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ABSTRACT

The density of the mixed layer is approximately uniform in the vertical but has dynamically important
horizontal gradients. These nonuniformities in density result in a vertically sheared horizontal pressure gradient.
Subinertial motions balance this pressure gradient with a vertically sheared velocity. Systematic incorporation
of shear into a three-dimensional mixed layer model is both the goal of the present study and its major novelty.

The sheared flow is partitioned between a geostrophic response and a frictional, ageostrophic response. The
relative weighting of these two components is determined by a nondimensional parameter p = 1/fry, where
1y is the timescale for vertical mixing of momentum and f~! is the inertial timescale.

If u is of order unity, then the velocity has vertical shear at leading order. Differential advection by this shear
flow will tilt over vertical isosurfaces of heat and salt so as to *“‘unmix™ or “restratify” the mixed layer. The
unmixing process is balanced by intermittent mixing events, which drive the mixed layer back to a state of
vertical homogeneity.

All of these processes are captured by a new set of reduced or filtered dynamics called the subinertial mixed
layer (SML) approximation. The SML approximation is obtained by expanding the equations of motion in
both Rossby number and a second small parameter that is the ratio of the vertical mixing timescale to the
dynamic time scale. The subinertial dynamics of slab mixed layer models is captured as a special case of the

VOLUME 24

SML approximation by taking the limit u — c0.

1. Introduction

The goal of this paper is to develop a set of approx-
imate dynamics describing the subinertial motions in
a vertically homogeneous and rapidly rotating layer of
fluid with a free lower boundary. This is a very idealized
model of the ocean mixed layer (ML). The simplified
equations of motion, called the subinertial mixed layer
(SML) approximation, are obtained by applying stan-
dard “filtering” arguments to the primitive equations.
The analysis, and the resulting approximate dynamics,
is similar to the quasigeostrophic set (Pedlosky 1987).

The ML is the uppermost layer of the ocean in which
recent mixing events have created almost vertically
homogeneous temperature and salinity fields. Many
previous models of the ML have also assumed that the
velocity is vertically uniform or “slablike.” Examples
of slab models include Schopf and Cane (1983), de
Szoeke and Richman (1984), McCreary and Kundu
(1988), and McCreary and Yu (1992). A recent dis-
cussion of the conservation laws and stability properties
of slab models is given by Ripa (1993 ). One important
issue confronted in the course of deriving the SML

Corresponding author address: Dr. William Young, Scripps Insti-
tution of Oceanography, University of California, San Diego, 9500
Gilman Dr., La Jolla, CA 92093-0230.

© 1994 American Meteorological Society

approximation is the basis for the assumption of a slab
velocity profile in the ML.

At first sight, a slab velocity profile seems to be de-
manded by the vertical homogeneity of the temperature
and salinity in the ML: otherwise the differential ad-
vection due to the sheared velocity profile would tilt
over vertically homogeneous property surfaces and
“restratify” the ML. In fact, the role of shear-driven
restratification is a central issue of this paper and also
in recent work by Tandon and Garrett (1994) and
Roemmich et al. (1994). Along with these authors, 1
argue that there are compelling reasons for believing
that there are sheared velocity fields within the ML,
and that this shear does result in a partial restratification .
of the ML. Opposing the restratification process are
intermittent mixing events, such as storms or shear
flow instabilities.

The balance between differential advection and ver-
tical mixing outlined above is the same as that in Tay-
lor’s (1953) theory of shear dispersion. In the ML the
mixing is most probably episodic, rather than the con-
tinually acting molecular diffusion in Taylor’s theory.
But the essential idea of approximate vertical unifor-
mity, corrected by a vertical structure reflecting the
competition between differential advection and vertical
mixing, is common to both the present work and shear
dispersion. Certainly the example of shear dispersion
shows that there is not necessarily a contradiction be-
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tween almost vertically homogeneous tracer fields and
advection by a strongly sheared velocity.

But is the velocity in the ML “strongly sheared™?
At first sight one might believe that the mixing that
homogenizes the temperature and salinity would also
ensure that the momentum is uniformly mixed. There
are two reasons why this might not be the case.

First, there is an additional timescale in the mo-
mentum equations not present in the tracer equations,
namely, . If the timescale for the vertical mixing of
momentum' is 7y then a slab velocity profile requires
that

Ty <f! (1.1)

so that the momentum mixing is faster than the inertial
timescale. By contrast, if the timescale for the vertical
mixing of tracers is 7, then vertical uniformity of heat
and salt requires only that

T<T. (1.2)

In (1.2) T is the timescale characteristic of the subin-
ertial evolution of the ML so that the Rossby number
is

Ro = <1 (1.3)

1
fT
If one makes the natural assumption that 7 ~ 7y, then
the inequality in ( 1.1) is more restrictive than those in
(1.2) and (1.3). To summarize, if T > 7 ~ 7y > f '
there is the possibility that heat and salt are almost
vertically uniform whereas the velocity is not. The de-
tailed derivation of the SML approximation in section
3 “fleshes out” this scale analysis.

There is a second reason to anticipate that the ML
velocity might be sheared, while the heat and salt are

vertically uniform. Using the hydrostatic relation, the
" pressure in the mixed layer is

p=pg(z+ h)+ p(=h), (1.4)

where p(x, y, t) is the horizontally inhomogeneous
density and A(x, y, t) is the depth of the ML. The
constant of integration p(—#) is the pressure at the
base of the ML. It immediately follows from ( 1.4) that
there is a systematic and persistent depth-dependent
forcing Vp in the horizontal momentum equations.
There is no analog of this depth-dependent force in
the conservation equations for heat and salt. Slab mixed
layer models either ignore the depth-dependent pres-
sure gradient, or assume that Reynolds stresses are such
as to precisely cancel this inconvenient term.

! For example, if one models the mixing with a vertical eddy vis-
cosity » and the order of magnitude of the ML depth is #, then 7y
~ #?/v. Likewise, if the tracer mixing is modeled with a vertical
diffusivity «, then r ~ #?%/«.
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In addition to the theoretical arguments outlined
above, there is the possibility of observing either sheared
currents or shear-driven restratification within the ML.
As an example of the latter possibility, Roemmich et
al. (1994) use XCTD observations of salinity in the
equatorial ML to infer that salinity restratification oc-
curs when the westward wind stress relaxes. This equa-
torial restratification is created by a vertically sheared
zonal current accelerating in response to a vertically
sheared zonal pressure gradient. The shears are sub-
stantial: Roemmich et al. estimate surface velocities of
about 1 m s~! eastward and a shear of 0.4 m s in the
top 100 m of the equatorial Pacific.

Using Lagrangian drifter data from the northeast
Pacific, Niiler and Paduan (1994) infer the existence
of sheared currents in the ML. These authors attribute
the shear to a turbulent stress profile with significant
curvature. Because of this curvature with depth, the
divergence of the stress is a body force with vertical
structure, rather than the vertically uniform body force
assumed by slab models. This mechanism is different
from the depth-dependent pressure force mentioned
above, but the upshot is the same: sheared ML currents
are driven by a nonslab body force.

A third observational study of ML shear is the MILE
experiment described by Davis et al. (1981). During
the 20-day course of this experiment, closely spaced
VACMs measured the velocity in the top 50 m of the
ocean. The results, summarized in Fig. 17 of Davis et
al., show significant shears in the ML except during a
strong wind event. This event lasted two days and re-
sulted in a reduction of ML shear. A second weaker
and less persistent wind event had no noticeable effect
on ML shear. The conclusion of Davis et al. is that the
MILE experiment did not confirm the slab ML model
except during strong wind events.

