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ABSTRACT

The density of the mixed layer (ML) is approximately uniform in the vertical, but there are dynamically
important horizontal gradients. The subinertial mixed layer (SML) approximation is a small Rossby number
filtering of the primitive equations that isolates the low frequency (w < f') dynamics.

A linear stability analysis based on the SML approximation shows that the horizontal density gradients
within the mixed layer (ML) support baroclinically unstable waves with inverse wavenumbers in the range
1 to 10 km, This conclusion follows from both a slab ML model, in which the horizontal velocity has no
vertical shear, and a geostrophic ML model, in which the horizontal velocity is sheared according to the
thermal wind relation. In the geostrophic case the instability is identical to the long wavelength limit of
baroclinically unstable Eady waves.

An interesting difference between the slab and geostrophic ML is the dynamics of thermal and saline anom-
alies. In the slab case, thermohaline anomalies arc advected without shear dispersion, and the initial 7-S relation
is preserved. In the geostrophic case, the shear dispersion associated with the thermal wind produces a flux of
heat and salt orthogonal to the buoyancy gradient. This flux varies as the cube of the thermohaline gradients,
and it acts so as to mix heat and salt while leaving buoyancy unchanged on fluid particles. The mechanism can
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tighten an initially diffuse TS relation so that a cloud of points in the 7-§ plane condenses onto a curve.

1. Introduction

Descriptive studies of the oceanic mixed layer (ML)
emphasize that structure is seen on lengths ranging
from 1000 km down to the smallest horizontal scales
that can be resolved with synoptic transects, say 100 m
[e.g., Niiler and Reynolds 1984; Samelson and Paulson
1988; Halliwell et al. 1991}. The very long scales
(21000 km) might be characteristic of atmospheric
forcing and in the ML this is the scale of climatological
patterns of sea surface temperature and salinity, and the
variation of Ekman transports. At scales of order 100
to 1000 km both salinity and temperature show frontal
Zones, rather than individual fronts. Resolution on still
smaller scales, of order 1 to 100 km, shows convoluted
patterns of salinity and temperature and fronts with
widths as small as 1 km.

This hierarchy of lengths can be interpreted as the
signature of geostrophic turbulence. The difficulty with
developing this suggestion is that the theoretical mod-
els upon which our understanding of geostrophic tur-
bulence is built are not entirely suitable for ML dynam-
ics. For instance, Rhines (1976) and Salmon (1980)
discuss baroclinic instability and geostrophic turbu-
lence using the two-layer quasigeostrophic model in

Corresponding author address: Dr. William R. Young, Scripps
- Institution of Oceanography, University of California at San Diego,
La Jolla, CA 92093-0230.

© 1995 American Meteorological Society

which the main thermocline of the ocean is idealized
as the density jump between the two immiscible layers.
This model can then be used to interpret ML observa-
tions if one is willing to regard ML salinity and ML
temperature as being differentially and passively ad-
vected by the geostrophic turbulence in the upper of
the two layers. In this case, at wavenumbers which are
higher than some hypothetical cutoff of the mesoscale
eddy field, one might expect a k™' subrange in tem-
perature and salinity variance (Batchelor 1959).

While not discounting this ‘‘passive advection hy-
pothesis,”” it is likely that temperature and salinity in
the ML are dynamically active so that baroclinic pro-
cesses can generate geostrophic turbulence within the
ML. The present paper is a first step in understanding
the role of this shallow baroclinic instability. Using a
new model of three-dimensional ML dynamics—the
subinertial mixed layer (SML) approximation ( Young
1994) —we study the linear stability of the simplest
possible basic state: uniform meridional gradients of
heat, salt, and ML depth. In this stability calculation
the ML is idealized as a single active layer with internal
variations in temperature and salinity. The base of the
ML, which is defined by a sudden increase in density
and an associated reduced gravity g’, is free to deform.
Thus the configuration is a 11/3-layer model but with
an inhomogeneous active layer.

The SML approximation is a small Rossby number
filtering approximation of the three-dimensional equa-
tions of motion. The derivation is similar to that of the
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quasigeostrophic approximation except that the single
active layer has inhomogeneous temperature and salin-
ity. Just as in quasigeostrophy, the expansion assumes
that both the Rossby number and the fractional varia-
tion in layer thickness are small. In addition, the SML
expansion requires that the variations in density within
the layer are smaller than the density jump at the base
of the layer. The horizontal pressure gradients within
the layer are due to both the deformation of the base
of the layer and the internal density variations of the
layer. The expansion scheme assumes that these two
contributions to V p are of the same order of magnitude.
For the present paper, which is mostly concerned with
linearized wave modes, the most important restriction
is that the frequency is subinertial; that is, w < f.

The probable importance of baroclinic instability in
the ML is not surprising. One expects this process to
operate in a stratified and rapidly rotating fluid and
many of the results outlined above can be anticipated
from the classic Eady model. But the density of the ML
is determined by both heat and salt, and by considering
these tracers independently we identify a new process,
which we call *‘thermohaline gradient alignment.”’ The
SML approximation shows that shear in ML velocity
acts so as to align the gradients of temperature and
salinity within the ML. The identification of this pro-
cess, and the suggestion that it might act to produce a
ML T-S relation, is probably the most important new
result in this paper.

The SML approximation contains the subinertial dy-
namics of the familiar slab ML models (e.g., de Szoeke
1980; Schopf and Cane 1983; de Szoeke and Richman
1984; McCreary and Kundu 1988; and McCreary and
Yu 1992; Ripa 1993) as a special case in which a cer-
tain nondimensional parameter (u defined below) be-
comes large. But, in general, without the parametric
restriction that u = o, the SML approximation shows
that one can consistently discuss a ML in which the
temperature and salinity are vertically uniform at lead-
ing order while the velocity is vertically sheared ac-
cording to the thermal wind relation. A secondary goal
of this paper is to compare the dynamics of a slab ML
(¢ = ) with those of a geostrophic ML (g = 0). One
important conclusion is that thermohaline gradient
alignment relies on having some shear in the horizontal
velocities and thus in the slab limit this process cannot
operate.

