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a b s t r a c t

We present a model interacting particle systemwith a population of fixed size in which particles wander
randomly in space, and pairs interact at a rate determined by a reaction kernel with finite range. The
pairwise interaction randomly selects one of the particles (the victim) and instantly transfers it to the
position of the other (the killer), thus maintaining the total number. The special feature of the model
is that it possesses a closed hierarchical structure in which the statistical moments of the governing
master equation lead to closed equations for the reduced distribution functions (the concentration, pair
correlation function, and so on). In one spatial dimension, we show that persistent spatial correlations
(clusters) arise in this model and we characterize the dynamics in terms of analytical properties of the
pair correlation function. As the range of the reaction kernel is increased, the dynamics varies from an
ensemble of largely independent random walkers at small range to tightly bound clusters with longer-
range reaction kernels.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The most challenging problems in statistical physics and pop-
ulation biology involve a large number of spatially distributed
interacting individuals. Although these models are completely de-
scribed by a deterministic master equation, this formulation does
not usually provide a practical means of extracting exact statisti-
cal information. The problem is that most models with spatially
localized interactions between individuals do not lead to a closed
hierarchy of reduced distribution functions: in the analogue of
the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy,
the evolution equation for the single-particle density function (the
concentration) involves the pair correlation function, and the evo-
lution equation for the pair correlation function involves the triplet
function, and so on. This closure problem complicates models of
biological populations and reaction kinetics starting with Doi [1,2]
and continuing to recent work [3–10]. In this article, we formulate
a model that has no such drawback: the BBGKY hierarchy closes
and there is a compact many-body formulation.

The individual-based model studied here is an assembly of N
organisms (‘‘bugs’’) moving through continuous space and time
via diffusion. Birth and death occur simultaneously when one bug
kills another, and a new individual is instantly born at the same
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position as the killer.1 The two momentarily coincident bugs then
separate on independent random walks, as illustrated in Fig. 1 for
one space dimension. In common with many other models, the
spatial correlation introduced by the birth events leads naturally
to persistent fluctuations in the local population density [11–14].
Houchmandzadeh has recently shown that these reproductive pair
correlations result in clustering in an experimental ecosystem [15].
But simultaneous birth and death ensures that the total population
is fixed at N .

The birth–death interaction occurs only between pairs of bugs
that are sufficiently close. This ingredient is implemented with
Doi’s ‘‘reaction kernel’’ ν(r), where r is the pair separation.
Specifically, the death rate of bug q, located at xq, is

death rate of bug q =

N−
p=1
p≠q

ν(|xp − xq|). (1)

The notion of spatially local interaction is incorporated by using
a nonnegative ν(r) that decreases over a characteristic distance
a (the range of the interaction) from a global maximum ν(0). We
typically use the simple ‘‘top-hat’’ model:

ν(r) = ν0


1, if r < a;
0, if r > a. (2)

1 This formulation is very special: if the dead bug is reborn at the position of any
of the other N − 1 bugs, rather than only at the position of the killer bug, then
an alternative formulation results that is far more complicated and has no closed
hierarchy.
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Fig. 1. Illustration of the model, showing the world-lines of N = 5 bugs. This simulation uses the top-hat reaction kernel in (2) with ν0 = κ = 1 and a = 2. The birth–death
events are evident as the instantaneous translations resulting in momentarily coincident pairs. (To better illustrate the dynamics, this simulation uses a fixed time step,
rather than the split-step event-driven scheme used for all our other simulations.)
The parameter ν0 controls the overall death rate. Note that the sum
above is also the birth rate of bug q because birth and death exactly
cancel for every bug.

Themodel is similar to some earlier formulations, including the
classic Ohta–Kimura, Moran and Fleming–Viot models in genetics
and probability theory (see [16]). Almost identical fixed-N models
have been reinvented in statistical physics [17,18,9]. The system
studied here differs significantly from all these predecessors
because the interaction encoded in ν(r) has finite range a. The
earlier fixed-N models can be viewed as the special case of the
current formulation in the limit that the interaction becomes
infinite range (a → ∞), and each bug interacts with all the other
N − 1 bugs, no matter how distant. Our current model advances
beyond these earlier theories, taking a step in the direction of
greater realism by allowing the interaction to have finite range.

For a → ∞, it is known that the N bugs quickly form
a single large cluster which then walks randomly over the
domain: a ‘‘wanderingdistribution’’ inMoran’s [19] language. Fig. 2
illustrates (again in one dimension) how a finite range makes the
dynamics of the model significantly richer: with a < ∞, multiple
clusters of bugs persist indefinitely. The clusters nucleate from
structureless initial conditions by collecting together all the bugs
that are initially within range. Although the first clusters to appear
are thereby isolated from one another, they subsequently wander
and bump into each other. These collisions sometimes result in a
merger into a single cluster, but on other occasions the clusters
rebound almost like inelastic particles. Moreover, individual
clusters occasionally break up into smaller units. Despite the
complexity evident in these Monte Carlo simulations, we show
here that basic statistical properties of this process can be found
analytically. We thereby extract details of the long-time dynamics,
and establish the controls set by the interaction length a. Thus the
process illustrated in Figs. 1 and 2 is a canonical interacting particle
model of cluster formation, with an important control parameter
corresponding to the interaction range a. Analytic results can be
obtained and used to understand some aspects of the dynamics.
Though the model itself applies in spaces of arbitrary dimension,
for simplicity, we focus on a single spatial dimension here.

2. Mathematical formulation

2.1. A review of the N-particle probability density function formalism

We begin by reviewing some mathematics required to for-
mulate the master equation of the model described above (see,
e.g., [20]). At time t , the population in a single realization is spec-
ified by the positions of all N bugs, which we gather together into
the vector,

X ≡ [x1, x2, . . . xN ] . (3)
The N-particle probability density function over this space is a
nonnegative function, FN(X, t), defined such that

FN(X, t)dX = Prob{a bug in [x1, x1 + dx1],
another in [x2, x2 + dx2] etc.}, (4)

and normalized with∫
FN(X, t)dX = 1. (5)

Note that the dimensions of F are length−dN , where d is the
dimension of the space. The bugs are indistinguishable, so we can
freely exchange xp and xq; this is the permutation symmetry of F :

FN(x1, . . . , xp, . . . , xq, . . . xN , t)

= FN(x1, . . . , xq, . . . , xp, . . . xN , t). (6)

As a simple example of an N-particle probability density function,
suppose that the particles are dropped with uniform probability
into a one-dimensional interval of length L; then FN = L−N .