The meteorological slab mixed layer model was for-
mulated by Lavoie (1972). A recent paper reviewing
the meteorological literature is Dempsey and Rotunno
(1988). These authors use a slab mixed layer to model
topographic generation of mesoscale vortices such as
the Denver cyclone. The larger database in the atmo-
spheric sciences provides a better observational test of
the slab mixed layer model than is available in ocean-
ography. The conclusion of Dempsey and Rotunno is
that observations do not support the assumption that
the velocity is well mixed in the atmospheric planetary
boundary layer.

In the next section, I introduce the primitive equa-
tions of mixed layer dynamics. Apart from the model
adopted for the parameterization of vertical mixing,
this formulation is standard. In section 3 the SML
equation is derived using an asymptotic expansion
whose principal parametric assumptions are the in-
equalities (1.2) and (1.3). The assumption (1.1) is not
required in the derivation of the SML approximation.
But the limit in (1.1) can be taken a posteriori within
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the context of the SML approximation so that the sub-
inertial dynamics of the slab models is captured as a
special case.

2. Formulation of a tractable model

a. The equations of motion

In this section I formulate a model of mixed layer
dynamics. The mixed layer is the domain 0 > z > ~A(x,
¥, t) and the model dynamics in this region are

Du i, - -
E—fv+px=~rul(u—u)+h‘f7u
E

o Tt e = 7 (0 —v) + h7'F,

pz_b 0

u,+v,+w,=0

DT -

_D? =r WT-T)+h'Fr

DS .

Ft =7 S -8+ hr'Fs, (2.1a-f)

where D/ Dt = 9, + ud, + vd, + wd, is the convective
derivative. The equations above are not yet vertically
averaged: all of the variables depend on x, y, z, and ¢.
In (2.1c¢) b denotes the buoyancy so that the density
is
p=p(1—-g'b), b=glar(T—T)— as(S— S)],
(2.2a,b)

where p, T, and .S are the constant density, temperature,
and salinity immediately below the surface z = —h. For
static stability at the base of the mixed layer b(x, y, —h,
) > 0. The total pressure in the mixed layer is

P = —pgz + pp, (2.3)

where p is related to b by (2.1c). Some of the notation
is summarized in Fig. 1.

The sources F,(x, y, z, 1), Fo(x,p, 2, 1), Fs(x, ¥,
z,t),and Fr(x, y, z, t) in the conservation equations
represent the input of momentum, heat, and salt
from either the atmosphere above or the ocean interior
below.

In (2.1) the overbar denotes the vertical average of
a field:

_ 1 [°
0(x, y, t)E;L 0(x,y, z, t)dz,

0(x,y,z,t)=0(x,y,t)+0'(x,y,z,1). (2.4ab)
I also use the notation:
b(x,y, t)y=0(x,y, —h*, 1),
0(x,y,0)=0(x,y,—h™,1). (2.5ab)
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F1G. 1. A definition sketch of the idealized mixed layer. A rapidly
rotating, buoyant layer of fluid floats on a lower layer. There is reduced
gravity, g’, at the interface between the two layers. The upper layer
is vertically homogenous in temperature, salinity, and density, but
these three properties do vary horizontally. The horizontal pressure
gradient in the upper layer has a component due to the vertical dis-
placement of the interface and a second component due to the hor-
izontal variations in density within the layer. If the horizontal pressure
gradient is balanced geostrophically, then the resulting velocity is
vertically sheared as indicated at left. The shear will tilt over the
property surfaces and produce vertical gradients in temperature, sa-
linity, and density. This shear-driven “unmixing” is checked by ver-
tical mixing so that the vertical homogeneity of the layer is maintained.

Thus § is the value of # just above the base of the mixed
layer and @ is the value just below the base of the mixed
layer. Some fields, such as pressure, are continuous so
that p = p. Others, such as temperature, are effectively
discontinuous. Thus, the temperature jump at the base
of the mixed layeris 7 — 7.

The base of the mixed layer is at z = —h(x, y, )
and since this is not always a material surface its motion
is described using the well-known concept of an en-
trainment velocity:

By + by + Dhy + W = Wen (2.6)

(e.g., de Szoeke 1980; Schopf and Cane 1983; de Szocke
and Richman 1984). If the entrainment velocity,
Wen(x, ¥, t), is positive, then fluid is passing through
the surface z = —A(x, y, t) and entering the mixed
layer.

b. Vertical averages of the equations of motion
A useful identity is
Di 1. _ .
—D‘—t' = z [6,(A8) + V- (huf) — wenb],
where V = (9, 9,). The result (2.7) is proved with a
sedulous application of Leibnitz’s rule.
The vertical average of the conservation equations
in (2.1) can be taken using (2.7). For example, con-
sidering S'in (2.1f) and using (2.7) gives

(hS), + V- [hiS + h'S'] = WenS + Fs.

(2.7)

(2.8)
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Physical considerations now show that one must have
Fs= Qs+ HWe)Wen( S — S),  (2.9)

where Qg(x, y, t) is the effective source of salinity due
to differences between evaporation and precipitation
at the surface and H(x) is the Heaviside step function.
The other final term on the right-hand side of (2.9) is
included so that the total conservation law in (2.8)
now becomes

(hS), + V-[huS + ha'S"]
= Qs+ H(Wen) WenS + H(—Wen)WenS.  (2.10)

If we, > 0, then fluid is entering the mixed layer and
the second term on the rhs of (2.10) is the input of
salinity from the ocean interior. If w,, < 0, then fluid
is leaving the layer and the last term on the right-hand
side of (2.10) is the loss of salinity accompanying this
detrainment.

The vertically averaged conservation equations for
temperature and momentum can be constructed in an
analogous way using the identity (2.7). In each case
we decompose the vertically averaged source ¥, where
X =u,v, S,or Tas

Fo = Qx + H(Wen) Wen(6 — ). (2.11)

Here Qx(x, y, t) is the source at the surface or lateral
diffusion. The decomposition in (2.11) ensures that in
the total conservation law, analogous to (2.10), the
source terms introduced by the entrainment w,, are
correct. Equation (2.11) is a physical constraint that
any model of Fx and w., used in conjunction with
“relaxation to vertical average™ must satisfy.

The appendix A contains a derivation of the verti-
cally averaged, vertical vorticity balance of the system
in (2.1). The most important result in that appendix
is the conservation law in (A.11), which is used in
section 3 to assist in the derivation of the SML ap-
proximation.

¢. A summary of the forcing functions

The mixed layer is forced by the fluxes F«, by en-
trainment we,, and finally by pressure forces at z = —A.
This means that in order to consider (2.1a-f) and (2.2)
as a closed set of equations for the seven unknown
independent variables u, v, w, p, b, S, and T we must
prescribe or parameterize the functions Fs, Wen, 2%,
and also p = p. This final external function is the con-
stant of integration needed to determine p from (2.1c).