a. The SML approximation

Our point of departure is the dimensional form of the
subinertial mixed layer (SML) approximation. Three
important dimensional parameters in this formulation
are the undisturbed depth of the ML denoted by %, the
reduced gravity at the base of the ML denoted by g’,
and the Coriolis parameter denoted by f. From these
parameters one can form the length £ = Jg'J/f,
which for the ML is about 5 to 10 km. Here 7'(x, y,t)

YOUNG AND CHEN

3173

and S(x, y, t) are the vertically averaged temperature
and salinity in the mixed layer. It is convenient now to
define

9 = %gaT(T_ T)v

where T and § are the constant temperature and salinity
immediately below the base of the mixed layer. The
vertically averaged ML buoyancy is then proportional
to

o= %gas(s -8, (L1

E=0-o. (1.2)

In this notation the density within the ML is p = p[1
= (flgI)€ + ---], where g ~ 10 ms™2 is gravity
and ellipses indicate the higher-order terms in the SML
expansion. These higher-order terms contain the depth
dependence of the density field. The reduced-gravity
' at the base of the mixed layer is included as a large
background constant in &(x, y, t): (H/f)g' = (&),
where () denotes an area average. Young (1994 ) de-
notes the vertically averaged, ML buoyancy by B. In
terms of the notation introduced above ¢ = HB/f.

The introduction of the unfamiliar notation 6, &, and
€ is justified by the ensuing simplification of the SML
approximation: a clutter of f’s, g"’s, and ¥’s is re-
moved from the coefficients of the equations. The three
fields 6, o, and £ all have the dimensions of stream-
function or diffusivity (L?/T), and this simplifies order
of magnitude comparisons.

The leading order horizontal velocities within the
ML are

1
(ll, U) = (_l//_v’ ‘/jx) + (1 + MZ)" (é + 5)

X (_§y~M§x7 §x_p/€y)’ (13)

where 4 = 1/fr, and 7 is the vertical mixing time for
horizontal momentum over the depth of the mixed
layer. For instance, if the vertical mixing of momentum
is modeled with a viscosity v, then 7, ~ J¢?/v, In (1.3)
the streamfunction of the vertically averaged velocity
in the ML is y(x, y, t).

The velocity field in (1.3) includes a sheared ageo-
strophic component parallel to V¢. This down-pres-
sure-gradient flow has an interesting dependence on the
nondimensional parameter x. The ageostrophic flow is
proportional to x(1 + w*)~', and this function has a
maximum at 4 = 1 and vanishes if either x — 0 or n
—_If p is small, then momentum mixing is weak and
the ageostrophic velocity is small because of rotational
constraints. But if v is large so that momentum mixing
is strong, then the heavy friction retards the down-pres-
sure-gradient flow and again the ageostrophic velocity
is small. The maximum ageostrophic response is
achieved if 4 = 1. Notice that if ;4 = o in (1.3), then
there is no vertical shear in the leading order ML ve-
locity: this limit is the slab ML. The complementary
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limit g = O is the geostrophic ML in which the shear
is the ‘‘thermal wind.”” Between these two limits the
shear is partitioned between a geostrophic component,
perpendicular to V&, and an ageostrophic component
parallel to V&. The two components have the same
magnitude when p = 1.

The vertically averaged conservation laws for salt
and heat in the SML approximation are

o+ I, 0) = {5 (1 + ) 2V-[(J
+ uVE-Vo) (uVE — 2 X VE)],
0, + J(i, 0) = {5 (1 + 12)2V-[(J

+ uVE-VO)Y(uVE — 2 X V)], (1.4ab)

where 7 is the vertical mixing rate for temperature and
salinity and

9= J(a, ) (1.5)

is the Jacobian of temperature with salinity. If the ver-
tical mixing of heat and salt is modeled with a diffu-
sivity k, then 7 ~ */«k.

The left-hand sides of (1.4) are intuitive: the verti-
cally averaged flow advects the vertically averaged
temperature and salt. The right-hand sides of (4.5) are
skew, and cubically nonlinear, diffusivities due to the
vertically sheared part of the velocity field in (1.3).
These nonlinear terms result from consistent approxi-
mations of the fluxes u’'T’ and u’S’, where the over-
line is a vertical average over the depth of the ML and
the prime denotes the departure from the vertical av-
erage (e.g., the complete temperature in the ML is T'[ x,
¥z, )=T(x,y,t) + T'(x,y,z,1)].

The vorticity equation is

Vi, —n, + I, Vi)
+ 35 (L + )71 = p)IE V)
~ 2V (VEVE] =0, (16)

where the location of the base of the mixed layer is z
= ~J — Hnlfwith

1
L= -6+ {Eu(l +2)VEVE  (LT)

In (1.7), £ = Vg'd/f is the Rossby radius of defor-
mation. The integral constraints that (n) = 0 and (£)
= Jg'lf determine () from (1.7).

b. The linearization of SML

The goal of this paper is to begin the exploration of
the SML approximation by studying the wave modes
of a basic state in which the temperature, salinity, and
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streamfunction all vary linearly with the north—south
coordinate y. Thus, one substitutes

o=-T,y+ao'(x,y,t), 0=-Ty+60'(x,y,1),
=-Uy+¢'(x,y,1) (1.8)

into (1.4)—(1.7) and neglects all terms that are quad-
ratic in the disturbance quantities (¢’, ', ¢'). The
buoyancy is

§=-Ty+¢, (1.9)
where

Ii=Iy—-T,,

&'=0"-o0'. (1.10a,b)

If the density of the mixed layer increases to the north,
then I'; is positive. Notice that from (1.7) the depth of
the base of the mixed layer is proportional to

1
L= —(CH+Uy+§' -3¢

.
— g ML+ ) Tl + o, (L11)

where the ellipses represent both an inconsequential
constant and the quadratic terms that arise from V¢- V¢
in (1.7). The parameter C in (1.11) is
C=- T (1.12)
Here C is a wave speed, which will figure prominently
in the remainder of this paper. The minus sign in the
definition of C is included for later convenience.

We estimate an order of magnitude for the speed C
by supposing that AT ~ 4°C in Ay ~ 10° m and that
ar ~ 2.5 %X 107 (°C)~'. We take ¥ ~ 100 m and f
~ 107*s™'. In this case, ignoring salinity, T
~ HgarAT/fAy ~ 1 cms™'. The wave speed in
(1.12) is then C ~ 1/ cm s™'. In frontal regions I
can ealsily be as large as 20 cm s~' and then C ~ 10
cms™'.

