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ABSTRACT

This study investigates the representation of solutions of the three-dimensional quasigeostrophic (QG)

equations usingGalerkin series with standard vertical modes, with particular attention to the incorporation of

active surface buoyancy dynamics. This study extends two existing Galerkin approaches (A and B) and

develops a new Galerkin approximation (C). Approximation A, due to Flierl, represents the streamfunction

as a truncated Galerkin series and defines the potential vorticity (PV) that satisfies the inversion problem

exactly. Approximation B, due to Tulloch and Smith, represents the PV as a truncated Galerkin series and

calculates the streamfunction that satisfies the inversion problem exactly.ApproximationC, the trueGalerkin

approximation for theQG equations, represents both streamfunction and PV as truncatedGalerkin series but

does not satisfy the inversion equation exactly. The three approximations are fundamentally different unless

the boundaries are isopycnal surfaces. The authors discuss the advantages and limitations of approximations

A, B, and C in terms of mathematical rigor and conservation laws and illustrate their relative efficiency by

solving linear stability problems with nonzero surface buoyancy. With moderate number of modes, B and C

have superior accuracy than A at high wavenumbers. Because B lacks the conservation of energy, this study

recommends approximation C for constructing solutions to the surface active QG equations using the

Galerkin series with standard vertical modes.

1. Introduction

Recent interest in upper-ocean dynamics and sub-

mesoscale turbulence has focused attention on surface

geostrophic dynamics and the role of surface buoyancy

variations. A main issue is the representation of active

surface buoyancy by finite vertical truncations of the

quasigeostrophic (QG) equations. Standard multilayer

(e.g., Pedlosky 1987) and modal approximations (e.g.,

Flierl 1978) assume that there is no variation of buoy-

ancy on the surfaces.

Only few attempts have being made to represent both

surface active and interior dynamics in the QG equa-

tions. The pioneering work by Tulloch and Smith (2009)

developed a ‘‘two-mode two-surface’’ model that rep-

resents the surface dynamics exactly and approxi-

mates the interior dynamics using the barotropic and

first baroclinic modes. The interaction of surface and

interior dynamics motivated the development of a

new set of vertical modes that simultaneously diago-

nalize energy and a linear combination of enstrophy and

surface buoyancy variance (Smith and Vanneste 2013).

Other studies of the interaction of surface and interior

dynamics avoid vertical modes and use instead finite-

difference schemes (Roullet et al. 2012) or idealize the

interior potential vorticity as a delta function sheet

(Callies et al. 2015).

Here, we explore the representation of surface and in-

terior dynamics using the familiar vertical modes of

physical oceanography. These ‘‘standardmodes,’’ denoted
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here by pn(z), are defined by the Sturm–Liouville

eigenproblem

d

dz

f 20
N2

dp
n

dz
52k2

npn
, (1)

with homogeneous Neumann boundary conditions at the

bottom (z5 z2) and top (z5 z1) surfaces of the domain:

dp
n

dz
(z6)5 0. (2)

In (1), N(z) is the buoyancy frequency and f0 is the

Coriolis parameter. The eigenvalue kn in (1) is the de-

formation wavenumber of the nth mode. With normal-

ization, the modes satisfy the orthogonality condition

1

h

ðz1
z2

p
n
p
m
dz5 d

mn
, (3)

where h5
def
z1 2 z2 is the depth. The barotropic mode is

p0 5 1 and k0 5 0.

The modes defined by the eigenproblems (1) and (2)

provide a fundamental basis for representing solutions

of both the primitive and quasigeostrophic equations as

a linear combination of fpng (Gill 1982; Pedlosky 1987;

Vallis 2006; Ferrari andWunsch 2010; LaCasce 2012). In

fact, the set fpng is mathematically complete and can be

used to represent any field with a finite square integral:

ðz1
z2

f 2 dz,‘ . (4)

Even if the function f(z) has a nonzero derivative at z6,

or internal discontinuities, its representation as a linear

combination of the basis functions fpng converges in

L2(z2, z1), that is, the integral of the squared error goes

to zero as the number of basis functions increases (e.g.,

Hunter and Nachtergaele 2001, chapter 10). In quasi-

geostrophic dynamics, both the streamfunction c and

the potential vorticity (PV) q satisfy the requirement

(4), and thus both c and q can be effectively represented

by linearly combining fpng.
Despite the rigorous assurance of completeness in the

previous paragraph, the utility of fpng for problems with

nonuniform surface buoyancy has been questioned by

several authors (e.g., Lapeyre 2009; Roullet et al. 2012;

Smith and Vanneste 2013). These authors argue that the

homogeneous boundary conditions in (2) are incompati-

ble with nonzero surface buoyancy and that representa-

tion of the streamfunction c as a linear combination of

fpng is useless if cz is nonzero on the surfaces.

The aim of this paper is to obtain a good Galerkin

approximation to solutions of the QG equation with

nonzero surface buoyancy using the familiar basis fpng.
We show that that both the inversion problem and evo-

lutionary dynamics can be handled using fpng to repre-

sent the streamfunction. As part of this program we

revisit and extend two existing modal approximations

(Flierl 1978; Tulloch and Smith 2009) and develop a new

Galerkin approximation. We discuss the relative merit of

the three approximations in terms of their mathematical

rigor and conservation laws and illustrate their efficiency

and caveats by solving linear stability problems with

nonzero surface buoyancy.

Using concrete examples, we show that the concerns

expressed by earlier authors regarding the suitability of the

standard modes fpng are overstated; even with nonzero

surface buoyancy, the Galerkin expansion of the stream-

function c in terms of fpng converges absolutely and uni-

formly with no Gibbs phenomena, and the same is true for

the potential vorticity q. A modest number of terms

provide a good approximation to c and q throughout

the domain, including on the top and bottom bound-

aries. In other words, the surface streamfunction can

be expanded in terms of fpng and, with enough modes,

this representation can then be used to accurately

calculate the advection of nonzero surface buoyancy.

In section 5, we illustrate this procedure by solving the

classic Eady problem using the basis fpng for the

streamfunction.

2. The exact system

In this section, we summarize the basic properties of

the QG system. For a detailed derivation, see Pedlosky

(1987).

a. Formulation

The streamfunction is denoted c(x, y, z, t), and we use

the following notation:

u52c
y
, y5c

x
, q5

�
f
0

N

�2

c
z
. (5)

The variable q is related to the buoyancy by b5N2q/f0.

The QG potential vorticity (QGPV) equation is

›
t
q1 J(c, q)1by5 0, (6)

where the potential vorticity is

q5 (D1L)c , (7)

with

D5
def
›2x 1 ›2y, and L5

def
›
z

�
f
0

N

�2

›
z
. (8)
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Also in (6), the Jacobian is J(A, B)5
def

›xA›yB2 ›yA›xB.