We do not attempt to model the dynamics of the
region below the mixed layer and so we simply pre-
scribe p as some given forcing function:

P=fe(x,y,1). (2.12)

Because of the assumption that the fluid in the layer
below z = —h has uniform density, p, the total pressure
in this layer is P = —gzp + gfe. Thus the special case

YOUNG

1815

¢ = 0 corresponds to the 11/2-layer model in which it
is assumed that the pressure gradient in the lower layer
is zero. Equation (2.12) completes the description of
the mixed layer model.

d. A discussion of the mixing parameterization

The most unfamiliar terms in (2.1) are those intro-
duced by the parameterization of vertical mixing. The
model in (2.1) uses “relaxation to vertical average”
with a time constant 7, in the momentum equations
and 7 in the heat and salt equations. In defense of this
model assumption I argue that

(1) it is less ad hoc than simply discarding some of
the depth-dependent terms in the equations of motion;

(ii) for the length and timescales of interest relax-
ation to the vertical average is not more ad hoc than
vertical eddy diffusivities and viscosities;

(iii) the ultimate goal is a set of equations describing
the nonlinear evolution of the subinertial dynamics of
the system in (2.1). The form of these equations does
not depend on the details of how vertical mixing is
parameterized: vertical eddy diffusivity leads to the
same result.

Notice that the “depth of the mixed layer” is defined
as the depth over which the relaxation to vertical av-
erage operates: h(x, y, t) enters through the definition
of vertical average in (2.4). It is possible to refine the
vertical relaxation parameterization by making the re-
laxation time 7 depend on the other model variables.
An obvious suggestion is 7 ~ h/u,, where u, is the
friction velocity that parameterizes the generation of
turbulent energy (3 ). I do not follow this route in the
present article, though the asymptotic development in
section 3 easily accomodates such complications.

The vertical homogeneity of the mixed layer is
maintained by events such as storms, or perhaps in-
termittent overturns. The parameters 7 and 7y are
roughly the average time between these events (i.e.,
several days) and not the duration of the events (i.e.,
a few hours).

Between mixing events, the layer is actually unmix-
ing, that is, developing vertical structure or “‘restrati-
fying.” One unmixing mechanism is the differential
advection by the shear flow on the left-hand side of
Fig. 1: vertical isosurfaces will be tilted over so that
vertical gradients are created from horizontal gradients
(e.g., Roemmich et al. 1994; Tandon and Garrett
1994). A second unmixing mechanism is the vertical
structure of the forcing functions ¥, #,, Fs, and ¥ 7.
It is unlikely that atmospheric forcing is distributed
uniformly over the mixed layer, so the selective action
of atmospheric inputs on the top of the layer will create
vertical structure.

It might be objected that, if the shear flow is geo-
strophically balanced, then it is parallel to density sur-



1816

faces and so does not affect density. But not all of the
vertically sheared pressure gradient will be balanced
geostophically: in the mixed layer there is some vertical
mixing of momentum [modeled by 7y in (2.1a,b)]
and this friction leads to a component of flow down
the pressure gradient. The resulting vertically sheared
velocity will tilt the density surfaces. A second consid-
eration is that density is determined by both heat and
salt, and provided that these tracers are independent
their separate isosurfaces will be tilted even by a geo-
strophically balanced shear flow.

3. The SML expansion

For brevity the effects of forcing are ignored in this
first derivation of the SML approximation: from this
point forward take F« = 0 and w,, = 0. Provided that
the forcing is sufficiently gentle so as not to disrupt the
leading order balances its inclusion within the SML
approximation is straightforward. But it is instructive
1o retain the pressure forcing function ¢ in (2.12).

a. The basic state and the length and timescales

~ The expansion is a perturbation about a basic state
in which the mixed layer has a uniform depth /#, uni-
form temperature { '), and uniform salinity (S’y. The
fluid below the base of the mixed layer also has uniform
temperature 7 and salinity S. Thus, there is a reduced
gravity

g =glar({TY = T)— as({S)y - 8], (3.1)

where the angle brackets in (3.1) denote an integral
average of a horizontal area: {(S) = A" [ SdA, where
dA = dxdy. For instance, the basic-state depth of the
mixed layer is defined as /# = ( h). The Rossby radius
of deformation is

- (32)

A typical reduced gravity at the mixed layer base is g’
~1072m?s™!, sothatif # ~ 100 mand f~ 107*s™!
then .L ~ 10 km.

The problem contains four timescales. The first three
timescales are apparent in (2.1): they are the inertial
timescale ! and the two mixing times 7 and 7. The
fourth timescale is the “dynamic timescale” denoted
by 7. As in the derivation of the quasigeostrophic ap-
proximation, the dynamic timescale is characteristic
of the subinertial evolution of the vertical vorticity.
Thus the scale of the horizontal velocity is

== (3.3)
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and the Rossby number is
Ro = _1_ = 1 34
o 7T 7L (3.4)

The expansion requires that Ro < 1.
As an explicit definition of 7 one might use

_JL

T rz’
where I is the scale of the horizontal buoyancy gradient
within the mixed layer, for example, I'>=(VB-VB).
The timescale in (3.5) follows from scale analysis of a
thermal wind balance fU/# ~ I. To estimate an
order of magnitude for 7, assume a large-scale hori-
zontal buoyancy gradient produced by a temperature
change gf 3°Cin 1000 km. This thermal gradient gives

(3.5)

- dT 108 <=2
I'~gar e 107° 577, (3.6)
Using the numbers above for .L, etc., one finds that T
~ 109 5. I emphasize that this estimate of the dynamic
timescale is based on a climatological temperature gra-
dient: in frontal regions I is at least a factor of 10 larger
than the estimate in (3.6) (e.g., Samelson and Paulson
1988) and the dynamic timescale 7 is correspondingly
reduced.

From the four timescales 7, 7y, f ', and T one can
form three nondimensional numbers. The first is the
Rossby number introduced in (3.4). The other two
nondimensional numbers are now defined as

(3.7)

]

SIE

and

1

=—, 3.8
| W= - (38)
The expansion requires that both Ro and ¢ be small
but no restriction is placed on x. We pursue a general
development by carrying u as order unity. Although
this complicates the algebra, it has the advantage of
establishing contact with the slab mixed layer models
discussed in the introduction. The subinertial dynamics
of the slab models can be recovered as a special case
of the SML approximation by taking the limit
@ —> co.

b. Nondimensional variables

The expansion is best done in dimensionless vari-
ables, denoted by an asterisk:

(x, y) = L(Xs, yx),
(u5 v) = W(u*, v*)’
where U is defined in (3.3).

Z=Hzy, 1= Tly,

w=(Z/L)Uw,, (3.9)



AUGUST 1994

The layer depth is written as

h=2(1+ Rony), (3.10)

where # is the undisturbed, constant depth of the layer.
If n, is of order one, then there are small [O(Ro)]
changes in the layer depth. This is the usual quasigeo-
strophic scaling (Pedlosky 1987). Notice that in di-
mensionless variables the bottom of the layer is at z,
= —1 — Ron, and because of our definition of Z,
<7I*> =0.

The total temperature and salinity in the mixed layer
is written as

T =(T)+Ro(g'/gar)T,

S={(S)+Ro(g'/gas)Sx. (3.11)
Here T,(x, y, z, t) and S.(x, y, z, t) are the nondi-
mensional perturbations of temperature and salinity
superimposed on the uniform basic-state values (T')
and {S). Introducing the definition of g’ in (3.1) into
(2.2b) gives

b=g'(1 + Rob,), where b,=T, —S,.

