includes all of the above, it would not be easy to solve it.
The present model is intended to illustrate a process in isolation, rather than to
predict the outcome of several interacting mechanisms. The process is the stabili-
zation of obligate and facultative symbioses by the noninteraction of the partners
when one is in the reproductive stage.

We now discuss the three varieties of lycaenid-ant interactions in turn. The
three cases are distinguished by the behavior of A(b) (as shown in fig. 1). Figure 3
shows the (a, b) phase plane in mutualism. The arrows indicate the direction in
which the system tends to move if it is at a particular point in the (a, b) plane. Also
shown are the curves on which da/dt or db/dt is zero. For instance, from equation
(1), da/dt is zero if a = 0 or a = A(b). Equilibrium solutions are points at which
both da/dt and db/dt are zero. These are indicated by heavy dots and are also
numbered.

As figure 3 illustrates, the behavior of the system is not entirely independent of
the functions of figures 1 and 2. The most important question is whether the
starting number of ants, A(0), is larger than a.. That is, is the carrying capacity of
the ant population in the absence of butterfly larvae larger than the critical density
required to ensure a positive growth rate for the butterflies? It seems most likely
that, in general, the answer to this question is yes (and A(0) > a, as shown in fig.
3i), simply because it is the easiest situation in which to imagine the system
evolving. Nevertheless, a condition such as that described by figure 3ii is conceiv-
able, particularly in unstable or seasonal environments in which A(0) might fall
below a.. Both cases are examined here. First, suppose A(0) is greater than a. (fig.
3i). There is one globally stable equilibrium solution that eventually traps the
system (equilibrium point 1). Note how the equilibria with b = 0 (i.e., points 2 and
3) are unstable.

But suppose that A(0) is less than a.. As figures 3ii and 3iii indicate, there are
two possibilities. In figure 3ii, the growth rate of the butterfly population rises
sharply once a exceeds a.. There are now four equilibria solutions, two of which
are locally stable, as indicated by the arrows. In solution 1, 4 is nonzero and the
ants have an elevated population density. In solution 3, the butterflies are extinct
(b = 0) and the ant population density is A(0). The system is eventually trapped
by one of these two stable equilibrium solutions. There is a watershed or separa-
trix (shown by the dashed line passing through the unstable solution 2), which
separates the domains of attraction of the two locally stable solutions. Initial
conditions above the watershed would eventually collapse into the valley bottom
at point 1, while those below the watershed would go to point 3.

In figure 3iii, A(0) is again less than a., but the growth rate of the butterfly
population rises slowly as a increases. There are two equilibria, and only point 1 is
stable. The butterfly population must become extinct in this situation.

Now consider commensalism. Figure 1 illustrates that this case is a transition
between mutualism and parasitism, and a real system may lean toward one or the
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Fi1G. 3.—The (a, b) plane when the interaction is mutualistic. Arrows indicate the direction
in which the system tends to move at a given point. (i), Equilibrium 1 is stable and 2 and 3 are
unstable; (ii), equilibria 1 and 3 are stable; the dashed line delineates a separatrix dividing the
domains of attraction of points 1 and 3; (iii), equilibrium 1 is stable. In all cases, if the system
is displaced slightly from the stable equilibrium point, the displacement decreases exponen-
tially without oscillations.
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F1G. 4.—The (a, b) plane when the interaction is commensal. (i), Equilibrium 1 is stable and
2 and 3 are unstable; (i), equilibrium 1 is stable, and the butterflies become extinct. Perturba-
tions about the stable equilibria damp exponentially without oscillations.

other depending on the costs and benefits to each partner. Figure 4 shows the (a,
b) plane. In this case A(b) is a constant; that is, the changes in the ant population
are independent of the butterfly population. Again the fate of the butterfly popula-
tion hinges on whether A(0) exceeds a.. If the equilibrium density of the ants
exceeds the critical density required to protect the butterfly population (fig. 4i),
then the butterflies survive. In the other case (fig. 4ii), the butterflies become
extinct.

Finally, suppose the interaction is parasitic. If A(0) is greater than a., there is a
stable equilibrium solution in which the butterflies survive (fig. 5i). Otherwise, the
butterfly population becomes extinct (fig. Sii). Figure 5i suggests that if the system
is perturbed, the return to the equilibrium solution may take the form of damped
oscillations. A straightforward linear stability analysis shows that this is pos-
sible if da/dt, evaluated at the equilibrium point, is sufficiently negative. This
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Fic. 5.—The (a, b) plane when the interaction is parasitic. (i), Equilibrium 1 is stable and 2
and 3 are unstable; (ii), equilibrium 1 is stable and the butterflies become extinct. If the
system is displaced slightly from point 1, the return to equilibrium may take the form of
damped oscillations.

same analysis indicates that small perturbations in all other cases decay without
oscillation.