Given FN(X, t), we may compute the expectation of any
function A(X, t) as the N-fold integral,

⟨A⟩ ≡

∫
A(X, t)FN(X, t)dX . (7)

An important special case that guides us for defining the local
concentration and pair function is given by choosing indicator
functions of a particular subinterval of the total domain, χ(xp)
(equalling unity if the pth particle lies within that subdomain and
zero otherwise). More specifically, if A(X) =

∑N
n=1 χ(xn), then ⟨A⟩

is the expected number of bugs in the subdomain, and using the
permutation symmetry (6),

N−
n=1

χ(xn)


=

∫
χ(x1)C(x1, t)dx1, (8)

where

C(x1, t) ≡ N
∫

FN(x1, x2, . . . xN , t)dx2 · · · xN (9)

is the concentration. Likewise,
N−

n=1

χ(xn)

2

=


N−

n=1

χ(xn)


+

∫∫
G(x1, x2, t)χ(x1)χ(x2)dx1dx2, (10)

where the pair function is

G(x1, x2, t) = N(N − 1)
∫

FN(x1, x2, x3, . . . xN , t)dx3 · · · xN . (11)
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Fig. 2. The left panel shows results of a one-dimensional Monte Carlo simulation with a = 3 in (2) and κ = ν0 = 1. There are N = 32 bugs diffusing round a circle with
perimeter L = 6π . The upper two panels on the right show histograms of the (random) initial and final positions. The lowest panel on the right shows that, with infinite
range, effectively a ≥ L/2, a single wandering cluster rapidly and permanently collects all the bugs.
Two interpretations of the pair function are helpful. First,
G(x1, x2, t)/C2 is the probability of having bugs at x1 and
x2, relative to that which would obtain if the bugs were
independently distributed. Second, G(x1, x2, t)dx1/C(x2) is the
conditional probability of having an individual at x1, given that
there is an individual at x2. The functions C(x1, t) and G(x1, x2, t)
are just the first two reduced distribution functions in a hierarchy
of N functions. We focus purely on C and G in the current study.

2.2. Particle interactions and the master equation

The N-particle probability density function FN(X, t) satisfies a
‘‘master equation’’ corresponding to the fixed-N and finite-amodel
proposed in the introduction. The bugs wander independently
around the domain until two of them interact, leading to a death;
the dead bug is then instantly reborn at the position of the bug
that killed it. This schemeautomatically conserves the total particle
number N , and is characterized by the total death rate obtained by
summing (1) from q = 1 to N:

Total death rate = 2
−

1≤p<q≤N

ν(xp − xq). (12)

By considering how the possible states of the system evolve, we
arrive at the master equation,

(∂t − κ1)FN = 2
−

1≤p<q≤N

[
δ(xp − xq)

∫
ν(xp − x′

q)

× FN(x1, . . . x′

q, . . . xN)dx′

q − ν(xp − xq)FN

, (13)

where

1 ≡ ∇
2
1 + ∇

2
2 + · · · + ∇

2
N (14)

is the sum of all N spatial Laplacians. The terms driving evolution
in (13) account for spatial diffusion by random walking with
diffusivity κ , and the birth and death process. For the latter, the
total death rate in (12) determines the rate at which configurations
disappear, giving the final summed term in (13); the terms of that
sum represent the rate at which the pth bug kills its qth neighbour.
Simultaneous births, however, reinject new configurations in
which the interacting pairs are spatially coincident, generating the
source terms containing δ(xp − xq); the strength of each source is
dictated by the rate at which the pth bug kills the qth neighbour,
which demands an integral over all possible positions of the latter
before it was killed (the permutation symmetry is also exploited to
reduce the number of pairings in the sum).

A crucial and dramatic feature of the master Eq. (13) is that, if
one integrates over xN , theNth Laplacian disappears (provided that
the boundary conditions introduce no flux of new configurations),
and a number of the birth and death terms cancel from the right,
leaving a closed equation for the reduced density,


FN dxN .

Moreover, that equation is identical to the master equation for
FN−1. In other words,

FN−1(x1, . . . , xN−1, t) =

∫
FN(x1, . . . , xN−1, xN , t)dxN . (15)

Thus by successively integrating over xN , xN−1 down to x3, we
obtain the N = 2 model. But the N − 2-fold integral of FN
also provides the pair function G in (11). Hence, apart from the
normalization,

N(N − 1) =

∫∫
G(x1, x2, t)dx1dx2, (16)

the pair function satisfies the same equation as F2:

(∂t − κ1)G = 2δ(x1 − x2)
∫

ν(x1 − x′

2)G(x1, x′

2)dx
′

2

− 2ν(x2 − x1)G(x1, x2). (17)

Taking a further integral of (17) over x2, and noting that

(N − 1)C(x1, t) =

∫
G(x1, x2, t)dx2, (18)

we see that the concentration satisfies the N = 1 version of the
model, which is simply the diffusion equation,

(∂t − κ1)C = 0. (19)

The distinguishing feature of themodel is that G does not appear in
(19), and the triplet function does not occur in (17). In other words,
the hierarchy of equations for the reduced distribution functions
is closed at each level, and, up to normalization, FN for every
N has the same concentration field and pair function (provided
that the initial conditions are equivalent). This reductive feature
is shared by the earlier infinite-range models, as well as some
related theories of coalescing Brownianmotion (see, e.g., [21]). Our
quantitative analysis of the population dynamics is based on the
two functions C and G.