(3.12a,b)

The nondimensional buoyancy perturbation is by, and
clearly (T ) = (S, ) = (b4 ) = 0. The nondimensional
units have been constructed so that if T, = S, then
the density effects of temperature and salinity perfectly
cancel; then the buoyancy of the layer is equal to g’
defined in (3.1).

The pressure is

p=gz+Z)+fULp,, ¢ =ULp,. (3.13a,b)
Using these definitions the nondimensional version of
the lower boundary condition in (2.14) is pe (X, Vi,
=1 —Romy, 1) = 1y + @4-

Introducing all of the definitions above into the di-
mensional equations of motion and then dropping the
+’s gives the nondimensional set

Du
Ro——v+p,=—ut

Dt
Rog)-+u+py=-pu’
Dt
p:—b=0
Ut v, +w, =0
DS
€E= -S'
6E= -7’
Dt
b=T-S. (3.14a-g)
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The nondimensional version of the kinematic bound-
ary condition in (2.6) is

Ro(n, + tiny, + O9,) + w =0, (3.15)
and the pressure boundary condition in (2.12) is
p(x,y, —1 —Ron, 1) =9 + ¢. (3.16)

The nondimensional problem is completely defined
by (3.14), (3.15), and (3.16).

¢. The expansion

The asymptotic expansion assumes that both € and
Ro are small. More precisely, we take a distinguished
limit in which ¢ = 0 and

Ro = 2R, (3.17)

where R is of order unity. :
All of the independent variables are expanded in
powers of e

U=1ty+ ey + Uy + ¢+ o +. (3.18)

Our goal is to capture all terms of order €>. This level
of accuracy requires that we calculate higher-order
corrections to the leading-order evolution equations;
so a multiple timescale expansion is needed:

8 =0+ ed, + - - (3.19)

Incidentally, the QG approximation stops at terms of
order €2 and we penetrate one order higher in ¢ than
this. The balance models described by Allen (1991),
McWilliams and Gent (1980), and Salmon (1985) are
generally concerned with terms of order Ro? ~ ¢* and
this, in turn, is one order higher in ¢ than the SML
approximation. However, the balance models deal with
homogeneous layers and in that case the expansion is
in integer powers of Ro ~ ¢2, while in the SML ap-
proximation we must consider all powers of e.

The boundary conditionsat z = —1 — 25 in (3.15)
and (3.16) must also be expanded so that they can be
applied at z = —1, Thus in the kinematic boundary
condition (3.15), one has W= w(—1 — ¢2An) = w(—1)
— ERyw,(—1) + O(e*). Then w(—1) and w,(—1) are
expanded as in (3.18) and terms of equal order in
(3.15a) are collected. The result is

wo(—1)=0
wi(—=1)=0
R[0mo + uo(—1)mox + vo(—1)n0,]
+ wa(—1) — Rnowo(—1) = 0. (3.20a—c)

Applying this same procedure to the pressure boundary
condition in (3.16) one finds
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p(—1)=mn+o
n(=1) =

pa(—=1) = 9, + Ryebo(—1). (3.21a-c)

There is one final comphcatlon introduced by the
moving boundary at z = —1 — ¢2R&». The vertical av-
erage of § = 6y + €6, + . is

0
b=(1+ ezﬁn)_lf

—1—-e2Rn

0 -1
=(1- ezﬁn)[f fdz + f Hdz] + O(€)
~1 ~1—€2Ry

0 0 ' 0
= f 00dZ + Ef 01dZ + 62[‘[ szz
-1 -1 -1

0
+ ﬁ’?o(oo(—l) “f

0dz

006112):! + 0(63)

= b + by + €[, + Rno(Bo(—1) — Bp)] + O(e),
(3.22a-d)
where in (3.22d) I have introduced the notation

= f 0dz. Notice that in the transition from (3.22b)

to (3 22¢), I have used the 1ntermed1ate result
I o1 ag, 8dz = ERnbo(—1) + O(). :

The O(e?) term in (3.22d) shows that it is important
to preserve the distinction between an average over the
entire layer depth (denoted by 8) and an average over
the unperturbed layer depth (denoted by ).

Because of the additional terms at O(e?), one must
be careful when expanding 6’. Using (3.18d), one has

0'=0—-10
= [8o — 00] + [0 — 51]
+ [0, — 8, — Rmo(8o(—1) — bo)]
=0y + b, + €205 + O(€%), (3.23a-c)
and so on. Notice that 6, # 6, — 8, and 8}
= —FRno(6o(—1) — bo).
d. The terms of O(€°)

Collecting the terms of order ¢° in the equations of
motion (3.14) one has

—Vo + Pox = —milo
Up + poy = —Vo
Po:—bo=0

Uox + Voy + Wo, =0

0=-S%
0=-T}
bo = To - So. (324a—g)
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The boundary conditions from (3.20) and (3.21) are
Po(=1)=mo+ ¢
wo(—1)=0 (3.25a,b)

To solve the system in (3.24), we begin with the
conservation laws for heat and salt in (3.24e) and
(3.24f). These tell us that at leading order the tem-
perature and salinity are independent of z. Thus we
have

So = S(x,y, )
To=T(x,y,1). (3.26a,b)

The vertical homogeneity of the leading-order tem-
perature and salinity distribution justifies the descrip-
tion of the active layer as “mixed.” The physical basis
of (3.26) is that the approximation describes motion
on timescales long relative to the vertical mixing
timescale 7. Because the relaxation to vertical average
is rapid, the leading-order temperature and salinity are
vertically uniform.
From (3.24g), the leading-order buoyancy is

bp=T—-S8=B(x,y,1), (3.27)
and then using (3.24c) and (3.25a), the pressure is

p0=170+(p+B(Z+1). (328)
Next, the leading-order velocities are
(o, Do) = Z X Vipg = (—9d,¥0, 0xo)
(up, vo) = (1 + u*)™'(z + 1/2)
X [ X VB — uVB]
wo = g(l + 1) 122 + 2)V2B, (3.29a-c)
where Z is the vertical unit vector and
Yo=mo + ¢+ (B/2) (3.30)

is the streamfunction of the vertically averaged flow.

There is a nongeostrophic flow down that part pres-
sure gradient associated with V B: this is the term
—uV B on the right-hand side of (3.29b). However,
the vertically averaged velocity is in geostrophic balance
at leading order [see (3.29a)]. The gradient of the
streamfunction ¥, in (3.30) is equal to the vertical av-
erage of the horizontal pressure gradient. From the
right-hand side of (3.30) there are three contributions
to this pressure gradient: displacements of the interface,
pressure gradients in the fluid below the mixed layer,
and a contribution from the buoyancy perturbations
within the mixed layer. This final term does not appear
in the QG approximation. '

Notice that as u becomes large, the vertically sheared
part of the leading-order velocity in (3.29b) becomes
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small (~u~'). This behavior is physically intuitive—
if the vertical momentum mixing is large, then the ver-
tical shears are weak. In this sense the slab mixed layer
models are captured by the SML expansion as the lim-
iting case u = 0.