The problem that results from linearizing the SML
approximation about the basic state in (1.8) is algebra-
ically tedious. In this paper further simplification is
achieved by confining attention to two limiting cases:

(i) The slab ML, with a limit of p = .
(ii) The strictly geostrophic ML, with a limit of p
= 0.

Case (i) is the simpler of the two, and is disposed of
first in section 2 before turning to case (ii) in sec-
tion 3.

2. The wave modes of the slab ML

The limit g = o corresponds to a slab ML in which
the vertical mixing time for momentum is much smaller
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than f ~': notice that in this case the vertically sheared
part of the velocities on the right-hand side of (1.3) is
zero so that the leading-order velocity is simply (u, v)
= (-4¢,, ¥.). Likewise, the right-hand sides of
(1.4a,b) are now zero, so that

o, +J(,0)=0
0, + J(,8) =0. (2.1a,b)

The vertical vorticity equation (1.6) collapses to
BV, = i+ &+ T, £297) =0, (22)

where £ = 6 — o is the buoyancy. The displacement of
the base of the mixed layer follows from simplification
of (1.7):

L=y -3E (23)
The term (1/2)€, in (2.2) couples the buoyancy and
vorticity equations, and it is only because of this term
that (2.2) differs from the quasigeostrophic approxi-
mation of the shallow water equations.

The system in (2.1) through (2.3) can also be de-
rived by taking a slab mixed layer model formulated in
terms of vertically integrated momentum equations
(e.g., de Szoeke and Richman 1984; McCreary and

Kundu 1988), and then making the well-known Rossby
number expansion.

a. Nonlinear conservation laws

Standard manipulations show that the nonlinear
equations in (2.1) and (2.2) have three quadratic con-
servation laws involving the buoyancy £ and the
streamfunction . The quantities

&= %ffZVl/l'V(// + Y2dA
= fﬁ(fzvzl/! —¢)dA

9= %J. £2dA (2.4a,b,c)
are all invariant provided that the fluxes vanish at the
boundaries of the domain of integration.

If we consider the temperature and salinity sepa-
rately, then from (2.1) there are the three obvious quad-
ratic conservation laws for [ 6%dA, [ o2dA, and
f 80dA. We also remark that with the conservative
advection in (2.1) the thermohaline Jacobian J
= J(o, 6) is a material invariant:

F+JIW, =0 (2.5)

This can be verified by direct calculation using only
(2.1). But (2.5) is also obvious geometrically since

dA = dxdy = §"'dbdo . (2.6)
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Because the vertically averaged flow generated by ¢ is
incompressible in the (x, y) plane, the elemental area
dA is a material invariant and from (2.1) so are df# and
do. Thus (2.5) follows directly from the transformation
rule in (2.6).

It is true that the temperature and salinity fields, if
advected by a shear flow, can ‘‘line up’’ in the sense
that the angle x between V4 and Vo is reduced as the
two fields are stretched out by differential advection.
But this same stretching also increases |V#| and | Vo |
so that § = |V6|Vo| siny remains equal to its initial
value on material particles. It is educational to solve
(2.1) with ¢ = —sy? and some simple initial conditions
for temperature and salinity to see how this happens in
the shear flow (u, v) = (sy, 0).

These remarks concerning the thermohaline Jaco-
bian show that advection alone, as in (2.1a,b), does not
produce a ML T-S relation. On one level this is ob-
vious because if T and S are each individually con-
served on fluid particles, then a cloud of points in the
T-S plane remains fixed as fluid is advectively stirred.
Only irreversible mixing can produce contraction of a
T-S cloud and result in the formation of a 7—S relation.
The full significance of the thermohaline Jacobian J and
its conservation equation (2.5) will be apparent in the
next section in which we contrast the geostrophic ML
(¢ = 0) with the present case of a slab ML (p = ).

b. The linearized problem and its conservation laws

Linearizing (2.1) and (2.2), and using the notation
in (1.8), gives the set

o/ +Uo,—y.T,=0
0, + U8, —¢.Ty=0
L2V + UL — )

+ %(0: —0!)=0. (27abgc)

One can linearly combine (2.7a) and (2.7b) into a sin-
gle equation for the perturbation buoyancy &' = 6’
— ¢, In making this manipulation one might overlook
the nontrivial solution ¢’ (x — Ut, y) = §'(x — Ut, y)
# 0 and ¢' = 0. We refer to this simple solution, in
which the temperature and salinity perturbations cancel
in their effect on density, as the buoyancy compensat-
ing (BC) mode.

From the linear system in (2.7) one can prove that
the following three quantities are invariant

&

%fﬁﬂwﬂ-wl' + '+ (UI4C)E'*dA

Z=

—

2] e+ vy

+ (U/4C)LVE' -VE dA
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- [3{1-8e

+ &LV —§')dA. (28ab,c)

The invariants in (2.8a) and (2.8b) are positive definite
if U/C = 0, so in this case there can be no linear in-
stability. Thus, a necessary condition for instability is
that :

U
=<0
C

The explicit solution of (2.7), which now follows,
shows that the necessary condition in (2.9) is also suf-
ficient for instability.

(2.9)

¢. Eigenmode analysis of the linear system

A systematic approach to the solution of (2.7) is the
Fourier method in which one substitutes

g’ '
<0'> = exp(ikx + ily ~ iwt) (@) (2.10)
¥’ ¥

into (2.7). The resulting eigenproblem is
Q 0 kT,
0 Q kg
wo—w L2+ w

where we have introduced
Q=w-—- Uk
pi=k+ 12

Qe

St Qe

(2.12)

The dispersion relation is the condition that the deter-
minant of (2.11) is zero:

QO p2L? + Qw — Ckw] = 0,

where C is the speed defined in (1.12).
The first root of (2.13) is Q = w — Uk = 0 with the
corresponding eigenvector

(£)-(2)

This is the BC mode mentioned above in the discussion
after (2.7). The physical balances of the buoyancy-
compensated mode are simple: the temperature and sa-
linity perturbations cancel so that there is no buoyancy
perturbation, and therefore no perturbation streamfunc-
tion. The salinity and temperature are then advected
passively by the basic-state velocity U.