2.3. Scaling and collective coordinates

The interaction kernels we have in mind possess an overall
strength, ν0, and a characteristic range, a. For example, we typically
use the ‘‘top-hat’’ model in (2). Given ν0 and the diffusivity, κ ,
we reduce the number of parameters by using nondimensional
variables:

x̂j =


ν0

κ
xj, and t̂ = ν0t. (20)
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This choice scales the diffusivity and pairwise death rate to unity,
whilst keeping the number of particles, N , the nondimensional
interaction range, â = a

√
ν0/κ , and the characteristic size of

the domain, L
√

ν0/κ , as dimensionless control parameters. After
introducing this scaling, we drop the hat decoration from the
dimensionless variables, and the only change to the governing
equations is then the replacement of κ and ν0 with unity.

To solve (17), it is also sometimes convenient to change
variables to the ‘‘collective coordinates’’:

x ≡
1
2

(x1 + x2) , y ≡ x1 − x2,

G(x1, x2, t) = G(x, y, t).
(21)

In terms of these variables, the pair equation is
∂t −

1
2
∇

2
x − 2∇2

y


G = 2δ(y)

∫
ν(y ′)G


x −

1
2
y ′, y ′, t


dy ′

− 2ν(y)G. (22)

Even simpler is the marginal density,

g(y, t) ≡

∫
G(x, y, t)dx, (23)

which satisfies

1
2
gt = ∇

2
yg + δ(y)

∫
ν(y ′)g(y ′, t)dy − ν(y)g. (24)

Indeed, g(y, t) is our main tool to decipher the bug dynamics
quantitatively.

3. One-dimensional dynamics in periodic domains

3.1. The initial-value problem

To complement our theoretical discussion of the model
dynamics, we perform event-driven Monte Carlo simulations
based on the algorithm of Gillespie [22]. The bugs are randomly
scattered initially over a one-dimensional interval of length L
with periodic boundary conditions (e.g., a circle with perimeter
L), and then evolved using the scheme outlined in Appendix A.
Details from a sample computation are shown in Fig. 3. As for the
example shown earlier (Fig. 2), after a short transient, the random
initial distribution of the bugs gives way to persistent spatial
organization. The histogram of the final bug positions illustrates
how the structure takes the form of loosely bound ‘‘clusters’’.
To define this term more quantitatively, we count the number
of intervals in the bug distribution with length greater than the
interaction range a; these buffers divide the bugs into interacting
spatial organizations, the clusters. Panel (c) of Fig. 3 shows how
the number of cluster fluctuates irregularly in time. Note that, in a
periodic domain, and with a sufficiently large N , there might be
no empty intervals longer than a, which leads to a zero cluster
count. Also shown in panel (d) is the fraction of the total number of
pairs that arewithin range, which is anothermeasure of the degree
of spatial organization; if L < Na and the bugs were uniformly
distributed, this fraction would equal unity (and it would vanish if
L > Na).

The spatial structuring is, at first sight, in contrast with
what one expects from the fact that the bug concentration
satisfies the diffusion equation (19). On the other hand, spatial
correlations occur naturally because birth creates coincident pairs
of bugs [12,11,14]. The concentration equation does not describe
this reproductive clumping because C is an ensemble average over
all possible realizations of the bug population. The ensemble has
translation symmetry, and thus in the statistical steady state the
concentration is uniform, and equal to N/L. The simplest statistic
describing the structure evident in the realization shown in Fig. 3
is the pair function G.

Also shown in Fig. 3 are histograms of the bug positions and pair
separations averaged over the duration of two longer simulations.
These statistics provide empirical versions of the steady-state
concentration, C(x, t), the reduced pair function, and g(y, t). The
concentration field should, in principle, evolve to a constant level,
but convergence is slow and the simulations still exhibit variations
about this level by the end of the computations. The separation
histogram in panel (f) demonstrates the spatial clustering, and is
in agreement with the analytical solution derived below in (27).

As the interaction range increases, with the ratio a/L held
fixed, so too does the degree of spatial correlation, largely because
the bugs organize themselves through births and deaths without
significant spatial movement. A second example, for a = 8
(shown in Fig. 4), displays the formation of more sharply defined
clusters. The adjustment from the random initial condition gives
way to a protracted phase of evolution in which the small clusters
wander as coherent units, and thereby come into contactwith their
neighbours. The clusters thenmerge together to create larger units,
so that the number of clusters decreases until eventually only a
single cluster remains.

A summary of the observed cluster dynamics is provided in
Fig. 5, which illustrates a series of initial-value computations with
N = 24 bugs. Well-defined clusters emerge smoothly as we
progress along the line L = 40a in parameter space. Averages of
the number of clusters and fraction of in-range pairs are shown
against a in the lower panels of the same figure. The main panel
also compares the location of the initial-value computations on
the parameter plane with a simple estimate for the onset of
pronounced clustering, determined as described below.

3.2. The one-dimensional steady-state pair function

In one dimension, and for the steady state, the pair equation
(24) reduces to

gyy − ν(y)g + δ(y)
∫

ν(y′)g(y′)dy′
= 0, (25)

which can be solved analytically for our top-hat reaction kernel (2).
If L < 2a, then the range of the interaction exceeds the domain

size, each bug interacts with all of the other N − 1 bugs, and
the model is equivalent to the existing infinite-range theories
mentioned in the introduction. In this case, the solution of (25) is

g(y) =
N(N − 1)
2L sinh L/2

cosh

L
2

− |y|


, for |y| < L/2. (26)

If L > 2a, on the other hand, a certain fraction of the total possible
separations are out of range, and the solution of (25) is

g(y)

=
N(N − 1)

L(L + 2 sinh a − 2a)


cosh (a − |y|) , if |y| < a;
1, if a < |y| < L/2. (27)

The solutions above are extended beyond the interval−L/2 < y <
L/2, using the periodicity condition, g(y + L) = g(L).