One crucial point is that the vertical homogeneity
of the leading-order temperature and salinity is ensured
by e = 7/T < 1 and the linear momentum balance is
ensured by Ro=1/fT < 1. But these two inequalities
do not imply that the velocity profile is slablike, even
if 7 ~ 7. For a slablike velocity one needs the more
restrictive condition that u = 1/ fry = eR(7/1y) > 1;
that is, the momentum mixing must be faster by order
¢! than the stratification mixing.

e. Terms of order '
Collecting the terms of order ¢' in (3.14), one finds
—U; + pix = —puh
U+ py = —uvh
p:— b =0
Uyt U +w;=0
8,80 + 1o Sox T V650, = —S5

0;0T0 + ueTox + 1oToy, = — T

by=T,—S,. (3.3la-g)
The boundary conditions in (3.20) and (3.21) give
p(—=1)=m
wi(—1) = 0. (3.32a,b)

To solve (3.31), we begin with the conservation
equations for heat and salt in (3.31¢) and (3.31f). Be-
cause So = S and Ty = T are independent of z, the
vertical average of these conservation equations is

8,8 + J(o, S) =0
0T + J(o, T) =0, (3.33a,b)

where J(A4, B)= A,B, — A,B, = 2-VA X VB is the
Jacobian. Thus, at this order, the evolution of 7" and
S is just advection by the vertically averaged velocity
(o, Do) = (— Yoy, Yox)-

Subtracting (3.33a,b) from (3.31e, f) gives the O(e')
salinity and temperature
S =8"=(+p2)"(z+1/2)[T +uVB-VS]

T,=T)=(+ ) (z+1/2)[T + uVB-VT],
(3.34a,b)
where

I=J(S,T)=J(S,B)= JT, B), (3.35)
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is the Jacobian of 7 with S. The fields 7, and S, in
(3.34) are created by the shear flow in (3.29D) tilting
over the vertically homogeneous fields 7" and § in
(3.26). The tilting is balanced by vertical mixing ( Tay-
lor 1953). The depth-dependent fields 7'y and S; in
(3.34) are the result of this equilibration between the
shear-driven tilting of 7 and S and the vertical mixing.

The expressions for T, and S in (3.34a,b) give the
O(e') buoyancy as

by=T,—8 =u(l+ uz)_‘(z + %)VB-VB, (3.36)

and then the hydrostatic balance (3.31c) is integrated
to give

pr = u(1+u)7 (22 + 2)VB-VB, (337)

where the boundary condition in (3.32a) is satisfied
by taking », = 0. This amounts to requiring that the
leading field %, contain all of the interface displacement.
Notice that (3.36 ) shows that at this order the mixed
layer is stably stratified; that is, b,, > 0.
Finally, using the momentum equations (3.31a,b),
one can calculate the O(e') velocities:

5 X Vi

i

i,
1—‘2 w(1 + @) [z X V(VB-VB)
— uV(VB-VB)]|(62%+ 6z + 1)

[
uy; =

Wy = % W21 + 1) VAV B-VB)(223 + 322 + z),

(3.38a—c)

where the O(e') streamfunction is

b =— 1_‘2 w(l +p?)7'VB-VB.  (3.39)

f Terms of order €*

Collecting the terms of order ¢ in (3.14), one has
R[0uo + totipx + Uolloy + wotlp,] — U2 + P2y = —uud
R[4V + Uglox + Voo, + Wobp,] + Uz + Py = —uh

P2:—b;=0
Upe + Vg + Wy, =0
[8,S1 + upSix + voSiy + WoSi.]
+ [8,,S0 + u1 Sox + v1Sg,] = — 5%
[0, Tt + uoT1x + 05Ty + woT',] ‘
+[8,To + uyTox + 0,Tg,] = —T7%
by =T, S;. (3.40a-g)
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The boundary conditions (3.20) and (3.21) complete
the O(€?) problem: .

Da(—1) — mp — Rnobo(—1) =0
R[84,m0 + tho(—1)n0x + vo(—1)m0,]

+ wy(—1) — Ryowo.(—1) = 0. (3.41a,b)

Again we begin the solution of (3.40) by vertically
averaging the conservation equations for heat and salt.
We require that T, = S, = 0 so that the leading-order
fields T\, and S, carry all of the vertically averaged heat
and salt. Notice also that 75 = S5 = 0 because the
term proportional to 7, in the final square bracket of
(3.23b) is zero. With these stmplifications the vertical
average of (3.40e) is

S+ V-upSh + I, ) =0.  (3.42)

Combining (3.33a) and (3.42) produces a reconstituted
evolution equation for the vertically averaged salinity.
Thus we write

3:S = (9, + €9,)S (3.43)

and define

V=1t ey,
=n0+<p+%[3—éey(l + u?)"'VB-VB

+ O(€?). (3.44)
~

Then evaluating the correlation ug.S’ using (3.29b) and

(3.34a), finally gives

S + J(Y, S) = 1—62-(1 + p2) V. [(J + uVB-VS)

X (uVB — 2 X VB)] + O(¢?). (3.45)

An analogous calculation gives the heat equation
oT + J(y, T) = T% (1+ 4272V -[(J + uVB-VT)

X (uVB —2X VB)] + O(?). (3.46)

The left-hand sides of the conservation equations (3.45)
and (3.46) are exactly what one anticipates on the basis
of a slab model: the mixed layer temperature and sa-
linity are advected by the vertically averaged flow. The
right-hand sides of (3.45) and (3.46 ) are nonlinear skew
diffusivities; these terms are discussed in more detail
in section 4.

Notice that if (3.45) is subtracted from (3.46) one
has an equation for the buoyancy B = T S. In this
subtraction the terms containing J = J(S, 7) in (3.45)
and (3.46) cancel. It is obvious from the outset that T
and S can be combined into a single equation for B.
But (3.45) and (3.46) are nonlinearly coupled at O(e!)
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by the “J term.” And in the important special case
when u — 0, the J terms are the only surviving cou-
pling between Sand T at O(e").

The evolution equation for the geostrophic mode is
now found with a slight variation of the familiar quasi-
geostrophic procedure. The momentum equations
(3.36a)and (3.36b) are cross differentiated to eliminate
p». The result of this is

R[Dofo + Vo Wox — oWy — Wozlo] — Waz
= —u[o0h — dus], (347
where
$o = 0,9 — dyUp
Dy = 9, + updy + 040, + W0,
uy=u, — i, — RAnofug(—1) — p]. (3.48a-c)

The term proportional to 7o on the right-hand side of
(3.48c) is analogous to that in the final square bracket
in (3.22b): it arises because of the displacement of the
lower boundary away from z = —1. '
Integrating (3.47) from z = —1 to z = 0 gives

ﬂlazofo + J(¥o, fo)
+ Ve (ublh + 2 X whpmwos)] + wa(—1)

= % Ru(l + @) '[wJ(B, mo) + V- (nV B)].
(3.49)

The terms in the square bracket on the left-hand side
of (3.49) are evaluated using (3.29). The term wy(—1)
on the left-hand side of (3.49) is expressed in terms of
quantities from the earlier orders in the expansion using
(3.41b):

wa(—1) = —ﬁ[azono + J(Yo, m0) — %(1 + p?)!

X [J(B, n0) — uV - (noV B)] (3.50)
In contrast to the standard quasigeostrophic approxi-
mation, the vertical velocity at z = —1 includes a con-
tribution from the vertically sheared current in (3.23b)
and a contribution from 5wy, in (3.16c¢). This is the
origin of the square bracketed term on the right-hand
side of (3.50).