DISCUSSION

Previous models describing the population dynamics of mutualistic interactions
have been based on the assumption that the presence of each species alters the
equilibrium density of its partner (e.g., May 1973a,b; Levins 1974). In these
models, depending on the values of the interaction coefficients, mutualism is
unstable or destabilizing; in the welter of mutual enhancement, the population size
of both species careens to infinity. Stable conditions are possible only with the
addition of density-dependent interaction coefficients that ensure intraspecific
regulation (e.g., Whittaker 1975; Christiansen and Fenchel 1977; Vandermeer and
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Boucher 1978; Goh 1979; Dean 1983) or with external regulation from a third
species such as a predator or competitor (Heithaus et al. 1980). May (1976),
examining the stability of obligate mutualism at different population densities,
found that at high population densities mutualisms could reach a stable equilib-
rium, whereas at low densities they were likely to become extinct. He reasoned
from this that obligate mutualisms were more likely to evolve in the tropics, where
environments might be more constant and both mutualists could maintain high
population densities.

Addicott (1981) demonstrated in a numerical analysis that although certain
mutualistic interactions may be unstable, others, perhaps the majority of cases,
are relatively stable. He introduced a new class of models, of which ours is an
example, in which the interaction between mutualists increases the equilibrium
density of one species and the growth rate of another (a I-III interaction in
Addicott’s terminology). He argued that, in mutualism, ‘‘species derive benefit
from each other in qualitatively different ways’’ (Addicott 1979, p. 43). This
intuitive insight motivated his proposal of density-dependent growth rates. He
then used computer simulations to analyze the return-time stability and persis-
tence of six combinations of three basic two-species models (i.€., those of Gause
and Witt 1935; Whittaker 1975; Addicott 1981). By comparing these models of
mutualism with the appropriate models without mutualism, he determined that
four of the six combinations showed higher return-time stability, and all models
showed persistence stability. For example, if the interaction between two species
increases the equilibrium density of one and the growth rate of another, then a
perturbed system returns to equilibrium more rapidly when it is involved in a
mutualistic interaction than when it is not.

Although our model falls into the same class of models introduced by Addicott,
it differs from his analysis in several ways. First, we have based our model on the
natural history of a particular system, identifying holometaboly as a biological
mechanism underlying the “‘I-III”’ interactions described by Addicott. Second,
our model can describe obligate mutualism as well as facultative mutualism,
depending on the presence or absence of a. in figure 2, and it encompasses
parasitic and commensal relationships as well as mutualistic ones. This makes it
particularly useful in describing lycaenid-ant associations, since all three types of
interactions apparently occur between these two organisms. Finally (and this is a
methodological difference), we use phase-plane geometry rather than numerical
analysis to understand the behavior of the system. For our purposes, the advan-
tage of phase-plane analysis is that it is not necessary to postulate specific
dependence of the butterfly growth rate on the ant population density, or ant
equilibrium density on butterfly population density. Instead, we can show that the
logic of our principal conclusions are generic and depend only on the simplest
qualitative properties of these density-dependent functions. Any function that
looks like that sketched in figure 2 will lead to solutions that have the same
qualitative properties. This is a desirable feature for a biological model, since it is
often difficult in nature to measure or even estimate population parameters
accurately.

In conclusion, this model describes the population dynamics of mutualistic,
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commensal, and parasitic lycaenid-ant interactions and shows that all three of
these two-species interactions can be stable in nature. The model may have
general applicability to other two-species interactions, such as those between
homopterans and ants or between plants and their pollinators. In the latter case,
the gametes (pollen and eggs) are again in an ecological niche different from that of
the adult plants. Pollinators increase the birth rates by increasing fertilization
rates.

Our model does not address the question of how different kinds of two-species
interactions might evolve. Pierce (1984) discussed some of the factors that have
influenced the evolution of lycaenid-ant associations. Several authors, most nota-
bly Axelrod and Hamilton (1981) using game theory and Roughgarden (1975) and
Keeler (1981) using cost-benefit analysis, have developed models that predict
conditions under which cooperative species interactions could evolve. Wilson
(1980) adopted an approach similar to that of May (1976) in developing a series of
models to examine the evolution of community welfare as a whole.

SUMMARY

We present a two-species model that describes the population dynamics of
mutualistic, commensal, and parasitic interactions between lycaenid butterflies
and ants. The lycaenids affect the equilibrium density of their associated ants,
whereas the ants influence both the growth rate and the equilibrium density of the
butterflies. The model can describe obligate as well as facultative relationships on
the part of the lycaenids, and even when the interaction is mutualistic, the model
has globally stable equilibria. We suggest that this model has general applicability
to other two-species interactions.
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