The solution in (27) implies that the probability that a
separation |y| is less than a is

Prob{|y| < a} =
2 sinh a

L + 2 sinh a − 2a
, (28)

which also equals the expected fraction of in-range pairs. Now,
Prob{|y| < a} = 1/2 when L = L1/2(a), where

L1/2(a) ≡ 2 sinh a + 2a. (29)
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Fig. 3. Monte Carlo simulation with N = 50, a = 2, and L = 20. Panel (a) shows a time series of the bug positions; the initial and final histograms are shown in panel
(b). Using the data in (a), in panel (c) we count the number of clusters by locating empty gaps of length greater than a = 2. Panel (d) shows the fraction of pair separations
less than a (solid line), compared with the analytic prediction in (28) (the dashed line). Panels (e) and (f) show the empirical single-particle density and the density of pair
separations; the dashed curves in panels (e) and (f) show the expected long-time distributions, C = N/L, and g(y) from (27). To obtain the stable histograms in panels (e)
and (f) we used simulations with N = 100 bugs, running up to t = 103 and averaged over two realizations.
Fig. 4. Sample initial-value problem with N = 50, a = 8, and L = 160. Panel (a) shows the time series of bug positions, and in panel (b) we show the number of clusters
and the fraction of ‘‘in-range’’ pair separations (the steady-state prediction (28) is 0.95). Both panels are plotted against

√
t to highlight the short-time behaviour.
Thus, when L < L1/2(a), each pair separation is more likely to
be in range than out of range; for L > L1/2(a), pair separations
are likelier to be beyond the range of the reaction kernel. Thus a
simple criterion to predict the onset of pronounced clustering is
that L < L1/2(a). The solid curve in Fig. 5 is the function L1/2(a).
Because L1/2(a) increases exponentially with a, the expected
fraction of in-range pairs in (28) rapidly approaches unity as one
proceeds to the right of the curve in Fig. 5. Thus, the steady-state
bug distribution in this region of parameter space must take the
form of a single cluster for most of the time. Indeed, if all the bugs
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Fig. 5. Shown in the main panel is a plot of the (a, L)-parameter plane, showing the curve L1/2(a) ≡ 2 sinh a + 2a, the line L = 2a (below which the system effectively has
infinite range), and the locations of several initial-value problems with N = 24 (lying along the line L = 40a). Time series of those computations are shown as insets. The
lower panels show the number of clusters and fraction of in-range pairs, averaged over 1000 < t < 4000, and at least one, and typically two, realizations for computations
with varying N (as indicated) along L = 40a; the scatter in the simulation data at larger values of a reflects the failure of convergence to a steady state. The dashed lines in
(b) and (c) show the crude estimate L/ℓ from (64), and the steady-state prediction of (28); the vertical dotted lines indicate L = L1/2(a).
are arranged into K clusters, then

the number of in-range pairs ≤ N

N
K

− 1


, (30)

with themaximum achievedwhen each cluster containsN/K bugs
(assuming that N ≫ 1 so that the number in each cluster can be
regarded as a continuous variable). Consequently, a steady state
containing K clusters must satisfy

N

N
K

− 1


≥ N(N − 1) Prob{|y| < a}

= N(N − 1)
2 sinh a

L + 2 sinh a − 2a
. (31)

The inequality above is equivalent to

K ≤
N(L + 2 sinh a − 2a)
L + 2N sinh a − 2a

, (32)
which constrains the number of clusters that can persist for each
set of parameters. But (32) cannot be satisfied for a given K if a
is sufficiently large. In fact, with K ≥ 2 and N ≫ 1, we find
that multiple clusters can only persist if L > L1/2(a). That is,
the curve in Fig. 5 can also be regarded as the boundary below
which only a single cluster can persist. The initial-value problems
at larger a shown in this figure have not yet reached steady state,
and have too many clusters, as highlighted by the final panel (see
also Appendix A).

4. Single cluster dynamics in infinite domains

With finite range, the dynamics of a single, isolated cluster
is the same whatever the spatial domain length, L. For example,
the cluster at the end of the simulation in Fig. 4 is not affected
by the finite size of the domain (this simulation could have
been performed with any L > 160, as none of the bugs ever
comes within an interaction distance of the domain’s edge at
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x = L). Likewise, the interaction between two colliding clusters
is independent of the domain length provided that the cluster
sizes are sufficiently less than L. Thus, in order to understand in
more detail the dynamics of theMonte Carlo simulations presented
above, we study clusters with L → ∞, for which the pair function
offers a selection of largely analytical and insightful results. The
current section deals with a single cluster in order to understand
the fragmentation dynamics seen in Figs. 2, 3 and 5; the next
section is aimed at uncovering further details of cluster interaction.

4.1. Monte Carlo simulations

To consider the infinite-domain dynamics of a single cluster, we
prepare the initial conditions by releasing all N bugs at the origin.
The corresponding initial conditions for (17) and (19) are
C(x, 0) = Nδ(x), and G(x1, x2, 0) = N(N − 1)δ(x1)δ(x2). (33)
The diffusion equation for C then has a well-known Gaussian
solution. Themain property of this solutionwe use below is ⟨x21⟩ =

N−1

x2Cdx = 2t , which says little about the internal dynamics

of the cluster. To extract information about the cluster we must
obtain G(x1, x2, t), or more simply g(y) in (23).

A suite of initial-value problems with varying a is shown in
Fig. 6. In each case, the initial distribution spreads out rapidly.
For smaller interaction length, the cluster breaks up as individuals
escape, with the bug distribution evolving like an ensemble of
independent random walkers (see the first panel for a = 1, which
also shows the root-mean-square displacements, ±

√
2t , expected

for such walkers). With larger a, the diffusing bugs are unable to
escape from their neighbours; the cluster stops expanding and
maintains its integrity. As shown by the final example in the figure,
the cluster then wanders coherently much like a single random
walker; this analogy is made firmer below. Eventually clusters
break up by splitting into subclusters (for the last realization with
a = 5 in Fig. 6, the simulation must be continued for rather longer
to observe such a fission).

To obtain a clearer picture of the break-up process, and in
particular how often either individuals escape or the parent
fragments,weperformed further simulations, evolving the clusters
until they first divide into two. The number of bugs in the
smaller of the offspring is then recorded; histograms of this
cluster size for 500 realizations are shown in Fig. 7 for varying
a. These histograms are empirical measures of a ‘‘fragmentation’’
probability distribution for offspring size and are peaked at smaller
numbers indicating that the original cluster is more likely to split
into a bigger descendant with a smaller satellite. However, the
chance of a more equable split increases with a.