Assembling all of this, (3.49) becomes the evolution
equation for the vertical vorticity:

Bl $o = m0) + J(Yo, f0) = J(@, m0) + 15 (1 + 42) 72

X [(1 — @2)J(B, V2B) — 2uV «(V2BVB)] = 0
(3.51)
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where {5 = V3, and

1
o =vYo— ¢ -3 B (3.52)

is the interface displacement.

g. The third-order terms

In (3.45) and (3.46) I derived the evolution equa-
tions of S and 7 correct to order O(e'). To obtain the
same accuracy for the vertical vorticity, one must cor-
rect (3.51) by considering the third-order terms. For-
tunately, a direct assault can be avoided by using the
nondimensional version of the vertically averaged vor-
ticity equation in (A.11). In terms of dimensionless
variables, and with w,,, = ¥, = &, = 0, this conservation
law is

(hf— R + V- [huf+u'{ + 2 X u'w,)]
+ Re2E =0, (3.53)
where h = 1 + ¢2R75. One can substitute the earlier

results into (3.53) and retain terms of O(¢°) and O(e').
The only surviving term from E is £ = J(h, p)
=—Re*J(p, 1).

The first simplification of (3.53) is that the distinc-
tion between ~ and - appears only at O(e?) [see
(3.22)];thus,in(3.53)onecanuse ~ = ~ + O(e?).

The second simplification in (3.53) is that

o~ . ~ ~ R ~
w2 X uw, = upth + Z X upwy, + O(e?), (3.54)

because the O(e¢') terms vanish exactly; that is,

7~

Wigo = upw, = 0, etc. (3.55)

[From (3.38b), u) is proportional to the polynomial
22+ z+ Y= (z+ '%)* — (1/12) and u} is proportional
to z + '%5.] Thus the correlation in (3.53) is already
completely calculated in (3.51): it is the term (1/12)(1
+ u®)?[(1 — ) J(B, V°B) — 2uV - (V2BVB)].

A third simplification in (3.53) is that

§ =V + 0(e?), (3.56)

where ¢ is given by (3.44). This result follows from
the nondimensional version of (A.3a): the final terms
involving &, and A, are O(¢?) because of (3.10). The
fourth and final simplification is that since n, = 0, 5
=70 + O(€?).

Putting all of this together gives the corrected evo-
lution equation for the vertical vorticity as

g‘l_— 7’1+J(¢’ g‘)_ J(¢5 77)
+ = (1+ #3) (1 = #*)J(B, V*B)

—2uV-(V2BVB)] + O(e?) = 0. (3.57)
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In (3.57) the interface displacement is

n=¥-¢—3B+—a(l+u)'VB-VB, (3.58)
and the condition that <77> 0 determines the constant
of 1ntegrat10n () that is needed for the inversion of
§= V.

The vertically averaged salinity and temperature
evolve according to (3.45) and (3.46)and B=T—S.
Thus, with (3.57), there are three nonlinearly coupled
evolution equations for the five unknowns ¥, {, , S,
and 7. Equation (3.58) and ¢ = v%p provide two ad-
ditional connections so that there is a closed evolu-
tionary set. If § = T = 0, this set collapses to the usual
quasigeostrophic equation for the vertical vorticity. We
refer to the generalized set of low-frequency dynamics
as the “subinertial mixed layer approximation” or the
SML approximation.

4. Discussion
a. The SML approximation in dimensional variables

We begin our discussion of the SML approximation
by summarizing the results from the previous section
and translating them into dimensional variables. In this
section we use T(x, y, t) and S(x, y, t) to denote the
vertically averaged, dimensional temperature and sa-
linity in the mixed layer. It is convenient to now define

O=gar(T-T), T=gas(S$—-5). (4.1)

To leading order, the buoyancy is
B=06-2, (4.2)
so that the density is p = p(1 — g 'B + - - +), where

ellipses indicates the higher-order terms in the SML
expansion [e.g., see (4.7)]. The reduced gravity g’ is
included as a large background constant in the buoy-
ancy B(x, y, t): g = ( B) where angle brackets denotes
an area average.

The leading order horizontal velocities are

(=¥ ) (L + )N (2 + #/2)
X(——By_ﬂBx: Bx_y-By)a (4.3)

where u = 1/ fry and # is the average depth of the
layer. Notice that the velocity field in (4.3) includes
an ageostrophic component parallel to V B. This ver-
tically sheared down-pressure gradient flow has an in-
teresting dependence on p: it has maximum amplitude
when ¢ = 1 and vanishes if either p = 0 or p = 0.
If u is small then momentum mixing is weak and the
ageostrophic velocity is small because of rotational
constraints. But if u is large, so that momentum mixing
is strong, then the heavy friction retards the down-
pressure gradient flow and again the ageostrophic ve-

(u,v) =
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locity is small. The maximum ageostrophic response
is achieved if u = 1.
The conservation laws for salt and heat are

3+ I, 2) = 5 (1 +ed) 222 f?)
V- [(7+uVB-VZ)uVB — 72X VB)]
0+ (¥, 0) = 5 (1 + w) 2(r 2/ f?)

V-[(J+uVB-VO)(uVB —Z X VB)], (4.4a,b)

where 7 is the mixing rate for 7 and S and J = J(Z,
@) is a Jacobian. The left-hand sides of (4.4) are in-
tuitive: the vertically averaged flow advects the verti-
cally averaged temperature and salt. The right-hand
sides of (4.5) are skew, and cubically nonlinear, dif-
fusivities due to the vertically sheared part of the ve-
locity field in (4.3) (e.g., Taylor 1953). These terms
are discussed in more detail in section 4c.
The vorticity equation is

G= e+ I ) = T )
+ 35 (11?1 + w1 = 1) J(B, V*B)

—2uV +(V2BVB)] =0,

where { = V2 and the location of the base of the mixed
layeris z = =% — #'n/fwith

n= L L%~ (f/g)B

+ Tli w(1 + 1) (+#/g"\VB-VB.

(4.6)
In (4.5), L = Vg'# /[ is the Rossby radius of defor-
mation, and ¢ is essentially the pressure at the base of
the mixed layer defined in (2.12). The integral con-
straints that (n) = 0 and (B) = g’ determine {¥)
from (4.6).

b. The slope of the density surfaces and the
Richardson number

One distressing aspect of the evolution equations in
(4.3)~(4.5) is their structural sensitivity to the size of
u= 1/ fry. For instance, when u = 1 some coeflicients
change sign while others achieve their maximum
values.

In this subsection I argue that the slope of the iso-
pycnal surfaces within the mixed layer, or equivalently
the vertical and horizontal buoyancy gradients, can be
used to estimate u. Unfortunately, with published data
it is not possible to estimate these slopes, but nonethe-
less they might be extracted from sea soar observations,
especially if repeated tracks were used to eliminate in-
ertial oscillations.
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In dimensional variables the reconstructed density
field is

p= b[l - g"[B +(v/f)u(1 + p?)™!