(2.13)

(2.14)

d. The special case U = 0

The other two roots of the dispersion relation (2.13)
can be found by solving the quadratic equation in the
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square bracket. For orientation we start with the special
case U = 0 so that {2 = w. With this simplification there
is a second root with w = 0. Since w = 0 is now a
double eigenvalue, the corresponding eigenvectors
span a two-dimensional space. Thus, in addition to the
eigenvector in (2.14), we can conveniently pick

-5

as the second eigenvector corresponding to w = 0. The
two eigenvectors in (2.14) and (2.15) are linearly in-
dependent provided that ', # I'y. In choosing (2.15)
as the second eigenvector we are. anticipating that U
# 0 will break the degeneracy so that w = 0 is no longer
a double eigenvalue. In this case one finds that the vec-
tor in (2.15) is the unique eigenvector of the mode
whose frequency becomes nonzero when U # 0.

The physical interpretation of this formalism is
straightforward: when U = 0, there are steady solutions
representing arbitrary salinity or temperature anoma-
lies in the ML with no vertically averaged flow (¥’
= 0). The eigenvector in (2.14) corresponds to the spe-
cial case in which these anomalies cancel in their joint
effect on density so that there is no pressure perturba-
tion and the base of the ML is undisturbed. With the
eigenvector in (2.15) the temperature and salinity per-
turbations are not compensated and so they produce an
effect on ML density and pressure. But in this instance
the base of the ML deforms so that the vertical average
of the pressure gradient is zero and once again there is
no vertically averaged flow (¢’ = 0). In this second
case the mode has a depth-dependent horizontal pres-
sure gradient that creates vertically sheared, horizontal
currents in the ML. But these vertically sheared cur-
rents are very weak [O(u~')] because of the rapid ver-
tical mixing of momentum in the slab ML limit.

Still continuing with the special case U = 0, the third
mode in (2.13) has a dispersion relation

_ Gk Buk
YTl r ey TP iR+

where the ‘ML [ parameter’’ is By, = —C.L>. The
corresponding eigenvector is

& —(£2p* + T,
6] =|—-p2+1)I, ). (17D
P C ~

The speed C is the zonal phase speed w/k of long waves
where long means that (k> + [?)™' > £2. For a ML
with average depth J ~ 100 m, stratification g’ ~ 0.01
ms 2, and f~ 107*s™', the radius of deformation is
£ ~ 10 km. Thus, in this case, long waves are those
whose wavelength is much greater than about 60 km.
Notice that if the buoyancy is increasing to the north
then T is positive and C is negative so that the phase
speed w/k from (2.16) is westward. ‘

(2.15)

(2.16)
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FiG. 1. The radius of the critical circle as a function of U/C: wave-
numbers that lie outside the circle are unstable. In the slab case there
is no instability if U/C > 0. In both slab and geostrophic case the
critical circle contracts to the origin if U/C = —1, and then all wave-
numbers are unstable.

At this point it is interesting to make an a posteriori
assessment of the validity of the SML approximation.
The SML approximation requires that the Rossby num-
ber is small, and in the present context this condition
means that w/f < 1. To take an extreme example, con-
sider a frontal system in which C ~ 10 cms™', [ = 0,
k™' = £ ~ 5 km. This choice of (k, /) maximizes the
frequency in (2.16) over all wavenumbers. Then it fol-
lows that w/f ~ 1/5. Experience with the quasigeo-
strophic approximation suggests that 1/5 is small
enough to ensure the qualitative accuracy of the ap-
proximate dispersion relation.

e. The general case U + 0

We now turn to the general case when the basic-state
velocity is nonzero. The structure of the BC mode in
(2.14) is unchanged except that the dispersion relation
is wpc(k, 1) = Uk so that the compensating temperature
and salinity fields are passively advected by the basic-
state velocity U.

The dispersion relations of the other two modes can
be found by solving the quadratic equation within the
brackets in (2.13). This bracket can be rearranged as

(1 + £2pHw? ~[C+ U+ 2ULp*kw
+ Lp*k*U? =0. (2.18)
The two roots of the quadratic equation (2.18) are

1
k’l = G+ - T
wr(k, 1) = Uk 21 +p2£2[ v

+ C+ (U + C)* + 4£2p*UC]
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1k
— 4+ ——I—
ws(ks 1) = Uk + 5 75 [=U

+C— WU+ C)? +4£2p*UC], (2.19ab)

where the two dispersion relations have been labeled
as “‘F”’ for fast or *‘S’’ for slow depending on their
behavior at small wavenumbers. Specifically, if (U
+ C)? > 4£2p*UC and 1 > £?p?, then the dispersion
relations in (2.19) can be approximated by

we(k, 1) = (U + C)k

2

Uu+¢C

The fast mode has a nonzero phase speed (w/k) at
the origin of the wavenumber plane, while the slow
mode is dispersive and has zero phase speed at (k, /)
= (0, 0).

To summarize the case when U # O: there are three
modes, BC, F, and S. The buoyancy compensated mode
has the eigenvector in (2.14) and its dispersion relation
is simply wpc(k, [) = Uk so that the compensated
anomalies are advected by the basic-state velocity. The
slow mode corresponds to the second mode, which had
w = 0 when U = 0. The fast mode corresponds to the
mode with the Rossby-like dispersion relation in
(2.16). For this mode the effect of the basic-state ve-
locity on long waves is Doppler advection as in
(2.20a).

The dispersion relations in (2.19) show that there is
instability when the radical is complex. This can hap-
pens if and only if UC < 0, and then shortwaves are
unstable. Specifically, all of wavenumbers outside the
circle ’

ws(k, 1) = L2(k* + IP)k. (2.20a,b)

(U + C)?

2 2 2y — 22-E—
f(k +l) fpcm 4UC

(2.21)

6.0 T T

SLAB ML
uc=3 .

60

40 + =
wf/c 3o -

20

0.5, 10 16

Fic. 2. Dispersion curves showing w as function of k with [ = 0
when U/C = 3 for the slab ML. In this case there is no instability.
The fast mode is the branch with nonzero phase speed at k = 0.
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FiG. 3. Dispersion curves showing w as function of k with! = 0
when U/C = —1/, for the slab ML. In this, and in all subsequent
figures, the real part of w is the solid curve while the imaginary part,
indicating instability, is dashed. The instability starts at k = 1/(2/2)
where the two branches merge.

in the k, [/ plane are unstable. The solid curve in Fig. 1
shows the radius of the critical circle in the k, [ plane
as a function of U/C. In Figs. 2 through 5 we plot the
dispersion relation for various values of U/C and show
that the onset of instability at p.; results as a merger
of the wg and wg branches. There is no high wavenum-
ber cutoff for this instability. In fact, the maximum

growth rate
viuc|

' L
is achieved by the shortest waves. (We use the notation
W= w, + iw;.)