The break-up of clusters in an infinite domain is foreshadowed
by the pair equation (22), which does not have a steady-state
solution if L → ∞, with finite N and a, for the top-hat interaction
kernel.2 The interpretation of this result is now clear: a cluster
cannot indefinitely maintain its integrity because individuals
occasionally escape or the cluster splits into descendants, and the
out-of-range bugs can then continue to walk randomly away from
each other. Of course, if the domain were actually large but finite,
the bugs could not escape each other forever, so the cluster would
reform after a sufficiently long time, leading to the steady state in
(27). These conclusions are partially dependent on the form of the
interaction kernel, as we see next.

4.2. Bound clusters

We depart for the moment from considering only the top-
hat interaction kernel to demonstrate that, if the decay of ν(y) is
sufficiently slow as |y| → ∞, then the bugs can never diffuse far

2 One can obtain a solution by taking L → ∞ andN → ∞withN/L fixed in (27).
However, we do not consider this ‘‘thermodynamic limit’’ further.
enough from their neighbours to avoid interaction. In this case the
N bugs are effectively permanently bound into a single cluster even
if L = ∞. An extreme case is the infinite-rangemodel, which leads
to the steady solution,

g(y) =
1
2
N(N − 1)e−|y|. (34)

This solution is also obtained by taking the limit L → ∞ in (26).
We refer to compact, normalizable, L = ∞, steady solutions of
(22), analogous to (34), as ‘‘bound clusters’’.

To construct a bound-cluster solution of (25) with a general
reaction kernel, the differential equation

gyy − ν(|y|)g = 0 (35)

must have a solution which decays to zero as |y| → ∞. The decay
must be rapid enough to ensure that


gdy converges. Considering

reaction kernels with power-law decay,

ν(y) ∼ |y|−2q, as |y| → ∞, (36)

it is straightforward to see that the condition for the existence of
a bound-cluster solution is that q < 1. Specifically, if q < 1, then
(35) has a rapidly decaying solution, namely g ∼ exp(−|y|1−q).

The transitional case, q = 1, is illustrated by the reaction kernel
in

g ′′
−

g
(1 + |y|/a)2

+ δ(y)
∫

g(y′)dy′

(1 + |y′|/a)2
= 0, (37)

where a is again the characteristic range of the algebraically
decaying kernel. The bound-cluster solution of this problem is

g(y) =
(λ − 1)N(N − 1)
2a (1 + |y|/a)λ

, (38)

where λ(a) ≡

√
1 + 4a2 − 1


/2. For this solution to be

normalizable, one requires λ(a) > 1, or a >
√
2; i.e., bound

clusters exist only if a >
√
2.

4.3. Cluster statistics

Returning to the case of a top-hat reaction kernel, we use three
statistical measures: the expected fraction of in-range pairs,

J(t) ≡

∫ a

−a
g(y, t)dy, (39)

and the centre of population and the variance,

x̄ ≡ N−1
N−

n=1

xn, ρ2
≡ N−1

N−
p=1

(xn − x̄)2. (40)

The latter quantities are related to the sum of the squared
displacements by the identity

x̄2 + ρ2
= N−1

N−
n=1

x2n. (41)

Using the average ⟨· · ·⟩ defined in (7) and the permutation
symmetry, one can show that the average centre of population is
independent of time, so ⟨x̄⟩ = 0 if the bugs all begin at the origin,
and
x̄2

= N−2

[
N⟨x21⟩ +

∫∫
x1x2Gdx1dx2

]
. (42)

Likewise, the average of (41) is
x̄2

+

ρ2

= ⟨x21⟩. (43)
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Fig. 6. A suite of initial-value problems in which 50 bugs leak out of a cluster with (a) a = 1, (b) a = 2, (c) a = 3, (d) a = 4, and (e) a = 5. In panel (a), the dashed lines
show the root-mean-square displacement of a single random walker ±

√
2t . Panel (e) also includes the path taken by a single random walker starting at x = 10.
Fig. 7. Results of initial-value problems in which clusters (prepared initially by placing 50 bugs at the origin) are evolved until they first break up into two; the number in
the smaller cluster is then recorded. For 500 realizations, this data is then collected into the histograms shown for a = 1, 2, and 3.
To obtain ⟨x̄2⟩ and ⟨ρ2
⟩, one needs


x1x2Gdx1dx2 on the right

of (42). Multiplying (17) by x1x2 and integrating,
d
dt

∫∫
x1x2Gdx1dx2 =

∫∫
ν(x1 − x2)(x1 − x2)2Gdx1dx2

=

∫
y2ν(y) g(y, t)dy. (44)

Thus J, ⟨x⟩ and ⟨ρ2
⟩ can be determined from the marginal density

g(y, t).

4.4. Infinite range

To recapitulate themuch-studied case of infinite-range interac-
tion, ν(y) = 1, note that ⟨x21⟩ = 2t and (44) is closed:

d
dt

+ 2
∫∫

x1x2Gdx1dx2 = 4N(N − 1)t. (45)

Solving this equation, and using the result in (42), one finds
x̄2

= 2N−1t +


1 − N−1 2t − 1 + e−2t . (46)

Then from (43) the radius of the cluster is given by the square root
of
ρ2

=

1 − N−1 1 − e−2t . (47)

Thus, when t ≪ 1, the effective diffusivity of the centre of
the cluster is N−1, which is the centre-of-mass diffusivity of
N independent random walkers. In this small-time regime, the
cluster radius is


⟨ρ2⟩ ∝
√
t . Once t ≫ 1, the cluster stops

expanding, with ⟨ρ2
⟩ → 1 − N−1 and the diffusivity of the cluster

centre equals that for a single bug. In other words, at small times
the cluster centre behaves like the centre ofN independent random
walkers, but at large times the N bugs perform tightly correlated
random walks, and the diffusivity of the cluster centre equals that
of an individual.3This is illustrated in the final panel of Fig. 6, where
a = 5 is equivalent to infinite range over the limited duration of
the simulation.