X VB-VB(Z + %) + 0(62)” . (47

The vertical structure of the mixed layer buoyancy is
contained in the final, depth-dependent term, which is
proportional to VB-V B and z + (#/2). The vertical
structure is created by the shear flow in (4.3a) tilting
over the vertically homogeneous field B. This process
of shear dispersion is balanced by the vertical mixing,
so that the depth-dependent term in (4.7) is propor-
tional to 7: if 7 is large then the vertical mixing is slow
and the tilting proceeds further before it is checked.
But the coeflicient of the depth-dependent term is also
proportional to u(1 + p?)~!, which achieves its max-
imum value when u = 1. This factor comes directly
from the dependence of u’ - VB on p [see (3.29b)]. If
u < 1, then the tilting is weak because the shear flow
is almost geostrophic and parallel to density surfaces.
But if u > 1, then the shear flow is strongly nongeo-
strophic and also very weak because of the efficient
vertical mixing of momentum. Thus, in either limit
the depth-dependent part of the buoyancy is small and
it happens that the maximum is found when p = 1.
The slope of the isopycnal surfaces is

Vo] So(r.oN_ P11
P2 T|VB]| (u“‘ﬂ) IVBIfT(ﬂ-}-ﬂ)-
(4.8)

Now, if the temperature changes by 3°C in 10® m and
oqr =~ 3X 10_4(°C)-l s thenVB = gaTVTN 10_8 s1.
In this case the order of magnitude of the slope in (4.8)
is determined by (1/f7)(u + u™').

The above estimates of isopycnal slope assumed that
VB/f? ~ 1 and this, in turn, was based on a temper-
ature gradient of only 3°C/1000 km. This is a small
gradient even for the broad-scale climatological distri-
bution of temperature. On shorter length scales much
larger values of VT have been observed. For instance,
Price (1981) reports VI' ~ 1°C/50 km in the wake
of a hurricane and Samelson and Paulson (1988 ) found
VT was as large as 2°C/3 km in the North Pacific
Subtropical Frontal Zone. In these cases f%/|VB} < 1,
and the slopes in (4.8) are correspondingly smaller. It
is remarkable that (4.8) predicts an inverse propor-
tionality between horizontal buoyancy gradients and
isopycnal slopes.

One observable consequence of the theory is a re-
lation between the vertical buoyancy gradient and the
horizontal buoyancy gradient:

N2 = _8p: _ L(] +u¥)'f2VB.VB. (4.9)
v

0 T

S =
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The scaling N> ~ =2V B.V B might be tested with
observations even though the constant of proportion-
ality in (4.9) is uncertain. The relation (4.9) with (7/
7u)(1 + u?)™2 = 1 also emerges from the geostrophic
adjustment model of Tandon and Garrett (1994).
Thus, although the constant of proportionality is model
dependent, the scaling N> ~ f~2VB-V B is robust.
The f ~2 dependence suggests that the equatorial regions
might be a site of strong shear-driven restratification
and there is some observational evidence in support of
this expectation (for example, Roemmich et al. 1994).
One can also calculate the Richardson number,

NZ
Ri=——— 4.10
! u? +v?’ ( )
of the subinertial motion. Using (3.29), one finds that
in dimensional terms u2 + v2 = (1 +p?)"' f>VB-VB.
The buoyancy frequency is in (4.7) so that the final
result for the Richardson number is

. (4.11)

Tu
This simple expression for Ri comes from the cancel-
lation of V B - V B between the numerator and denom-
inator of (4.10). If one makes the natural assumption
that momentum and density relax to their vertical av-
erages at the same rate, then the Richardson number
within the mixed layer is of order unity.

¢. The nonlinear mixing of T and S: Thermohaline
tilting

The conservation equations for heat and salt in (4.4)
have a complicated nonlinear term on the rhs. Notice
that one can linearly combine (4.4a,b) into a single
equation for B and this results in the cancellation of
J = J(Z, O) from the system. But the symmetry be-
tween 7 and S might be broken by additional terms
not explicitly included in (4.4). For instance, following
Haney (1971), the atmospheric feedbacks on thermal
anomalies might be modeled by a relaxation term such
as —a© in (4.4b). There is no reason to include an
analogous term in (4.4a) and so the symmetry between
T and S is lost. In this case one must deal with two
independent tracers in the mixed layer (e.g., Stommel
1993). '

If the momentum mixing is slower than the inertial
period so that u = 1/ fry < 1, then the only surviving
term on the rhs of (4.4a,b) is the proportional to V - [ T2
X VB] and this is the term that cancels in the sub-
traction used to obtain the buoyancy equation. The
cancellation is to be expected: if u < 1 the vertically
sheared velocity in (4.3) is in “thermal wind” or geo-
strophic balance. Consequently the shear lies in surfaces
of constant B and does not tilt these same surfaces.
But provided that the T and S fields are independent,
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so that J # 0, the geostrophic shear does differentially
advect the heat and salt surfaces. (This advection tilts
the 7" and S surfaces so as not to create any buoyancy
effect.) The fluxes of heat and salt associated with this
“thermohaline tilting” mechanism are captured by the
nonlinear term V- [JZ X V B] on the rhs of (4.4a,b).

If the momentum mixing is rapid so that u = 1/ fry
> 1, then the rhs of (4.4a) is of order p2 < 1. In this
limit there is little transport of heat and salt by the
terms on the rhs of (4.4a,b) because the strong vertical
friction ensures that the sheared part of the velocity
field is weak. The strongest surviving terms namely,
w2V.[VB-VBVZ] and p?V-[VB-VBVZ], are
nonlinear downgradient diffusion with a diffusivity
proportional to the square of the buoyancy gradient.
This particular nonlinearity is a well-known signature
of buoyancy-driven shear dispersion [e.g., see the re-
view by Young and Jones (1991) or Cessi and Young
(1992)].

There are simple integral balances that help one un-
derstand the effect of the nonlinear terms on the rhs
of (4.4a,b). First, both the advection term on the lhs
and the term on the rhs are conservative so that (Z),
= (0O), = 0. Second, if one multiplies (4.3a) by Z and
(4.3b) by © and then takes the horizontal average the
result is

L= — 5 (422 Y
X {(J + uVB-VZ)?) <0
102 = = L (L + i) 22 f?)

X (7 + uYB-VO)2) <0. (4.12ab)

[In taking all of these horizontal averages we assume
that the boundary fluxes vanish: in a numerical sim-
ulation this might be ensured by using a doubly periodic
representation of the fields.] The “power integrals” in
(4.12) show that the temperature and salinity are both
mixing toward their average levels (©) and (Z). In
this sense the rhs of (4.4a,b) is nonlinear “downgra-
dient” diffusion for all values of u.

d. The vorticity equation

The buoyancy B effects the vertical vorticity through
several different terms in (4.5) and (4.6).

First consider the limit 4 = oo, so that the vertical
momentum mixing is rapid. In this case one recovers
the subinertial dynamics of slab ML models in which
the only surviving buoyancy term in (4.5) and (4.6)
is (f/2g") B in the expression for the interface displace-
ment y in (4.6). The case u > 1 is more subtle than
the limit ¢ = oo because the largest neglected terms
are also among the most highly differentiated terms in
the SML approximation. For instance, p~'VB-V Bin
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(4.6) contains two spatial derivatives and u>J(B, V>B)
in (4.5) contains four spatial derivatives. Thus the
terms proportional to p~! and p~? will be important
for disturbances with-small spatial scales. It is difficult
to make a general statement about the domain of va-
lidity in wavenumber space of the slab approximation.
But in a specific problem, scale analysis based on com-
paring the retained term (f/2g’)B, to the neglected
terms, such as (1/12)(Z /f)*(1 + p?)72(1 — u?)J(B,
V2 B), should roughly locate the high wavenumber va-
lidity boundary of the slab model.