We remarked previously in the discussion surround-
ing (1.12) that for large-scale, climatological, temper-
ature gradients of 4°C in 10° m the wave speed is C
~1fp cms™'. Taking U = —C and £ ~ 10 km gives
an e-folding time (w™*)~' ~ 23 days. This is not fast
relative to many other processes in the ML. For in-
stance, straining by the mesoscale gives a timescale that
can be estimated from a 0.1 m s~ velocity difference
acting over 10° m. This gives 10% or about 12 days.
However, notice that the maximum growth rate w™
in (2.22) scales with T';’?, so that in frontal regions
where T, ~ 20 cm s~ the instability could have an e-
folding time of 5 days. This e-folding time is reduced
even further if U is larger.

The instability has been characterized as occuring at
high wavenumbers (i.e., sufficiently short waves are
unstable). But this description is not accurate if U + C
= 0. In this case (2.21) shows that the critical circle in
wavenumber space contracts to the origin so that all
wavenumbers are unstable. Thus, we can anticipate that
the instability survives the addition of scale-selective
damping such as diffusion of buoyancy and vorticity.
The condition that U + C is small is equivalent to say-

(2.22)
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FiG. 4. Dispersion curves showing w as function of k with [ = 0
when U/C = —1 for the slab ML. In this case all wavenumbers are

unstable.

ing that the base of the ML is nearly flat—see (1.11).
This ‘‘flat base’’ configuration is a maximally unstable
basic state in the sense that all wavenumbers are then
unstable.

A recent paper by Fukamachi et al. (1993, hereafter
FMP) documents a class of ML instabilities that is the
same as those discussed above; there are only minor
differences. In their section 3.1, FMP start with the slab
ML formulated in terms of the momentum equations,
rather than the SML approximation, and they do not
consider the effects of temperature and salt separately,
so there is no BC mode. Further, attention is confined
to the case where the base of the ML is flat (i.e., U + C
= 0), and thus FMP find that all wavenumbers are
unstable. Thus, the most important difference between
FMP and the present work is the remark that when
U + C # 0 the ML base slopes and low. wavenumbers

SLAB ML
ulc=-3

-4.0 ! L
06 10
R /3

FIG. 5. Dispersion curves showing w as function of k with [ = 0
when U/C = —3 for the slab ML.
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are stabilized and if U/C > 0 all wavenumbers are
stable.

FMP also compare a numerical solution of the ei-
genvalue problem based on the vertically integrated
momentum equations with the approximate dispersion
relation in (2.18). This comparison shows good agree-
ment between the two results over the entire range of
wavenumbers displayed in Fig. 4 of FMP.

3. The wave modes of the geostrophic ML

We turn now to the limit 4 = 0 so that the momentum
mixing is slower than an inertial period. In this case the
leading order velocities in (1.3 ) are

o z 1\
(u, v) = ( wy,wx)+(g€+2)< £,£6). (3.1)

In contrast to the previous section there is now vertical
shear at leading order. For 1nstance the basic-state ve-
locity is

s vrr(2+d)

(3.2)
so that the zonal component of velocity is sheared ac-
cording to the thermal wind relation. In the previous
section this shear was absent because the depth-depen-
dent pressure gradient is balanced by rapid momentum
mixing (u = 1/fry 2 1) rather than the Coriolis force.

The conservation equations for heat and salt are now

o1+ (W, 0) = ~ = V- [ X V]

6,+J(,6)= - =V [ X VEL (33ab)
where £ = § — o and § = J(o, #). The vorticity equa-
tion (1.6) simplifies to

L2V, =+ 3 6 + T, L2V)

+ S J(E BVE) =0, (34)
and the interface displacement is again given by (2.3).

Comparing equations (3.1) through (3.4) with those
at the start of section 2, we see that there are two dif-
ferences. The buoyancy is coupled to the vorticity by
an extra term J(&, £2V%) in (3.4), and there are new
and cubically nonlinear terms involving the thermo-
haline Jacobian § = J(o, 6) on the right-hand side of
the conservation equations (3.3). All of these new
terms can be traced back to the geostrophically bal-
anced and vertically sheared velocity proportional to
(—¢&,, &) on the right-hand side of (3.1): The J(&,
V?¢) is Reynolds stress forcing of the vertical vorticity
produced by this geostrophic velocity and the V[ Jz X
V] term is the shear dispersion of temperature and salt

YOUNG AND CHEN

3179

that results from the same sheared geostrophic velocity
(Young 1994).

a. Nonlinear conservation laws

The quantities € and 9 defined in (2.4b) and (2.4c)
are also invariants of the system in (3.1) through (3.4).
The energy-like invariant, § in (2.4a), must be modi-
fied to

&= J.,Elell Vi + ¢* — £2V£~V§dA. (3.5)
Notice that & is no longer positive definite if U/C > 0.
This is the first indication that the stability properties
of the geostrophic ML differ qualitatively from those
of the slab ML.

Now that the right-hand sides of (3.3) are no longer
zero the quadratic thermal and haline fields are no
longer invariant. Simple manipulations show that

] a5 [ pan

sl ran=-5]
dA = — — dA
dt2 7
d
= ofdA = — — f 9*°dA. (3.6a,b,c)

Because the rhs of (3.6a,b) is negative definite, we can
anticipate that the new terms on the rhs of (3.3) pro-
duce downgradient mixing of temperature and salinity.

Remarkably, the nonlinear downgradient mixing of
T and S in (3.3) does not change the buoyancy. In fact,
the right-hand sides of (3.3a) and (3.3b) cancel if one
forms a single equation for £ = 8 — ¢. Thus, the buoy-
ancy of any fluid particle is constant while this irre-
versible mixing of heat and salt proceeds. Since the
mean square temperature §° and mean square salinity
o? both decrease, while the mean square buoyancy &2
= #? + 0* — 206 remains constant, the mixing process
must create a negative cross-correlation between the
temperature and salinity.

b. Thermohaline gradient alignment

The remarks in the previous section concerned
mainly the dynamics of thermohaline variance. In this
section we supplement these arguments, and reinforce
our previous conclusions, with some deductions con-
cerning thermohaline gradients.