4.5. Finite range

Turning back to the case of finite range (with the top-hat
interaction kernel), in order to obtain the right-hand side of (44)
we must solve the one-dimensional version of the pair equation
(24) with the initial condition g(y, 0) = N(N −1)δ(y). This initial-
value problem succumbs to the Laplace transform; for some details
see Appendix B. Our current efforts are directed at computing the
cluster statistics, J(t), ⟨x̄2⟩ and ⟨ρ2

⟩, for which the entire Laplace-
transform solution is not needed.We find, for example, the Laplace
transform of J(t):

Ĵ(s) =
N(N − 1)[(cosh ηa − 1)

√
s/2 + η sinh ηa]

√
2s + s(

√
s/2 cosh ηa + η sinh ηa)

, (48)

where η =
√
1 + s/2.

3 In dimensional terms, the effective diffusivity is κ/N for ν0t ≪ 1, and then it
increases to κ for ν0t ≫ 1. The long-time cluster radius is (1 − N−1)κ/ν0 .
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From the transform solution above, one can develop approxi-
mations for the statistics for both short and long times. For t ≪ 1,
the transform solution reduces to that for infinite range, and so
the statistics are identical to those given earlier in Section 4.4:
J(t) ∼ 1, ⟨x̄2⟩ ∼ 2t/N and ⟨ρ2

⟩ ∼ 2t(1 − N−1). In the other
limit, the long-time asymptotic behaviour of the Laplace transform
is determined by the rightmost singularity in the complex-s plane,
which is a branch point at s = 0. We therefore approximate (48)
in the neighbourhood of s = 0 by

Ĵ(s) ∼
N(N − 1) sinh a
√
2s + s sinh a

, (49)

where the term s sinh a is retained in the denominator in order to
take into account situations in which sinh a is large, so that for
some range of intermediate times the contribution of s sinh a to
the inverse transform is comparable to that of

√
2s. Inverting the

transform in (49) leads to

J(t) ∼ N(N − 1)eγ terfc(
√

γ t), (50)

∼ N(N − 1)

1 − 2(γ t/π)1/2 + γ t, if 1 ≪ t ≪ γ −1

;

(πγ t)−1/2, if 1 ≪ γ −1
≪ t,

(51)

where γ ≡ 2/ sinh2 a. Thus, bugs escape from the reaction zone
|y| < a on the time scale γ −1. This prediction is confirmed in
Fig. 8, which shows time series of J(t) for various values of a,
computed by numerical inversion of Ĵ(s) using the algorithm of
Hollenbeck [23], together with data fromMonte Carlo simulations.
The first panel also compares the numerical solution for J(t) with
the approximation in (50).

These results imply that, no matter how large a, on times of
order γ −1, clusters are likely to split. Thus, for example, the single
cluster in Fig. 4 at t = 1000 is not permanent (given that the bugs
are too far from the boundary tomake the domain length relevant).
However, with a = 8, γ −1 > 106, and it is difficult to illustrate the
ultra-long time regime with Monte Carlo simulation.

The long-time approximation can further be used to calculate
the wandering of the centre of population:

⟨x̄2⟩ ∼
2t
N

+


1 −

1
N


(sinh a − a) sinh a

×


eγ terfc(

√
γ t) − 1 + 2


γ t
π


, (52)

∼


2t, if 1 ≪ t ≪ γ −1 and sinh a ≫ a;
2N−1t, if 1 ≪ γ −1

≪ t.
(53)

The first limit in (53) is equivalent to the case of infinite range; the
diffusivity of the cluster equals the single-particle diffusivity, and
the cluster does not spread (⟨ρ2

⟩ = 2t − ⟨x̄2⟩ becomes constant).
On the other hand, with a fixed and t → ∞, we obtain the second
limit in (53), implying that the cluster’s centre has diffusivity
N−1, which is characteristic of N independent random walkers.
Simultaneously, the cluster inexorably expands, with ⟨ρ2

⟩ ∝ t .
The dynamics is illustrated in Fig. 9, which once again compares
the statistics computed from the Laplace-transform solution with
Monte Carlo simulations. Note that the tightly bound clusters
at larger a diffuse like a single random walker for substantial
durations of time, as suggested earlier in Fig. 6.

To summarize, if sinh a ≫ 1, then there are three evolutionary
stages: in terms of dimensional variables,

⟨x̄2⟩ ∼ 2κt

N−1, if t ≪ ν−1
0 ≪ τ ;

1, if ν−1
0 ≪ t ≪ τ ;

N−1, if ν−1
0 ≪ τ ≪ t.

(54)
Above, the cluster break-up time scale, τ , corresponds to γ −1, and
in dimensional variables is

τ ≡
sinh2(a

√
ν0/κ)

ν0
. (55)

Throughout the process, the radius of the cluster is given by ⟨ρ2
⟩ =

2κt − ⟨x̄2⟩.

5. Cluster interaction

5.1. A Laplace-transform solution

To study cluster interaction, suppose that at t = 0 we have
a cluster of N− bugs at −b/2, and a second cluster of N+ bugs at
b/2. Using collective coordinates, the initial condition for the pair
equation is

G(x, y, 0) = N+(N+ − 1)δ

x −

1
2
b


δ(y) + N−(N− − 1)

× δ


x +

1
2
b


δ(y) + N+N−δ(x)[δ(y − b)

+ δ(y + b)], (56)

which translates to the initial condition for themarginal density of

g(y, 0) = N1δ(y) + N2 [δ(y − b) + δ(y + b)] , (57)

where

N1 ≡ N+(N+ − 1) + N−(N− − 1) and N2 ≡ N+N−. (58)

Details of the Laplace-transform solution to this initial-value
problem are once more provided in Appendix B.

The expected fraction of in-range pairs now has the transform
solution
Ĵ(s)

=
N1[(cosh ηa − 1)

√
s/2 + η sinh ηa] + 2N2ηe−(b−a)

√
s/2 sinh ηa

√
2s + s(

√
s/2 cosh ηa + η sinh ηa)

, (59)

again with η =
√
1 + s/2. The term proportional to N1 reproduces

our earlier solution; the second term, with N2, captures the effect
of the initially displaced and out-of-range cluster.