The boundary conditions at the top (z 5 z1) and

bottom (z 5 z2) are that w 5 0, or, equivalently,

@z5 z6: ›
t
q6 1 J(c6,q6)5 0. (9)

Above we have used the superscripts1 and2 to denote

evaluation at z1 and z2, for example, c15 c(x, y, z1, t).

b. Quadratic conservation laws

In the absence of sources and sinks, the exact QG sys-

tem has four quadratic conservation laws: energy, poten-

tial enstrophy, and surface buoyancy variance at the two

surfaces (e.g., Pedlosky 1987; Vallis 2006). Throughout,

we assume horizontal periodic boundary conditions.

The well-known energy conservation law is

d

dt

ð
1

2
j=cj2 1 1

2

�
f
0

N

�2

(›
z
c)2 dV|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5
def

E

5 0. (10)

The total energy is r0E, where r0 is a reference density.

If b 5 0 then there are many quadratic potential ens-

trophy invariants: the volume integral of q2A(z), with

A(z) an arbitrary function of the vertical coordinate, is

conserved. The choice A(z)5 d(z2 z*) reduces to con-

servation of the surface integral of q2 at any level z*.

Charney (1971) noted that, in a doubly periodic do-

main, nonzero b destroys all these quadratic potential

enstrophy conservation laws, including the conservation

of potential enstrophy defined simply as the volume

integral of q2. Multiplying the QGPV equation [(6)] by

q, and integrating by parts, we obtain

d

dt

ð
1

2
q2 dV1b

ð
[yq]z

1

z2 dS5 0. (11)

The potential enstrophy equation [(11)] is the finite-depth

analog of equation (13) in Charney’s paper. To make

progress, Charney assumed q 5 0 at the ground. But the

b term on the right of (11) can be eliminated by cross-

multiplying the QGPV equation [(6)] evaluated at the

surfaces z6 with the boundary conditions (9) and combining

with (11). Thus, in a doubly periodic domain, nonzero

b selects a uniquely conserved potential enstrophy from the

infinitude of b 5 0 potential enstrophy conservation laws:

d

dt

ð
1

2
q2 dV2

ð
q1q1 2 q2q2 dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
5
def

Z

5 0. (12)

With b 6¼ 0, the surface contributions in (12) are re-

quired to form a conserved quadratic quantity involving

q2. Notice that Z is not sign definite. To our knowledge,

the conservation law in (12) is previously unremarked.

Finally, in addition to E and Z, the surface buoyancy

variance is conserved on each surface:

d

dt

ð
1

2
(q6 )2 dS5 0. (13)

Thus, with b 6¼ 0, the QG model has four quadratic

conservation laws: E, Z, and the buoyancy variance at

the two surfaces.

3. Galerkin approximation using standard vertical
modes

A straightforward approach is to represent the stream-

function by linearly combining the first N 1 1 vertical

modes. The mean-square error in this approximation is

err
c
(a

0
, a

1
, . . . aN )5

def 1

h

ðz1
z2

 
c2 �

N

n50

a
n
p
n

!2

dz . (14)

We use a script font, and context, to distinguish the

truncation indexN in (14) from the buoyancy frequency

N(z). The coefficients a0 through aN are determined to

minimize errc, and thus one obtains the Galerkin ap-

proximation cG
N to the exact streamfunction:

cG
N (x, y, z, t)5

def �
N

n50

c
^

n
(x, y, t)p

n
(z) , (15)

where the coefficients in the sum above are

c
^

n
(x, y, t)5

def 1

h

ðz1
z2

cp
n
dz . (16)

Throughout we use the superscript g to denote a

Galerkin coefficient defined via projection of a field onto

a vertical mode.

In complete analogy with the streamfunction, one can

also develop an (N 1 1)-mode Galerkin approximation

to the PV:

qG
N (x, y, z, t)5

def �
N

n50

q
^

n
(x, y, t)p

n
(z) , (17)

with coefficients

q
^

n
5
def 1

h

ðz1
z2

qp
n
dz . (18)

The construction of theGalerkin approximation qG
N above

minimizes a mean-square error errq defined in analogy

with (14).
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Now recall that the exact c and q are related by the

elliptic ‘‘inversion problem’’

(D1L)c5 q , (19)

with boundary conditions at z6:

�
f
0

N

�2
c
z
5q6 . (20)

The Galerkin approximations in (15) through (18) are de-

fined independently of the information in (19) and (20).

The relationship between the Galerkin coefficients q
^
n and

c
^

n is obtained by multiplying (19) by (1/h)pn(z) and in-

tegrating over the depth. Noting the intermediate result

1

h

ðz1
z2

p
n
Lc dz5

1

h
[p1

n q
1 2 p2

n q
2]2 k2

nc
^

n
, (21)

we obtain

q
^

n
5D

n
c
^

n
1

1

h
(p1

n q
1 2 p2

n q
2)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

surface terms

, (22)

where Dn is the nth-mode Helmholtz operator

D
n
5
def
D2k2

n . (23)

The relation in (22) is the key to a good Galerkin ap-

proximation to surface active quasigeostrophic dynamics.

Term-by-term differentiation of the cG
N series in (15)

does not give the qG
N series in (17) unless q6 5 0. In

other words, term-by-term differentiation does not

produce the correct relation [(22)] between q
^
n and c

^

n.

Thus, the Galerkin-truncated PV and the Galerkin-

truncated streamfunction do not satisfy the inversion

boundary value problem exactly:

(D1L)cG
N 6¼ qG

N . (24)

Despite (24), the truncated series cG
N and qG

N are the best

least squares approximations to c and q.

Notice that, in analogy with the Galerkin approxi-

mations for q and c,

d
^
1
n 5

1

h
p1
n and d

^
2
n 5

1

h
p2
n , (25)

where

d1G
N (z)5 �

N

n50

d
^
1
n pn

and d2G
N (z)5 �

N

n50

d
^
2
n pn

(26)

are finite approximations to distributions d(z 2 z6) at

the surfaces. Of course, these surface d distributions do

not satisfy the L2 convergence condition in (4), and thus

the series in (26) only converge in a distributional sense

(e.g., Hunter and Nachtergaele 2001). For instance, if f

satisfies the L2 convergence condition in (4), then

ðz1
z2

f (z)d1G
N (z) dz/

ðz1
z2

f (z)d(z2 z1) dz5 f (z1) ,

(27)

as N / ‘. Thus, in that limit,

(D1L)cG
N * q2 d(z2 z1)q1 1 d(z2 z2)q2 , (28)

where* denotes distributional convergence. The right-

hand side of (28) is the Brethertonianmodified potential

vorticity (Bretherton 1966) with the boundary condi-

tions incorporated as PV sheets. To illustrate (24) and

(28), we present an elementary example that is relevant

to our discussion of the Eady problem in section 5.

An elementary example: The Eady basic state

As an example, consider the case with constant

buoyancy frequencyN. We use nondimensional units so

that the surfaces are at z2 5 21 and z1 5 0. The stan-

dard vertical modes are p0 5 1 and, for n $ 1,

p
n
5

ffiffiffi
2

p
cos(npz) , (29)

with kn 5 np.