The complementary limit is ¢ — 0 so that the
sheared part of the velocity field in (4.3) is in geo-
strophic balance. In this case there is also substantial
simplification of (4.5) and (4.6). But notice that the
term J(B, V?B) in the vorticity equation (4.5) does
survive if u = 0.

e. Some remarks on forcing

For simplicity, the derivation of the SML approxi-
mation in section 3 assumed that there was no forcing
such as (#,, #,) in the momentum equations and ¥
and F¢in the temperature and salinity equations. This
is a major simplification because it implies that all of
the shear in the ML is due to the depth-dependent
horizontal pressure gradient; for example, see (3.28)
and (3.29). All of the vertical structure in the tracer
fields is then attributable to differential advection by
this same shear flow; for example, see (3.34).

But if the fluxes F« in (2.1) have depth dependence,
this will be reflected in both the shear profile of the
velocity field and in the vertical structure of the tracer
fields. For example, see Niiler and Paduan (1994)
where a parabolic stress profile, and a correspondingly
sheared velocity profile, is shown to be consistent with
drifter observations.

A complete discussion of this important point is be-
yond the scope of the present work. But there is some
simple scale analysis that is reassuring because it shows
that the ML velocities due to horizontal buoyancy gra-
dients are at least comparable to the Ekman velocities.

If the surface wind stress is denoted by pu2, then
the order of magnitude of the Ekman velocity is

Uy

[z

On the other hand, from (4.3), the order of magnitude
of the velocity due to horizontal buoyancy gradients is

r
U =——,
where I' ~ |V B] is the order of magnitude of the
horizontal buoyancy gradient. [In (4.14) we suppose
that ¢ ~ 1.] The ratio of the two velocities in (4.13)
and (4.14) is a nondimensional number

Uex =

(4.13)

(4.14)
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measuring the relative importance of the Ekman flow
(neglected throughout this paper) to the buoyancy-
driven flow. Suppose that u, ~ 10™* m? s™2 [corre-
sponding to 1 dyncm™], # ~ 100 m, and f
~ 107% 57!, For the horizontal buoyancy we use the
climatological value in (3.6): I' ~ 1078 s~!, With these
numbers both Ups and Ug,are 1 cms™ and T = 1.

The dependence of T on the square of the ML depth
is notable: in deep subpolar mixed layers the sheared
buoyancy gradient flow is much larger than the Ekman
flow, whereas the reverse is likely the case in a shallow
subtropical mixed layer at the end of summer. It is
interesting that T is independent of /- as one approaches
the equator both Ug, and Ups diverge at the same
rate: f 1. o

These final cautionary remarks on Ekman transport
emphasize the extreme idealization required to for-
mulate the SML approximation. The approximations
in this paper have isolated only one mechanism that
might drive sheared velocity fields in the ML: these are
the terms involving gradients of B in (4.3). It is inter-
esting that the restratification created by this “V B
shear” is always statically stable as, for instance, in
(4.7). In contrast, a sheared Ekman flow is not nec-
essarily strongly correlated with the local V B. Thus it
is possible that sheared Ekman transports might create
statically unstable stratification, as in the process of
mechanically forced convection.

T

, (4.15)
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APPENDIX
The Vertically Averaged Vertical Vorticity Equation

This appendix contains the details of the vertical
average of the vertical vorticity equation. The most
important result of the manipulations in this appendix
is the vertically averaged vertical vorticity (VAV ?)
equation in (A.11).

Eliminating the pressure between (2.1a) and (2.1b)
gives the vertical vorticity equation

D
_D_f = fw, + [(§w), + (uw), — (V.w)y]

+h7'F - (e —u)), (AL

where

§=vx — Uy, 57{ = h[ax(h*lgv) - ay(h—lgu)]‘

(A.2)
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Construction of the vertical average of (A.1) requires
care because the horizontal derivatives commute with
neither nor . I use d, and 9,, rather than subscripts,
to denote derivatives in ambiguous cases. Using results
such as 8,4 = d,u — h,8,u, one can show

=00 — du =88 — dyui + h™'[d'h, — D'hy)
{=0w—9u=0a2D— 9,4+ h.d.v— hdu

¢'=¢— =00 — 6w — h™'[h, — Vhy],

(A.3a-c)
where ' (x, y, 1) = u'(x, y, —h, 1).
An additional useful identity is
DI .
E = DO + We, 0.6
D=8, + id, + 19,. (A.4a,b)

Substituting # = z into (A.4a) reproduces the kinematic
boundary condition in (2.6).
Using (2.7) the vertical average of (A.1) is

at(hf) + V'(hu_g_) - Weng:
= — W+ KTILT + &, — 7' (@'h, — D'y, (A5)

where
0

TILT = 4! f (wuy)y, — (wo,),dz — h="W§ (A.6)
—h

is the vertical average of the vortex tilting terms (the
square bracket) in (A.1). The final term in (A.S), pro-
portional to 7', comes from using ¢’ = 0 in (A.3c).

The vertical average of the vortex tilting terms,
TILT, can be manipulated into a more convenient
form:

RTILT = 8,(hv'w,) — 8,(hu'w,) + hd'd.(h~'W)
— hi'd,(h~'W) — {W. (A7)
Substituting (A.7) into (A.5) and rearranging gives
(MO + V- -haf+u{+zXuw,]+(f+Hw
+ hii'd,(h™"W) — hd'd(h~'W)
= Wenl + F¢ — 70! (Why, — D'h,). (A8)

The advantage of (A.8) is that it easy to see how it
reduces to the corresponding shallow water result. If
there are no buoyancy variations within the layer then
u'=0,{=¢=3w—9d,u,and w= AV - u. Using these
simplifications (A.8) collapses to

(h) + Ve(hu$) + ($+ AV -u = wer$ + Fo,
(A.9)

which is the flux divergence form of the shallow-water
vertical vorticity equation.
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Equation (A.8) is not the most convenient form for
the expansion of section 3. Additional simplification
can be made by eliminating the final term 7' (d'h,
— 9'h,). To do this, one first evaluates the horizontal
momentum equations (2.1a,b) at z = —4 and then
forms the linear combination 4,(2.1b) — A,(2.1a). The
result is

I Do . Du
Tul(u /’ly -V hx) = hx[E + ayp} - hy[—lS;
—f1h+ W = weul = 7' [AF, — B,F,]. (A.10)

Substituting (A.10) into (A.8) and rearranging gives
the vertically averaged vertical vorticity equation

O(hi — M)+ V- [h@EE+UT +EXuw,)] + E
= Wen[f_f] + h[ax(h_ljv) - ay(h_lfiu)], (All)

where

+a|

Dv N Du ,
E= hx[E + ayp] - hy[E + axp]
+ hil'8,(h™'W) — hd'a(h™'W). (A.12)
Notice that (A.4a) might be used to rewrite the square
brackets on the right-hand side of (A.12). For the pur-
poses of the expansion in section 3, Eq. (A.11) is the
most useful form of the: vorticity conservation law.
Equation (A.11) is an exact consequence of (2.1a),
(2.1b), (2.1d), and (2.6): the heat and salt conservation
laws in (2.1e) and (2.1f) and the hydrostatic balance
in (2.1c) have not been used in the manipulations
leading from (2.19) to (A.11). The conservation law
in (A.11) does not by itself provide a closed description
of the dynamics. But (A.11) displays in a general and
model-independent form the essential physics of sub-
inertial vorticity dynamics. In section 3 a formal or-
dering scheme based on scale separation is used to de-
velop a simplified version of (A.11).
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