As before, we offer an analytical approximation based on the
long-time limit with s ≪ 1, but keeping terms of order

√
s sinh a,

and now also including the terms with (b − a)
√
s = O(1):

Ĵ(s) ∼


N1 + 2N2e−(b−a)

√
s/2

sinh a

√
2s + s sinh a

, (60)

implying for large t that

J(t) ∼ N1eγ terfc
√

γ t

+ 2N2eγ t+(b−a)

√
γ /2

× erfc

√

γ t + (b − a)/2
√
2t


. (61)

5.2. Simulations

Fig. 10 shows computations beginning with two clusters of
equal size, N+ = N− = N/2 = 10, for a = 3 and b = 10. For
this parameter setting, the dynamics is rich because cluster break-
up and interaction can occur on similar timescales. In some of the
simulations, such as panel (a), the break-up occurs before clusters
interact with one another; in other simulations, such as panel (b),
the clusters collide to form a larger unit before breaking up. In yet
further realizations, such as panel (c), the fragments interactwhilst
the clusters are breaking up. These different scenarios are blended
together in the ensemble-averaged number of in-range pairs
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Fig. 8. The fraction of in-range pairs for simulationswith (a) a = 1/4 and varyingN . The data forN = 50 and 100 are shown in lighter shades of grey and end prematurely so
that they can be more clearly distinguished. (b) N = 100 and varying a (as indicated). The solid lines indicate J(t) computed by numerical inversion of the Laplace transform
in (48) [23]; the dashed line in (a) shows the asymptotic approximation eγ terfc(

√
γ t).
(c) , a=1/2 and 10

ρ

, a=1/2 and 10ρd

Fig. 9. (a) The mean-square displacement, ⟨x̄2⟩, and in panel (b) the variance, ⟨ρ2
⟩, computed numerically from the Laplace-transform solution of the initial-value problem

for six different values of a (in an infinite domain). The dots show the results from simulations with N = 40 bugs, averaged over 200 realizations. To give an impression of
the uncertainty in the simulation statistics, panels (c) and (d) show further results for a = 1/2 and 10: the light grey lines show the time series of all 200 realizations, the
solid lines show ⟨x̄2⟩ and ⟨ρ2

⟩, and the dashed lines show those averages with addition of the standard deviation over the realizations.
shown in the right panel of Fig. 10. The corresponding statistics for
the mean-square displacement and variance are shown in Fig. 11.

The local maximum in the expected number of in-range pairs
evident in Fig. 10(d) arises from cluster collisions, an effect
captured by the second error function in (61). The transient
increase in J(t) generated by this term begins for t ∼ (b −

a)2/8, which is the characteristic collision time for the clusters.
For t ∼ O

 1
4 (b − a) sinh a


, the collision-induced increase

becomes balanced by the loss of in-range pairs incurred by cluster
fragmentation, leading to the local maximum in J(t).

A second example, with a = 10 and b = 20, is shown in
Fig. 12. In this case, the break-up timescale is much longer, and
the clusters maintain their identities throughout the simulations,
except once they collide and merge together. Consequently, the
number of in-range pairs increases monotonically throughout the
simulation. The statistics of the mean-square displacement and
variance are now dominated by the coherent wandering of the
clusters and their collisions. To add further insight, we take the
extra limit γ t ≪ 1 in (61):

J ∼ N1 + 2N2 erfc

b − a

2
√
2t


. (62)

Note that all clusters eventually collide according to this formula,
with J → N1 + 2N2 ≡ N(N − 1) for t ≫ (b − a)2/8, as in the
analogous problem of the absorption of a single random walker
at a barrier placed initially at a distance b − a. The γ t ≪ 1
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Fig. 10. Cluster interaction simulations for a = 3, b = 10, and N = 20, beginning with two clusters of equal size (N+ = N− = 10). Panels (a) through (c) show three
different realizations, to illustrate the interaction dynamics. Panel (d) shows the expectation of the number of in-range pairs, J(t), calculated either from the numerical
inversion of the Laplace transform solution (59) (solid curve) or the approximation in (61) (dashed curve); the dotted and dashed–dotted curves without the local maximum
near t = 10 show the expected number as though there were no cluster interaction (i.e. with N2 = 0). The dots in (d) show the number of in-range pairs averaged over 400
realizations.
Fig. 11. Statistics of 400 realizations of the cluster interaction problem with a = 3, b = 10 and N = 20. Panel (a) shows the mean-square displacement, with the dashed
line showing the expectation from the Laplace-transform solution (the dotted line is t). Panel (b) shows the statistics of ⟨x21⟩ and ⟨ρ2

⟩, again with the expectations from the
Laplace-transform solution.
approximation also leads to the results

⟨x̄2⟩ ∼


t, t ≪ (b − a)2/8,
2t, (b − a)2/8 ≪ t ≪ γ −1.

(63)

In other words, the statistics are initially dictated by the
independent wandering of the two clusters (and J ∼ N1 = 180 for
the example in Fig. 12),whichdisperse from their original positions
like two randomwalkers. The subsequent cluster collisions leave a
decreasingly small number of realizations with two independent
clusters, so that the statistics are ultimately dominated by the
dynamics of a single cluster (with J ∼ N(N − 1) = 380). Fig. 12
illustrates this behaviour, showing the gradual switchover from
two-clusterwandering to single-cluster diffusion for times of order
(b−a)2/8 = 50. Ultimately, for t ∼ O(γ −1), these approximations
fail due to cluster fragmentation. On this ultra-long time scale we
return to the scalings presented in Section 4.

6. Discussion and conclusion

In this article, we have presented a model of an interacting
particle system which has the unusual feature that the statistical
moments of the governing master equation generate closed
equations for the reduced distribution functions. The relatively
simple equations for the concentration and pair function can be
solved to understand the dynamics illustrated by Monte Carlo
simulations of the model. Some care is needed in order to
decipher the information contained in the concentration and the
pair function because those quantities are ensemble averages
that respect the symmetries of the system (such as particle
indistinguishability and translational invariance). In particular,
the concentration satisfies the diffusion equation and tells us
very little. Information regarding spatial structure, and specifically
clustering, must be extracted from the pair function. Although we
have thereby been able to characterize much of the dynamics of
clusters, a deeper understanding (of, for example, the likelihood
of multiple cluster states, or the fragmentation statistics in
Fig. 7) requires us to proceed to the triplet function and beyond.
Nevertheless, we can at least make some qualitative statements.