We consider the basic state of the Eady problem with

the streamfunction

c52 (11 z)|fflfflfflffl{zfflfflfflffl}
U

y , (30)

and zero interior PV q 5 0 and b 5 0. The surface

buoyancies are q6 5 2y.

The Galerkin expansion of the PV q 5 0 is exact:

q
^
N 5 0, and therefore qG

N 5 0. The truncated Galerkin

expansion of c follows from either (16) or (22) and is

cG
N 52

(
1

2
p
0
1 2

ffiffiffi
2

p "
p
1

p2
1

p
3

(3p)2
1⋯1

pN
(Np)2

#)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

UG
N

y .

(31)

(We assume that N is odd so that the last term in the

truncated series is as above.) Despite the nonzero de-

rivative of c at the boundaries, the series in (31) is ab-

solutely and uniformly convergent on the closed

interval21# z# 0. TheN22 behavior of the series (31)

ensures uniform convergence, for example, using the M

test (Hunter and Nachtergaele 2001). There are no
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Gibbs oscillations and a modest number of terms

provide a good approximation to the base velocity U

(Fig. 1a). All these desirable properties are lost if we

differentiate (31) with respect to z.

Thus, to illustrate (24) and (28), notice that if one

attempts to calculate the Eady PV, namely, q 5 0, by

direct differentiation of (31), one obtains

(D1L)cG
N 5 2

ffiffiffi
2

p
(p

1
1 p

3
1⋯ pN )y, and (32)

5 2
sin[(N 1 1)pz]

sin(pz)
y . (33)

The series (32) does not converge in a pointwise sense, and

the partial sum is violently oscillatory as N / ‘. How-

ever, in a distributional sense (Hunter and Nachtergaele

2001, chapter 11), the exact sum in (33) does converge to

d distributions on the boundaries (see Figs. 1b,c). These

boundary d distributions are the Brethertonian PV

sheets (Bretherton 1966). To some extent, which we

investigate in section 5a, the series (32) is rescued by

this Brethertonian interpretation.

Of course the correct Galerkin approximation to the

Eady PV q 5 0 is the splendidly convergent series

05 0p0 1 0p1 1⋯, which is obtained if one uses either

(18) or (22) to obtain q
^
n 5 0. This seemingly trivial ex-

ample illustrates potentially confusing issues that arise if

one differentiates a Galerkin approximation; the stan-

dard modes provide good representations of c and q,

even if cz is nonzero on the boundaries. The problem is

that differentiating the c series to produce a q series

does not produce the Galerkin approximation to q.

4. Three approximations

In (24) we noted that the Galerkin approximations to

c and q do not exactly satisfy the inversion relation. To

address this error there are at least three different ap-

proximations one canmake. The three approximations are

equivalent when q6 5 0. In the next three subsections, we

provide a detailed description of each approximation.

After testing, we recommend approximationC as themost

reliable approximation using standard vertical modes.

a. Approximation A

ApproximationA uses the truncated series cG
N in (15)

as a least squares Galerkin approximation to the

streamfunction c. Approximation A does not use the

Galerkin approximation for q. Instead, the approximate

PV qA
N (x, y, z, t) is defined so that the interior inversion

relation is satisfied exactly:

qA
N 5

def
(D1L)cG

N . (34)

This is the approximation introduced by Flierl (1978)

in a context without surface buoyancy, and it is now

regarded as the standard in physical oceanography. Note

FIG. 1. Nondimensional base state for the Eady problem using various truncations for the series (31). In (b), N is the number of baroclinic

modes. (a) Zonal velocity, although the truncation has zero slope at the boundaries there are no Gibbs oscillations. (b) Meridional PV gradient

associatedwith the truncated series (33). (c)As in (b), but with an expanded abscissa. AsN increases, the PV gradient distributionally converges

to two Brethertonian delta functions at the boundaries. The insets represent close-ups of the figures in regions enclosed by gray rectangles.
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that qA
N in (34) is not the least squares approximation to

the exact q. Instead the series qA
N is obtained using term-

by-term differentiation of the series cG
N . The example

surrounding (32) shows that with nonzero surface

buoyancy, the approximation qA
N is strongly oscillatory

in the interior of the domain and approaches the

Brethertonian PV on the right of (28) as N / ‘. The
rapid interior oscillation of qA

N is a spurious creation of

term-by-term differentiation. Later, in section 5, these

spurious oscillations will produce significant errors in

the solution of the Eady stability problem.

Following Flierl (1978), in approximation A the

N -mode approximate PV is defined via (34) and,

using the modal representation for cG
N in (15), this is

equivalent to

qA
N 5

def �
N

n50

D
n
c
^

n
(x, y, t)p

n
(z) , (35)

where Dn is the Helmholtz operator in (23). Following

the appendix of Flierl (1978), one can use the Galerkin

projection of the nonlinear evolution equation [(6)] on

the modes pn to obtain N 1 1 evolution equations for

the coefficients c
^

n:

›
t
D
n
c
^

n
1 �

N

m50
�
N

s50

J
nms

J(c
^

m
,D

s
c
^

s
)1b›

x
c
^

n
5 0, (36)

where

J
nms

5
def 1

h

ðz1
z2

p
n
p
m
p
s
dz . (37)

Note that Jnms cannot be computed exactly except in

cases with simple buoyancy frequency profiles. But it

suffices to compute Jnms to high accuracy, for example,

using Gaussian quadrature.

Flierl (1978) implicitly assumed that q1 5 q2 5 0 so

that the surface terms in (22) vanish and then there is no

difference between qA
N and qG

N . But in general, with

nonzero surface buoyancy, we can append evolution

equations for q1 and q2 to approximationA. That is, in

addition to the N 1 1 modal equations in (36), we also

have

›
t
q6 1 �

N

n50

p6
n J(c

^

n
,q6)5 0. (38)

Above we have evaluated the c series (15) at z6 to ap-

proximate c6 in the surface boundary conditions. This

approach is not satisfactory because the resulting sur-

face buoyancy equation [(38)] is dynamically passive,

that is, q1 and q2 do not affect the interior evolution

equations in (36).

Approximation A has the well-known energy conser-

vation law

d

dt
�
N

n50

ð
1

2
(=c

^

n
)2 1

1

2
k2
nc

^
2
n dS5 0. (39)

To obtain the energy analogous to E in (10), the modal

sum above is multiplied by the depth h. Approximation

A also has the potential enstrophy conservation law

d

dt
�
N

n50

ð
1

2
(D

n
c
^

n
)2 dS5 0. (40)

But the analog of the exact potential enstrophy [(12)] is

not conserved byA (nor byB andC below). Finally, with

the surface equations in (38), approximation A also

conserves surface buoyancy variance as in (13).

b. Approximation B

ApproximationB begins with the observation that the

exact solution of the inversion problem in (19) and (20)

can be decomposed as

c5cI 1cS , (41)

where cI(x, y, z, t) is the ‘‘interior streamfunction’’ and

cS(x, y, z, t) is the ‘‘surface streamfunction’’ (Lapeyre

and Klein 2006; Tulloch and Smith 2009).