In the slab limit described in section 2 we found that
the Jacobian § = J(o, #) was conserved on material
particles—see (2.5). Here 7 reappears on the right-
hand side of (3.6) as the quantity that drives the global
decrease of the squared temperature and salinity fields.
One can now show by direct manipulations of (3.3)
that
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g+ JW D
= {Ev-[v-(gz X VE(z X VO], (3.7)

The formidable right-hand side of (3.7) produces a
very simple result when one forms the integral balance
for the squared Jacobian:

4 gqn- -7 [ v :
ZEJ-? A = 6f[‘7 (Jz X VEI’dA. (38)

Thus the globally integrated, squared Jacobian of tem-
perature and salinity also decreases monotonically as a
result of the mixing terms on the right-hand side of
(3.3a,b). Notice that in the slab case | J*dA is constant
because the right-hand side of (2.5) is zero.

The integrals above show that there is a process of
‘‘thermohaline gradient alignment’’ that is driven by
the right-hand sides of (3.3). As a thought experiment,
suppose that arbitrary distributions of § and ¢ are es-
tablished initially and then evolve freely according to
geostrophic SML dynamics. We can demonstrate that
(i) [ $dA >0 as t > » and (ii) § = |VO|Va]| siny
— 0 because siny — 0, rather than by simply mixing
the temperature and salinity gradients | V8| and |Vo|
to zero.

To prove the first point: because [ §2dA = 0, even-
tually the right-hand sides of (3.6a) must become zero.
[Notice that (3.8) alone merely enables one to con-
clude that [ §°dA decreases monotonically: it does not
allow one to reach the stronger result that [ 2dA
— 0.] To prove the second point: because that [ (8
— 0)*dA is constant the mixing process cannot result
in the uniform state 8§ = ¢ = 0: some thermohaline
gradients have to survive as ¢t — . Thus, one concludes
that the thermohaline Jacobian becomes zero because
the temperature and salinity gradients become parallel
(x = 0) or “‘antiparallel”’ (x = 7).

Thermohaline gradient alignment must compete with
the various processes that force the ML and create non-
parallel temperature and salinity distributions. We also
emphasize that the deductions above depend on having

a geostrophic mixed layer (g = 0). This assumption

greatly simplifies the mixing terms on the rhs of the
thermohaline conservation laws in (1.4). (But not as
greatly as the case u = o, which choice makes the rhs
Zero.)

Despite these caveats one can now begin to argue
that there is an identifiable dynamical process that
might be responsible for forming a ML T-S relation.
The following linear stability analysis, though limited
to small disturbances, provides a more concrete illus-
tration of how thermohaline gradient alignment works.

¢. The linearized problem and its conservation laws

We now turn to the linearized dynamics using the
decomposition in (1.8). Notice that the thermohaline
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Jacobian of the basic state is zero and that to linear
order the perturbation Jacobian is
9= —-Tyo, +T,0..

Linearizing (3.3) and (3.4) gives the set

(3.9)

ol + Us! — y!T, = ;—211(1“00; - T,8%)
9 + U8, — ¢! T, = {5 T (Tyol ~ T,0L)
LY+ ULV, — gl + 1 €]

+ T LV =0, (3.10abc)

where £’ = 6’ — o'. The quantity € defined in (2.8¢)
is an invariant of the system above. The other two in-
variants (2.8a) and (2.8b) are now

g %f.BZVW-Vt//’ + '+ (U/IAC)E"?

—liz,ezvg'~vg'dA.

7= %f.ﬁz(vzlﬁ’)z + Vlf/’le’

+ (UI4C)VE' -VE' — é LAV dA.  (3.11)

Because € and Z are no longer of definite sign when U/
C > 0, there is no sufficient condition for stability. The
detailed calculation below shows that the basic state in
(1.8) is unstable for all values of U/C.

From (3.10a) and (3.10b) one can easily show that
the linearized thermohaline Jacobian in (3.9) evolves

according to
gf + ny = Dll?xx, (312)

where

T T
D”=EF%=’3‘C2 (313)

is a shear diffusivity acting parallel to the contours of
the basic-state buoyancy field ~I';y so that D, is an
‘‘epipycnal’’ diffusivity. It follows from (3.12) that

d
7 f PdA = —2D, f-gidA. (3.14)

This equation is the linear analog of the nonlinear result
(3.8).
d. Eigenmode analysis of the linear system

The Fourier method used in section 2, when applied
to the system in (3.10), yields the dispersion relation
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FiG. 6. Dispersion curves showing w as function of k¥ with [ = 0
when U/C = 3 for the geostrophic ML. In this particular figure the
range of the k axis has been expanded to show the merger of the two
branches and the onset of high wavenumber instability.

(Q + l.D]|k2)[Q2p2£2 + UJQ
— Chkw + % c2p2,e2k2] =0, (3.15)

where p = k* + [* and Q = w — Uk. The corresponding
result in the slab ML limit is (2.13). The first root of
(3.15) is when the term within parentheses vanishes.
This gives

(3.16)

This is the buoyancy compensated mode with the ei-
genvector in (2.14). The compensated anomalies are
advected by the basic-state velocity U. But in this case
the anomalies are also shear dispersed along the direc-
tion of the basic-state buoyancy field. Notice that the

UJBC(k, l) = Uk — iD||k2.

Geostrophic ML T
-0.8 [ u/c=-05 T
-1.0 1 —L

0.0 06 10 16

FiG. 7. Dispersion curves showing w as function of k with [ = 0
when U/C = —0.5 for the geostrophic ML. In this figure the ultra-
violet divergence of the growth rate is evident.
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FiG. 8. Dispersion curves showing w as function of k with [ = 0

when U/C = —1 for the geostrophic ML. In this figure, as in Fig. 4,
all wavenumbers are unstable.

diffusion coefficient D, in (3.13) depends quadratically
on the basic-state buoyancy gradient. As a nominal nu-
merical estimate, suppose that the vertical mixing time
7 is 10° s and that the C ~ 1/, cm s™', corresponding
to a large-scale climatological buoyancy gradient [see
the earlier discussion after (1.12)]. In this case Dj
~ 1 m?s~'. However, in frontal zones C is of order
0.1 m s, and in this case Dy ~ 300 m*s~'.