Simulations show that, in large domains with many particles,
and higher values of a, the dynamics devolves to wandering
clusters. Collisions between clusters can result in mergers that
reduce the number of clusters. However, clusters can also fragment
into smaller entities. These two processes must ultimately come
into balance to establish a statistical equilibrium, so that clusters
are separated by a typical distance ℓ which is determined by a
competition between cluster break-up and collision. Equating the
time scale for fragmentation, τ in (55),with the collision time scale,
ℓ2/κ , implies that the typical spacing between clusters is

ℓ ≡
√

κτ =


κ

ν0
sinh


a


ν0

κ


. (64)

Hence, if the domain has length L, we expect that there are roughly
L/ℓ clusters, and each cluster contains on average Nℓ/L bugs. The
estimate L/ℓ is included in Fig. 5,where it gives a rough guide to the
number of clusters except for small interaction lengths. Of course,
Nℓ/L ≫ 1, in order that the clusters are significant multiparticle
organizations. Thus, finally, we can say that a multicluster state
requires that both L/ℓ and Nℓ/L are large. In terms of external
parameters, these two conditions require that

L ≫


κ

ν0
sinh


a


ν0

κ


and also

N


κ

ν0
sinh


a


ν0

κ


≫ L. (65)
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Fig. 12. Statistics of 200 realizations of the cluster interaction problem with a = 10, b = 30, and N = 20. Panel (a) shows the average number of in-range pairs, plus the
Laplace-transform solution for J(t), computed numerically [23]; the insets show two realizations, one with clusters that remain independent and the other with a collision.
Panel (b) shows ⟨x21⟩ and the mean-square displacement (the dotted lines show t and 2t). Panel (c) shows the variance.
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Appendix A. Details of the numerical algorithm

We summarize the split-step integration scheme used for the
Monte Carlo simulations as follows [22]. Given the bug positions at
time t , we compute the total death rate (12). The time to the next
birth–death event, 1t , is then determined by random selection
from an exponential probability density parameterized by that
death rate. Based on the contribution of each pair of bugs to the
death-rate sum in (12), we then draw another random number to
select the interacting pair; a coin toss then decides which member
of the pair is the killer, and the victim is then moved to the killer’s
position. Finally, the integration step is completed by allowing each
bug to diffuse in space by taking an independent random step for
a time 1t . The steps are selected from a Gaussian density with
variance 2κ1t . Note that if all the bugs move out of range of one
another then the death rate in (12) is zero, and consequently this
algorithm results in 1t = ∞. This terminates the computation.

A limitation on the accuracy of the algorithm arises when the
population becomes too dilute, so that the time step 1t is no
longer small. In this situation, the random steps in space taken
by the walkers can become appreciable, with the unfortunate
consequence that the death rate changes significantly during 1t
because bugs move in or out of range. Such errors are incurred
when the number of bugs N is not large, the domain length L is
relatively large, and the interaction range a is small (so that bugs
do not cluster together).

A monitor of the accuracy of the algorithm is provided by the
size of the time step, 1t . For example, for the simulations in
Figs. 2–4, the typical time step was of order 10−3, with steps
occasionally becoming as large as 2.5 × 10−2. For the simulations
in Fig. 5, with fewer bugs, the typical and maximal time steps
ranged from 0.03 and 0.6 at the smaller values of a (where the
particles are most widely spaced), down to 0.005 and 0.05 for
largest a (where tight clustering maintains small separations). The
implied errors are unlikely to be excessive, and we attempted to
further minimize their effect by computing multiple realizations
or increasing the number of bugs whenever computational time
permitted (see Fig. 5(b) and (c)).

Note that the oscillations in the data of Fig. 5(c) are not
artifacts of errors in the integration algorithm. For the larger
interaction ranges, the bugs cluster together tightly, and the time
steps remain small. Instead, the oscillations arise because the
population has insufficient time during the computation to reach
its statistically steady state, and as a result, in some realizations, the
bugs formmultiple clusters that remain separated for the duration
of the computation. At longer times, beyond our computational
resources, these clusters would eventually merge to increase the
number of in-range pairs. The convergence to the steady state can
be explored by decomposing perturbations into normal modes;
for large domains, one can establish that the decay rates of those
modes are of order L−2. Thus, relaxation occurs over times of
order L2, which is rather longer than the large-a computations in
Fig. 5. The O(L2) relaxation can be interpreted alternatively as the
characteristic time for clusters to wander across the domain and
collide with one another; see Sections 4 and 5.

Appendix B. Details of the Laplace-transform solution

Using the Laplace transform,

ĝ(y, s) ≡

∫
∞

0
g(y, t)e−stdt, (B.1)

we can find the solution of (24) with the initial condition in (57).
The solution in the range 0 < y < a is

ĝ(y, s) = A1 cosh ηy + A2 sinh ηy, (B.2)
where η ≡

√
1 + s/2. Also, in (B.2),

A1 ≡ −
1
2η

[
Ĵ +

1
2

N1

]
,

A2 ≡
1

4η sinh ηs


(s + 2 cosh ηa)Ĵ + N1(cosh ηa − 1)


,

(B.3)

and Ĵ(s) is given in (59). For the single-cluster problem in Section 4,
b = 0, N1 = N(N − 1), and N2 = 0; for the two-cluster solution in
Section 5, these parameters are defined in (58).

Given this solution, we compute

⟨x1x2⟩ = L
−1

1
s

∫ a

−a
ĝ(y, s)y2dy


−

b2

4(N − 1)
, (B.4)

where L−1
{· · ·} denotes the inverse Laplace transform. Then,

⟨x̄2⟩ = N−1
⟨x21⟩ + (1 − N−1)⟨x1x2⟩, (B.5)

and
⟨ρ2

⟩ = (1 − N−1)(⟨x21⟩ − ⟨x1x2⟩) (B.6)

(given that ⟨x21⟩ = b2/4+2t and ⟨x1x2⟩ = −b2/4(N −1) at t = 0).
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