The surface streamfunction cS(x, y, z, t) is defined as

the solution of the boundary value problem

(D1L)cS 5 0, (42)

with inhomogeneous Neumann boundary conditions

�
f
0

N

�2

›
z
cS(z6)5q6 . (43)

The interior streamfunction cI(x, y, z, t) is defined as the

solution of the boundary value problem

(D1L)cI 5 q , (44)

with homogeneous Neumann boundary conditions

�
f
0

N

�2

›
z
cI(z6)5 0. (45)

Approximation B assumes that one can solve the

surface problem in (42) and (43) without resorting to a

truncated series. For instance, with constant or expo-

nential stratifications, one can find closed-form, exact

expressions for cS (Tulloch and Smith 2009; LaCasce

2012). Approximation B requires that the two unknown

Dirichlet boundary condition functions cS6 5 cS(z6)

130 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



can be obtained efficiently from specified Neumann

boundary condition functions q1 and q2. The Eady prob-

lem, discussed below in section 5, is a prime example in

which one can obtain this Neumann-to-Dirichlet map.

Once cS is in hand, the approximate streamfunction is

cB
N 5cI

N 1cS , (46)

where the approximate interior streamfunction cI
N is

obtained by solving the interior inversion problem

(44) with the right-hand side replaced by the N -mode

Galerkin approximation qG
N defined in (17) and (18).

The two-mode two-surface model of Tulloch and

Smith (2009) is the case N 5 1. The exact solution of

the approximate interior inversion problem is

cI
N 5 �

N

n50

c
^
I
n(x, y, t)pn

(z) , (47)

where

c
^
I
n5
def 1

h

ðz1
z2

p
n
cI dz, and D

n
c
^
I
n 5 q

^

n
. (48)

To obtain the approximation B evolution equations,

we introduce the streamfunction (46) into the QGPV

equation [(6)] and project onto mode n to obtain

›
t
D
n
c
^

n
1 �

N

m50
�
N

s50

J
nms

J(c
^
I
m,Ds

c
^
I
s)1b›

x
(c

^
I
n 1c

^
S
n)

1 �
N

s50

1

h

ðz1
z2

p
n
p
s
J(cS,D

s
c
^
I
s) dz5 0, (49)

withJnms defined in (37). Approximation B assumes that

the remaining integral of (49) can be evaluated exactly.

This is only possible for particular models of the N(z)

(e.g., constant buoyancy frequency profiles). In practice,

however, it may suffice to compute the integral very ac-

curately, for example, using Gaussian quadrature.

The evolution equations for approximation B are

completed with the addition of buoyancy advection at

the surfaces:

›
t
q6 1 J(cS6,q6)1 �

N

n50

p6
n J(c

^
I
n,q

6)5 0. (50)

With (49) and (50), we have N 1 3 evolution equations

for the N 1 3 fields c
^
I
0, c

^
I
1, . . . c

^
I
N and q6.

Approximation B conserves surface buoyancy vari-

ance. But the conservation laws for energy are prob-

lematic; because cI is not orthogonal to cS the energy,

(10) is not conserved in approximation B (K. S. Smith

2014, personal communication). These nonconservative

effects are quantitatively small but are nonetheless

irritating. The nonorthogonality of cI and cS was a

motivation for development of the ‘‘surface-aware’’

modes by Smith and Vanneste (2013).

With b 5 0, approximation B conserves potential

enstrophy:

d

dt
�
N

n50

ð
1

2
(D

n
c
^
I
n)

2
dS5 0. (51)

But with b 6¼ 0, the analog of the exact potential ens-

trophy (12) is not conserved.

c. Approximation C

Approximation C uses truncated Galerkin approxima-

tions cG
N and qG

N for both c and q. The series qG
N is not

obtained by differentiation of cG
N , and therefore, as in-

dicated in (24), the inversion equation is not satisfied ex-

actly by cG
N and qG

N . But instead, one will have true least

squares approximations to both c and q. To our knowl-

edge, approximation C, correctly accounting for the sur-

face buoyancy boundary terms, has not been previously

investigated.

Because method C approximates both the stream-

function and the PV by Galerkin series, the derivation

of the modal equations is very straightforward com-

pared with the calculations in appendix A of Flierl

(1978); one simply substitutes the truncated Galerkin

series for the streamfunction (15) and PV (17) into the

QGPV equation [(6)] and then projects onto mode n to

obtain

›
t
q
^

n
1 �

N

m50
�
N

s50

J
nms

J(c
^

m
, q

^

s
)1b›

x
c
^

n
5 0, (52)

where Jnms is defined in (37), and we recall the relation

between c
^

n and q
^
n from (22):

q
^

n
5D

n
c
^

n
1

1

h
(p1

n q
1 2 p2

n q
2) . (53)

In approximation C, there are N 1 3 degrees of free-

dom: the N 1 3 modal amplitudes c
^

n and the two sur-

face buoyancy fieldsq6. The approximationC evolution

equations are completed by advection of the surface

buoyancy:

›
t
q6 1 �

N

n50

p6
n J(c

^

n
,q6)5 0. (54)

We emphasize that in approximation C the surface

buoyancy fields q6 are not passive; c
^

n, q
^
n, and q6 are

related through (53).

Approximation C conserves surface buoyancy vari-

ance as in (13). Total energy is also conserved:
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d

dt
�
N

n50

ð
1

2
j=c^

n
j2 1 1

2
k2
nc

^
2
n dS5 0. (55)

With b 5 0, approximation C has a potential enstrophy

conservation law

d

dt
�
N

n50

ð
1

2
q
^2
n dS5 0. (56)

But with b 6¼ 0, as in B, approximation C does not con-

serve the analog of the exact potential enstrophy [(12)].

5. The Eady problem

We use classical linear stability problems with non-

zero surface buoyancy to illustrate how solutions to

specific problems can be constructed and to assess the

relative merit and efficiency of approximations A, B,

and C. The linear analysis does not provide the full

picture of convergence of the approximate solutions.

Nonetheless, in turbulence simulations forced by baro-

clinic instability, it is necessary (but not sufficient) to

accurately capture the linear stability properties.

We use nondimensional variables so that the surfaces

are at z1 5 0 and z2 5 21. The Eady exact base-state

velocity is given by (30) with zero PV q 5 0 and b 5 0.

a. Approximation A

While the surface fields q6 are dynamically passive in

approximation A, the Eady problem can still be consid-

ered because the base-state PV defined via (35) converges

to d distributions on the boundaries (section 3).