Notice that Dy in (3.13) increases as T becomes
larger: weaker vertical mixing (big 7) means stronger
horizontal mixing (big D;). This is analogous to the
well-known inverse dependence of the shear diffusion
coefficient on molecular diffusivity (Taylor 1953).

The other two roots of (3.15) are determined by the
bracket vanishing. This condition is equivalent to

(1 + £L2p?)w? — [C + U + 2ULp?Jkw

+ .szz[Uz + % cz]k2 =0.

1.6 T L o
0+
06 aer h
0.0
-0.6
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wtlc
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Fi1G. 9. Dispersion curves showing w as function of k with [ = 0
when U/C = 0.3 for the geostrophic ML.

16



3182

In broad terms the two solutions of (3.17) are similar
to those discussed in section 2—compare Figs. 6-9
with Figs. 2-5. At small wavenumbers (meaning that
both C + U > 2U£*p? and 1 > £?p?) the two roots
of (3.17) are

we(k, 1) = (U + C)k

U? + (C?*/3)

ws(k, Iy =~ —F——7

L2(k* + 1)k, (3.18a,b)
and these results are very similar to the approximations
in (2.20).

The exact solution of the quadratic in (3.17) is

_1 Kk 22,
we(k, ) = 3 {3 [C + U+ 2UL% +VA]
ws(k, ) = 2 —%[C+ U+ 20£tp? - YA
Sy 21+ £2p? ’
(3.19a,b)
where A(p?) is the discriminant
A(p?) = [1 -3 £ + ﬁsz)]cz
+2(1 + 2£2p%)CU + U, (3.20)

Instability occurs when A changes sign, and this con-
dition defines a critical circle k* + [? = pZ; in the (k,
I) plane. Wavenumbers outside the circle are unstable
and those inside are stable. The radius of the critical
circle is given by

3U 1 U\271"?
_ezpim=————+[1+3<—c—>] . (321)

and this relation is plotted in Fig. 1 as the dashed curve.
Notice once again that the radius of the critical circle
contracts to zero if U + C = 0. In this case all wave-
numbers are unstable. In contrast to the slab (p = ®),
ML in section 2, the geostrophic (z = 0) ML is unsta-
ble for all values of U/C. And in both cases all wave-
numbers are unstable if U + C = 0.

One qualitative difference between the cases y = ®
and ¢ = 0 is the behavior of the instability at high
wavenumbers. In the geostrophic case (¢ = 0) the
growth rate increases linearly with k if £2p® — . From
(3.19) and (3.20), one has

|C]
w; = —k,
3

if £2p? > 1. In the slab case (u = ®) the shortest waves
grow the fastest, but at least the growth rate is bounded
as L2p? — o [e.g., see (2.22)]. The ultraviolet diver-
gence in (3.22) is discussed below in section 4.

To make an a posterori assessment of the validity of
the SML approximation, we must check that w/f is

(3.22)
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small. To take an extreme case, suppose that C = 0.1
ms ' and kK =_1 kmm™'. Then from (3.22) it follows
that w/f = 1/ ¥ , which is not convincingly small. For
frontal disturbances with frequencies comparable to f
the SML approximation is not valid, and in the present
case this means that the dispersion relation is inaccurate
as k = o,

Some of the results in this section are anticipated by
the work of Fukamachi et al. (1995). In their section
4 they discuss the stability of a vertically sheared ML
starting from the momentum equations rather than the
SML approximation. Attention is confined to the case
U + C = 0 so that FMP find the instability at all wave-
numbers, which occurs when the base of the ML is flat.
FMP emphasized that there were only minor differ-
ences between the dispersion relation of the slab case
[e.g., (2.18)] and that of the vertically sheared case
[e.g., (3.17)]. Indeed, this is true if U + C = 0, but in
general there are differences between the two disper-
sion relations. The most significant consequence of
these differences is that in the slab case the instability
occurs only when UC < 0, while in the geostrophic
case the instability is present no matter the sign of UC.
In both cases if U + C # 0, then the base of the ML
slopes and low wavenumbers are stabilized.

e. Linearized thermohaline gradient alignment

In the linear problem in (1.8) the basic state has
parallel temperature and salinity gradients. Small initial
perturbations will then introduce some nonalignment
of the thermohaline gradients. The evolution of these
perturbations can be understood by projecting the ini-
tial disturbance onto the three modes (F, S, and BC)
and evolving the eigenmodes according to the linear
dynamics described above. This solution is accurate
until the disturbance reaches nonlinear amplitude.

The linearized dynamics of thermohaline gradient
alignment are contained in the results (3.9) and (3.12).
The F and S modes make no contribution to 7 in (3.9)
because their eigenvectors have /8 = I',/T,: in other
words, the nonaligned structure in the initial perturba-
tion does not project onto the F and S modes. Thus, the
unstable exponential growth of these two modes neither
creates nor amplifies nonaligned structure in the ther-
mohaline fields.

The BC mode carries all of the thermohaline Jaco-
bian J, and according to either (3.12) or (3.16) this
mode decays exponentially. [The BC decay rate in
(3.16) vanishes if k = 0 but in this case it follows from
(3.9) that § = 0 anyway.] Thus, nonaligned initial per-
turbations decay as ¢ — « even though there are unsta-
ble linear modes.

4. Curing the ultraviolet divergence: Stable
stratification and dissipation

The divergence of the growth rate in (3.22) as k —
o raises the question of a high wavenumber cutoff for
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the instability. In this section we will compare two dif-
ferent mechanisms that prevent the blowup in (3.22):

(1) The addition of scale selective dissipation such
as diffusion kV?¢ and viscosity vV*) to the SML
model.

(ii) The effects of stable vertical stratification in the
ML.