The base-state velocity in approximationA is given by

the series (31) and is a good approximation to the exact

base-state velocity of (30). But, according to approxi-

mation A, there is a nonzero interior base-state PV

gradient given by the series (33). As N / ‘, the PV

gradient in (33) converges in a distributional sense to

Brethertonian sheets at z5 0 and21. But for numerical

implementation of approximation A, we stop short of

N 5 ‘. While the PV gradient is much larger at the

boundaries, there is always interior structure in the PV

(Fig. 1c). We show that this spurious interior PV gradi-

ent has a strong and unpleasant effect on the approxi-

mate solution of the Eady stability problem.

To solve the Eady linear stability we linearize the

interior equations in (36) about the base-state velocity

in (31) and the PV gradient in (33). We assume

q
^
k 5 q̂k exp[i(kx1 ly2vAt)], and so on, to obtain a

(N 1 1) 3 (N 1 1) eigenproblem:

�
N

m50
�
N

s50

J
nms

(U
^

m
q̂
s
1 ›

y
Q
^

s
ĉ
m
)5 cAq̂

n
, (57)

where Q
^

s are the coefficients of the series (33), and

cA5
def
vA/k. The eigenproblem (57) can be recast in the

matrix form Aq5 cAq, where q̂5 [q̂0, q̂1, . . . , q̂N21, q̂N ]
T

(appendix B) and solved with standard methods.

Figure 2 shows the growth rate of the Eady instability

according to approximation A and compares this with

the exact Eady growth rate. Approximation A does not

do well, especially at large wavenumbers. The exact

Eady growth rate has a high-wavenumber cutoff. At

moderate values ofN , such as 3, 5, and 7, approximation

A produces unstable ‘‘bubbles’’ of instability at wave-

numbers greater than the high-wavenumber cutoff. The

growth rates in these bubbles are comparable to the true

maximum growth rate. As N increases, the unstable

bubbles are replaced by a long tail of unstable modes

with a growth rate that slowly increases with k. These

spurious high-wavenumber instabilities are due to the

rapidly oscillatory interior PV gradient that supports

unphysical critical layers (see Fig. 3).

b. Approximation B: The exact solution

In approximation B, the zero PV in the Eady problem

implies q
^
n 5c

^
I
n 5 0. The N 1 1 modal equations (with

b 5 0) are trivially satisfied; there is no interior contri-

bution (cI
N 5 0). Thus, approximationB solves the Eady

problem exactly.

Assuming cS 5 ĉS(z) exp[i(kx1 ly2vBt)], we obtain

the solution to the surface streamfunction inversion

problems (42)–(43):

ĉS(z)5
cosh[k(z1 1)]

k sinhk
q1 2

cosh(kz)

k sinhk
q2 , (58)

where the magnitude of the wavenumber vector is

k5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
. We evaluate the surface streamfunction

(58) at the boundaries to find the relationship between

the streamfunction at the surfaces ĉS6 and the boundary

fields q6:"
ĉS1

cS2

#
5

1

k

�
cothk 2cschk

cschk 2cothk

��
q̂1

q2

�
. (59)

The nondimensional linearized boundary conditions

(50) are

q̂12 ĉ15 cBq̂1, and 2ĉ25 cBq̂2, (60)

where cB 5 vB/k. Using the boundary conditions (60) in

(59), we obtain an eigenvalue problem

1

k

�
k2 cothk cschk

2cschk cothk

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5
def

B

�
q̂1

q̂2

�
5 cB

�
q̂1

q̂2

�
. (61)
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The eigenvalues of B are given by the celebrated dis-

persion relation for the Eady problem (Pedlosky 1987;

Vallis 2006):

cB 5
1

2
6

1

k

h�k
2
2 tanh

k

2

	�k
2
2 coth

k

2

	i1/2
. (62)

c. Approximation C

Approximation C expands both the streamfunction

and the PV in standard vertical modes. Thus, in the Eady

problem thePV is exactly zero, as it should be: q5q
^
n 5 0.

Thus, approximationC does not have the spurious critical

layers that bedevilA. Moreover, in approximation C, the

N 1 1 modal equations (with b 5 0) in (52) are trivially

satisfied, and the inversion relationship (53) provides a

simple connection between the streamfunction and the

fields q6. The base velocity for the Eady problem in

approximation C is the series in (31) (the same as A).

From the exact shear at the boundaries we obtain the

exact base-state boundary variables:

Q6 52y . (63)

We linearize the boundary equations [(54)] about the

base states (33) and (63) to obtain

›
t
q6 1UG6

N ›
x
q6 2 �

N

k50

›
x
c
^

k
p6
k 5 0. (64)

Assuming q65 q̂6 exp[i(kx1 ly2vCt)], and using the

inversion relationship (53), we obtain a 2 3 2

eigenproblem:

C

�
q̂1

q̂2

�
5 cC

�
q̂1

q̂2

�
, (65)

where the matrix C is defined in appendix C. It is

straightforward to show that cC converges to the exact

eigenspeed, that is, cC / cB as N / ‘ (appendix C).

Figure 2 shows that approximation C successfully cap-

tures the structure of the Eady growth rate even with

modest values of N .

d. Remarks on convergence

The crudest truncation (i.e., N 5 0) is stable for both

approximations A and C (Fig. 2). With one baroclinic

mode (N 5 1) the growth rates (vi 5 k3 Imfcg) are

qualitatively consistent with the exact solution, and the

results improve withN 5 2.With a moderate number of

baroclinic modes (N . 2), approximations A and C

converge rapidly to the exact growth rate at wavenumbers

FIG. 2. Growth rate for the Eady problem as a function of the zonal wavenumber (l 5 0) using approximations A, B (exact), and C with

various numbers of baroclinic modes N .
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less than about 2.2 (see Fig. 2). But surprisingly the con-

vergence of the growth rate at the most unstable mode

(k ’ 1.6) is faster in approximation A (;N24) than in

approximation C (;N22) (see Fig. 4). However, the

convergence in approximation C is uniform; there are no

spurious high-wavenumber instabilities.

Figure 4 also shows that the approximation A con-

vergence of the growth rate to zero at k 5 8 is slow

(;N21). While the growth rate does converge to zero

at a fixed wavenumber, such as k 5 8, we conjecture

that there are always faster-growing modes at larger

wavenumbers.

6. The Green problem

To further explore the relative merit and efficiency of

approximations A, B, and C, we study the instability

properties of a systemwith nonzero b. For simplicity, we

consider a problemwith Eady’s base statec52(11 z)y

on a b plane. This is similar to the problem originally

considered by Charney (1947) and Green (1960). The

major difference is that Charney considered a vertically

semi-infinite domain (Charney 1947; Pedlosky 1987),

while we follow Green and consider a finite-depth do-

main with 21 , z , 0.

We obtain the exact system for this ‘‘Green problem’’

by linearizing the QG equations [(6)–(9)] about the base

state (30) with background PV by, where b̂ is the non-

dimensional planetary PV gradient. Assuming c 5
ĉ exp[i(kx1 ly2vt)], we obtain

(U2 c)(ĉ
zz
2 k2ĉ)1 b̂ĉ5 0, 21, z, 0, (66)

and

(U2 c)ĉ
z
2 ĉ5 0, z521, 0. (67)

As a reference solution, we solve the eigenproblems

(66)–(67) using a centered, second-order, finite-difference

scheme with 1000 vertical levels (see Fig. 5).

The Green problem supports three classes of un-

stable modes, indicated in the lower-right panel (N 5
128) of Fig. 5: 1) the ‘‘modified Eady modes,’’ which

are instabilities that arise from the interaction of Eady-like

edge waves, only slightly modified by b; 2) the ‘‘Green

modes,’’ which are very long slowly growing modes (Vallis

2006); and 3) the high-wavenumber ‘‘Charney modes,’’

which are critical layer instabilities that arise from the in-

teraction of the surface edge wave with the interior Rossby

wave that is supported by nonzero b.

a. Implementation of approximation A

The base state for the Green problem is the same as

in the Eady problem. In approximation A, the b term

adds only a diagonal term to the Eady system [(57)] (see

appendix C).

b. Implementation of approximation B

The base state is the same as in the Eady problem. The

steady streamfunction and buoyancy fields that satisfy

(49) and (50) exactly are

S52(11 z)y and Q6 52y . (68)

Assuming q
^
n 5 q̂n(z) exp[i(kx1 ly2vBt)], the N 1 1

interior equations [(49)] linearized about (68) are

FIG. 4. Absolute error as a function of number of baroclinic

modesN for the growth rates of the Eady problem. The solid lines

show the error at the exact fastest-growing mode (k ’ 1.6). The

dashed line is the approximation A error at k 5 8.

FIG. 3. Structure of k 5 8 unstable mode for the Eady problem

obtained using approximation A and N 5 64. Streamfunction is

the black curves, and PV is the colors. The streamfunction slightly

tilts westward as z increases. One can see the unphysical critical

layer associated with the fast-oscillating base-state PV. The crit-

ical level zc is the depth where the unstable wave speed matches

the velocity of the base state. Only the top quarter of the domain

is shown.
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�
N

s50

j
ns
q̂
s
1 b̂(ĉ

n
1 ĉS

n)5 cBc q̂n
, (69)

where

j
ns
5
def 1

h

ðz1
z2

p
n
p
s
(z1 1)dz . (70)

The boundary conditions of (50), linearized about (68),

are

q̂1 2 �
N

s50

p1
s ĉs

2 ĉS 1 5 cBc q̂
1 , (71)

and

2�
N

s50

p2
s ĉs

2 ĉS 2 5 cBc q̂
2 , (72)

where ĉS is given by (58). We use the inversion re-

lationship [(48)] and the Neumann-to-Dirichlet map

[(59)] to recast this eigenproblem into standard form

Bq̂5 cBq̂, where q̂5 [q̂1, q̂0, q̂1, . . . , q̂N21, q̂N , q̂2]T (see

appendix C).

c. Implementation of approximation C

Again the base state is the same as in the Eady

problem. But now there are N 1 3 equations: the two

boundary equations of Eady’s problem [(64)] plusN 1 1

interior equations:

�
N

m50
�
N

s50

J
nms

U
^

m
q̂
s
1 b̂ĉ

n
5 cCq̂

n
. (73)

We use the inversion relationship of (53) in (73) to recast

this eigenproblem in the form Cq̂5 cCq̂, where q̂ is de-

fined as in approximation B (see appendix C).

d. Remarks on convergence

The most crude truncation (N 5 0) is stable for ap-

proximationsA andC. In contrast, theN 5 0 truncation

in approximation B is qualitatively consistent with the

modified Eady instabilities (see Fig. 5).With amoderate

number of baroclinic modes (N 5 2 or 3), approxima-

tions A, B, and C all resolve the modified Eady modes

relatively well. At the most unstable modified Eady

mode (k ’ 1.9), approximation B has typically the

smallest error because it solves the surface problem

exactly. As in the Eady problem, approximation A

FIG. 5. Growth rate for theGreen problemwith b̂5 1 as a function of the zonal wavenumber (l5 0) using approximationsA,B, andCwith

various numbers of baroclinic modes N . The black line is a finite-difference solution with 1000 vertical levels.
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converges (;N24) faster than approximations B and C

(;N22) at the most unstable mode, but B and C con-

verge faster at high wavenumbers.

Approximations A, B, and C all converge very

slowly to the high-wavenumber Charney modes

(Figs. 5, 6). These modes are interior critical-layer in-

stabilities (Pedlosky 1987), and the critical layer is

confined to a small region about the steering level (i.e.,

the depth at which the phase speed matches the base

velocity; see Fig. 7). With finite base-state shear, the

critical layer is always in the interior. Thus, the prob-

lem is not that standard vertical modes are inefficient

because they do not satisfy inhomogeneous boundary

conditions; a low-resolution finite-difference solution

also presents such bubbles in high-wavenumber growth

rates (not shown). Resolution of the interior critical layer,

not the surface boundary condition, is a problem for all

methods at highwavenumbers. The surface-awaremodes

of Smith and Vanneste (2013) have similar performance

to approximations B and C, but also have the same

limitation—a large number of vertical modes are re-

quired to resolve interior critical layers (K. S. Smith 2015,

personal communication).

For example, with N , 25, at k 5 8, approximations

are qualitatively inconsistent with the high-resolution

finite-difference solution. For larger values of N , the

growth rate convergence for approximations B and C

scales ;N23. The growth rate for approximation A

converges painfully slowly (;N21). As in the Eady

problem, at large wavenumbers, the growth rate for

approximation A is qualitatively different from that

of the finite-difference solution because of spurious

instabilities associated with the rapidly oscillatory base-

state PV gradient in (33).

7. Summary and conclusions

The Galerkin approximations A, B, and C are equiv-

alent if there are no buoyancy variations at the surfaces.

Thus, all three approximations are well suited for appli-

cations with zero surface buoyancy (Flierl 1978; Fu and

Flierl 1980; Hua and Haidvogel 1986). But with nonzero

surface buoyancy, the three approximations are funda-

mentally different. In particular, approximation A, orig-

inally introduced by Flierl (1978) in a context without

surface buoyancy, obtains the approximate PV by dif-

ferentiating the Galerkin series for the streamfunction,

and consequently its approximate PV has violent oscilla-

tions in the interior. Approximation B represents the PV

as a Galerkin series in standard modes and calculates the

streamfunction that satisfies the exact inversion problem

associated with the approximate PV (Tulloch and Smith

2009). The inversion relationship is split into surface and

interior problems. Because the surface streamfunction

projects onto the interior solution, the energy is not di-

agonalized, and consequently approximation B has small

errors in energy conservation (K. S. Smith 2014, personal

communication). The surface-aware modes of Smith and

Vanneste (2013) correct this problem. Approximation C

uses the Galerkin series for both streamfunction and PV

but does not satisfy the inversion problem exactly. Nev-

ertheless, the Galerkin series for c and q converge abso-

lutely and uniformly, and approximation C provides a

FIG. 6. Absolute error as a function of number of baroclinic

modesN for the growth rates of the Green problem. The solid line

represents the error at the exact fastest-growing mode (k ’ 1.9).

The dashed line is the error at k 5 8.

FIG. 7. Wave structure of the k5 8 unstable mode for the Green

problem with b̂5 1 solved using a second-order finite-difference

scheme with 1000 vertical levels. Streamfunction (black contours)

and potential vorticity (colors). The streamfunction slightly tilts

westward as z increases. The potential vorticity is confined to

a small region, the critical layer. The critical level zc is the depth

where the unstable wave speed matches the velocity of the base

state. Only the bottom quarter of the domain is shown.
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good finite truncation of the QG equations that represents

surface buoyancy dynamics and also conserves energy.

With nonzero interior PV gradients, the convergence of

all approximations is slow for the high-wavenumber

Charney-type modes. The critical layer associated with

these modes spans a very small fraction of the total depth

(Fig. 7). To accurately resolve these near singularities at

the steering level, there is no better solution than having

high vertical resolution in the interior.

For problems with nonuniform surface buoyancy and

nonzero interior PV gradient, we recommend approxi-

mationC for obtaining solutions to the three-dimensional

QG equations using standard vertical modes.

The codes that produced the numerical results of this

paper, plotting scripts, and supplementary figures are

openly available online (at https://github.com/crocha700/

qg_vertical_modes).
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APPENDIX A

Convergence of Galerkin Series in Standard Modes

Jackson (1914) gives conditions for the uniform con-

vergence of series expansions in eigenfunctions of the

Sturm–Liouville eigenproblem

d2P
n

dZ2
1 [r2n 2L(Z)]P

n
5 0, (A1)

defined on the interval Z 2 [0, p] with boundary

conditions

P0
n(0)2 g

0
P
n
(0)5 0, and P0

n(p)2 g
p
P

n
(p)5 0,

(A2)

where g0 and gp are real constants of arbitrary sign, and

r2n is the eigenvalue. The equations defining the standard

modes (1)–(2) can be brought to this form using the

following Liouville transformation:

Z(z)5
1

Z

ðz
z2

S(j)21/2
dj, with Z 5

def 1

p

ðz1
z2

S(j)21/2
dj ,

(A3)

and

P
n
(Z)5S(z)1/4p

n
(z), where S(z) 5

def f 20
N2(z)

. (A4)

The eigenvalues are related by rn 5Zkn and

L(Z)5Z2

"
1

4

d2S

dz2
2

1

16S

�
dS

dz

�2
#
. (A5)

The boundary condition for the standard modes [(2)]

implies that the transformed modes satisfy (A2) with

g
0
5

4S(z2)1/2

ZdS(z2)/dz
, and g

p
52

4S(z1)1/2

ZdS(z1)/dz
. (A6)

If dS/dz 5 0 at a boundary then the appropriate condi-

tion at that boundary is Pn 5 0.

A special case of Theorem I from Jackson (1914)

states that the expansion of a function f(z) as a series in

eigenfunctions Pn converges absolutely and uniformly,

provided that both df/dz and dL/dz are continuous and

bounded, regardless of whether or not f satisfies the

same boundary conditions as Pn. (The remainder of the

theorem concerns the rate of convergence under stron-

ger conditions on c and L.) The streamfunction, po-

tential vorticity, and buoyancy profiles are typically

assumed to be smooth in studies of QG dynamics, which

implies that both f and L will satisfy the above condi-

tions. Uniform convergence over Z 2 [0, p] implies

uniform convergence over z 2 [z2, z1].

APPENDIX B

Derivation of Conservation Laws for Approximation C

To obtain the conservation of energy in approxima-

tion C, we multiply the modal equations in (52) by2c
^

n,

integrate over the horizontal surface, and sum on n to

obtain

d

dt
�
N

n50

ð
[(=c

^

n
)21k2

nc
^
2
n]dS2�

N

n50

1

h

ð
c
^

n
›
t
(p1nq

12p2n q
2)dS

1 �
N

n50
�
N

m50
�
N

s50

J
nms

ð
c
^

n
J(c

^

m
, D

s
c
^

s
)dS50.

(B1)

The triple sum term vanishes because Jnms is fully

symmetric and the Jacobian is anti-symmetric. The term

on the second line of (B1) is also zero: multiply the

boundary conditions of (54) by p6
n c

^

n and integrate over

the horizontal surface. Thus, we obtain the energy

conservation law in (55).
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The analog of the exact potential enstrophy [(12)],

Z
n
5
def �

N

n50

ð
q
^2
n

2
1 q

^

n
D
n
c
^

n
dS , (B2)

is only conserved with N 5 0.

APPENDIX C

Details of the Stability Problems

a. The interaction tensor

Because the standard vertical modes with constant

stratification are simple sinusoids [(29)], the interaction

coefficients [(37)] can be computed analytically. First,

we recall that Jijk is fully symmetric. Permuting the in-

dices so that i $ j $ k, we obtain

J
ijk
5

8>>>><
>>>>:

1: i5 j, k5 0;ffiffiffi
2

p

2
: i5 j1 k ;

0 : otherwise.

(C1)

The second line in (C1) corrects a factor of 1/2 missed by

Hua and Haidvogel (1986).

b. Approximation A

Using the symmetry in Jnms, and the inversion relation

[(35)], we rewrite row n 1 1 of the linear Green system:

�
N

s50
�
N

m50

J
nms

(U
^

m
1 ›

y
Q
^

m
a
s
)q̂

s
1 b̂a

n
q̂
n
5 cAq̂

n
, (C2)

where the inverse of the nth-mode Helmholtz operator

in Fourier space is

a
n
5
def

2[k2 1 (np)2]21 . (C3)

The Eady problem is the special case b̂5 0. We use a

standard eigenvalue–eigenvector algorithm to obtain

the approximate eigenspeed cA.

c. Approximation B

The Green eigenvalue problem in (69) through (72)

can be recast in the standard form Bq̂5 cBq̂, where q̂ 5
[q̂1, q̂0, q̂1, . . . , q̂N21, q̂N , q̂2]T. The first and last rows of

the system stem from the boundary conditions (71)–(72):

�
12

cothk

k

�
q̂12�

N

s50

p
s
1a

s
q̂
s
2

cschk

k
q̂2 5 cBq̂1, (C4)

and

cschk

k
q̂12�

N

s50

p2s asq̂s1
cothk

k
q̂2 5 cBq̂2. (C5)

The (n 1 1)th row originates from the nth interior

equation [(69)]:

2b̂p1
n an

q1 1 �
N

s50

g
ns
q̂
s
1 (ba

n
1 1)1 b̂p2

n an
q2 5 cBq̂

n
,

(C6)

where the symmetric matrix gms is

g
ij
5
def
ð0
21

p
i
p
j
z dz5

8>>>>>>>>><
>>>>>>>>>:

2
1

2
: i5 j ;

2
ffiffiffi
2

p

( jp)2
: i5 0, j is odd;

4(i2 1 j2)

[(i2 2 j2)p]2
: i1 j is odd.

(C7)

d. Approximation C

1) THE EADY PROBLEM

The 2 3 2 eigenproblem is

"
UG1

N 1SN 2VN
VN UG2

N 2SN

#
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

5
def

C

�
q̂1

q̂2

�
5 cC

�
q̂1

q̂2

�
,

(C8)

where

SN 5
def

a
0
1 2 �

N

n51

a
n
, and VN 5

def
a
0
1 2 �

N

n51

(21)na
n
.

(C9)

The sums (C9) become exact in the limit N / ‘:

S
‘
52

cothk

k
, and V

‘
52

cschk

k
. (C10)

The base velocity also converges to the exact result.

Using standard results for the summation of inverse

squares, we obtain

UG1
‘ 5 1, and UG2

‘ 5 0. (C11)

Thus,

C/B as N /‘ , (C12)
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and the eigenvalues of the Eady problem using ap-

proximationC become exact, that is, cC / cB asN /‘.

2) THE GREEN PROBLEM

The (N 1 3) 3 (N 1 3) eigenproblem is

Cq̂5 cCq̂ , (C13)

where q̂ is defined as above in approximationB. The first

and last rows of (C13) stem from the boundary condi-

tions (64):

(UG1
N 1SN )q̂

1 2 �
N

n50

a
n
p1
n q̂n

2VN q̂
2 5 cCq̂1, (C14)

and

VN q̂
1 2 �

N

n50

a
n
p2
n q̂n

1 (UG2
N 2SN )q̂

2 5 cCq̂2. (C15)

Row n 1 1 originates from the nth modal equation

[(73)]:

b̂a
n
p1n q̂

11�
N

s50
�
N

m50

J
nms

U
^

m
q̂
s
1 b̂a

n
q̂
n
2 b̂a

n
p2q̂25cCq̂

n
.

(C16)

REFERENCES

Bretherton, F., 1966: Critical layer instability in baroclinic flows.

Quart. J. Roy. Meteor. Soc., 92, 325–334, doi:10.1002/

qj.49709239302.

Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2015: The role

of mixed layer instabilities in submesoscale turbulence.

J. Fluid Mech., in press.

Charney, J. G., 1947: The dynamics of long waves in a baroclinic

westerly current. J. Meteor., 4, 136–162, doi:10.1175/

1520-0469(1947)004,0136:TDOLWI.2.0.CO;2.

——, 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095,

doi:10.1175/1520-0469(1971)028,1087:GT.2.0.CO;2.

Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic

and potential energies in the global ocean. Tellus, 62A, 92–

108, doi:10.3402/tellusa.v62i2.15680.

Flierl, G. R., 1978: Models of vertical structure and the calibration

of two-layermodels.Dyn.Atmos.Oceans, 2, 341–381, doi:10.1016/

0377-0265(78)90002-7.

Fu, L.-L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy

transfers in a realistically stratified ocean. Dyn. Atmos.

Oceans, 4, 219–246, doi:10.1016/0377-0265(80)90029-9.

Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press,

662 pp.

Green, J., 1960: A problem in baroclinic stability. Quart. J. Roy.

Meteor. Soc., 86, 237–251, doi:10.1002/qj.49708636813.

Hua, B., and D. Haidvogel, 1986: Numerical simulations of the

vertical structure of quasi-geostrophic turbulence. J. Atmos.

Sci., 43, 2923–2936, doi:10.1175/1520-0469(1986)043,2923:

NSOTVS.2.0.CO;2.

Hunter, J. K., and B. Nachtergaele, 2001:Applied Analysis. World

Scientific, 456 pp.

Jackson, D., 1914: On the degree of convergence of Sturm-Liouville

series. Trans. Amer. Math. Soc., 15, 439–466, doi:10.1090/

S0002-9947-1914-1500989-4.

LaCasce, J., 2012: Surface quasigeostrophic solutions and baro-

clinic modes with exponential stratification. J. Phys. Ocean-

ogr., 42, 569–580, doi:10.1175/JPO-D-11-0111.1.

Lapeyre, G., 2009: What vertical mode does the altimeter reflect?

On the decomposition in baroclinic modes and on a surface-

trapped mode. J. Phys. Oceanogr., 39, 2857–2874, doi:10.1175/

2009JPO3968.1.

——, and P. Klein, 2006: Dynamics of the upper oceanic layers in

terms of surface quasigeostrophy theory. J. Phys. Oceanogr.,

36, 165–176, doi:10.1175/JPO2840.1.

Pedlosky, J., 1987:Geophysical Fluid Dynamics. 2nd ed. Springer-

Verlag, 710 pp.

Roullet, G., J. McWilliams, X. Capet, and M. Molemaker, 2012: Prop-

erties of steady geostrophic turbulencewith isopycnal outcropping.

J. Phys. Oceanogr., 42, 18–38, doi:10.1175/JPO-D-11-09.1.

Smith, K. S., and J. Vanneste, 2013: A surface-aware projection

basis for quasigeostrophic flow. J. Phys. Oceanogr., 43, 548–

562, doi:10.1175/JPO-D-12-0107.1.

Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with

explicit surface dynamics: Application to the atmospheric energy

spectrum. J. Atmos. Sci., 66, 450–467, doi:10.1175/2008JAS2653.1.

Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics:

Fundamentals and Large-Scale Circulation. Cambridge Uni-

versity Press, 769 pp.

JANUARY 2016 ROCHA ET AL . 139

http://dx.doi.org/10.1002/qj.49709239302
http://dx.doi.org/10.1002/qj.49709239302
http://dx.doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2
http://dx.doi.org/10.3402/tellusa.v62i2.15680
http://dx.doi.org/10.1016/0377-0265(78)90002-7
http://dx.doi.org/10.1016/0377-0265(78)90002-7
http://dx.doi.org/10.1016/0377-0265(80)90029-9
http://dx.doi.org/10.1002/qj.49708636813
http://dx.doi.org/10.1175/1520-0469(1986)043<2923:NSOTVS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1986)043<2923:NSOTVS>2.0.CO;2
http://dx.doi.org/10.1090/S0002-9947-1914-1500989-4
http://dx.doi.org/10.1090/S0002-9947-1914-1500989-4
http://dx.doi.org/10.1175/JPO-D-11-0111.1
http://dx.doi.org/10.1175/2009JPO3968.1
http://dx.doi.org/10.1175/2009JPO3968.1
http://dx.doi.org/10.1175/JPO2840.1
http://dx.doi.org/10.1175/JPO-D-11-09.1
http://dx.doi.org/10.1175/JPO-D-12-0107.1
http://dx.doi.org/10.1175/2008JAS2653.1