The viscosity and diffusion in (i) might represent un-
resolved smaller-scale processes in the ML; for ex-
ample, Langmuir circulations or diurnal convection
could produce horizontal mixing on scales of 100 m.
With respect to point (ii), the SML approximation does
predict that the ML is vertically statified [see (4.2) and
(4.3) below], but this stable vertical stratification does
not appear at leading order in the expansion scheme.
The evolution equations in (1.4)~(1.7) take no ac-
count of the higher-order stable stratification. This is
an important difference between the SML approxima-
tion and earlier studies of baroclinic instability such as
Eady (1949) and Stone (1966, 1970): in these earlier
works the vertical buoyancy gradient is imposed exter-
nally and its strength is independent of the horizontal
buoyancy gradients. By contrast, in the SML approxi-
mation, the vertical buoyancy gradients are dynami-
cally related to the horizontal buoyancy gradients as in
(4.2) below, or N> = M*/ f* in the notation of Tandon
and Garrett (1994).

a. The Eady problem and stable stratification

We begin consideration of point (ii) by recalling the
main features of the classic Eady problem for baro-
clinic instability. The Eady problem and the SML ap-
proximation are similar in that one considers a verti-
cally sheared, rapidly rotating flow such as (3.2). In
the Eady problem stable stratification, with a buoyancy
frequency conventionally denoted by N?, is included
in the basic state. But in the SML approximation the
stable stratification of the ML is a higher-order effect.
Thus, no parameter corresponding to N* appears in the
analysis of section 3. This is the essential difference
between the Eady problem and the SML instability.
[An inessential difference is that in the Eady problem
the bottom is rigid, while in the SML case the bottom
of the layer is free to deform. This difference is irrel-
evant for high wavenumbers.]

The Eady dispersion relation is shown in Fig. 10 by
the solid curve [e.g., see Gill 1982, Eq. (13.3.5); Ped-
losky 1987, Eq. (7.7.18)]. There is a high wavenumber
cutoff at

f
ke =24 ——.
B N
It is remarkable that the cutoff at kg is independent of
the magnitude of the thermal wind. The dashed line,
which is tangent to the Eady growth rate at k = 0, is

(4.1)
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FiG. 10. The growth rate of the Eady wave as a function of wave-
number k with / = 0. The dashed straight line is the SML result in
(3.22).

the SML result in (3.22). From this comparison we
learn that stable stratification in the mixed layer, though
often ignored, has an important role in stabilizing high
wavenumbers against baroclinic instability. Physically,
this is because short waves produce relatively upright
fluid displacements that lie outside of Eady’s ‘‘wedge
of instability.”” The more nearly horizontal particle tra-
jectories in long waves lie within the wedge of insta-
bility and so can release potential energy.

The comparison in Fig. 10 also shows that the in-
stability described in section 3 is a special case (N
= 0) of the well-known quasigeostrophic baroclinic
instability. The same cannot be said of the superfi-
cially similar instability described in section 2. In the
slab limit the velocity within the ML is independent
of depth, and the slanting particle trajectories de-
scribed by Eady are not possible. This is a further
illustration of the qualitative difference between the
slab and geostrophic MLs.

We can now use recent results on mixed layer re-
stratification to make a rough estimate of kg in (4.1):
we must estimate N within the ML. The SML approx-
imation makes a prediction concerning N2 in the ML.
In the notation of this paper the expansion of the den-
sity is

p=b{1~ !

2% [6 + (1 + p*)7VE-VE

z 1
X(§¢7+§>+"']}’ (4.2)

where the ellipses indicate higher-order terms in the
SML expansion. Using the linearized result V§&-V¢E
~ 4C?, one can now estimate from (4.2) that
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8P:

NP=—-=Fw~(1+p
P

(4.3)

where we have used p = 1/fr,,. Putting (4.3) into the
expression for kg in (4.1) gives

kEI ~ (1 + Mz)—l/z(l>
T

U

1/2 2C
f .

Now if (1) heat salt and momentum all mix at the same
rate so that 7/7, ~ 1 and (ii) the ML is geostrophic
so u <€ 1 and (iii) the buoyancy gradient is typical of
frontal regions so that C ~ 10 cms™' and f
~ 107*s7', then from (4.37)

kg' ~ 2 km.

(44)

(4.5)

Notice that with J ~ 100 m, the estimates above give
N/f ~ 20 in the ML.

Tandon and Garrett (1994) have recently produced
a model of mixed layer restratification after a sudden
mixing event. In their notation N> = M*/f?2, where M
= — fI'/ & is the horizontal buoyancy gradient. This
result of Tandon and Garrett is the same as (4.3) pro-
vided that 7/7, = 1 and p < 1.

b. Scale selective dissipation

We turn now to the possibility of high wavenumber
stabilization by scale selective dissipation. In the usual
ad hoc fashion we add a terms «V?¢’ and «V?6' to the
right-hand side of (3.10a,b) and v.£2V*}’ to the right-
hand side of (3.10c). With this addition the generaliza-
tion of the dispersion relation (3.17) is

(Q + ikpH(QLP? + w + WwLp*)
+C (% CLp% — w)k =0. (46)

The high wavenumber behavior of this dispersion re-
lation is isolated by the approximation

(Q + ikp?) (L2 + ivL?p*) + 1+ C2L2p%? =~ 0.
3
4.7)

The terms dropped in passing from (4.6) to (4.7) cor-
respond to deformation of the base of the ML. In mak-
ing the approximation (4.7) we have also assumed that
the viscosity v and diffusion « are small in a sense that
is quantified below in the discussion after (4.9).

The solution of (4.7) is

We = Uk+i[——%(:<+ v)p?

+ \/g CH? + 5 (x = V)2p4] . (4.8)
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FiG. 11. Curves of constant growth rate in the wavenumber plane
calculated from (4.32) with U/C = 2 and v/CLpss = «/CLpiss = 0.1.
The growth rate is zero on the two outermost circles.

The circular contours of constant growth rate in the (k,
1) plane are shown in Fig. 11. The neutral stability con-
dition w,; = 0 shows that the dissipation produces a
high wavenumber cutoff so that waves shorter than the
dissipation length

3vk
|C|

are stable. The one slightly surprising fact to emerge
from this analysis is that both viscosity and diffusion
are required to give a high wavenumber cutoff. For the
high wavenumber approximation in (4.7) to be valid,
the dissipation must be weak, so that .£ > Lpss.
Suppose that the diffusion and viscosity are pro-
duced by some process that overturns the ML isotrop-
ically so that the horizontal mixing distance scales with
the depth ¥ ~ 100 m of the ML. As a nominal value
of the mixing time we take 7 ~ 10° s, so that the over-
turning velocities are of order #/7 ~ 10 m s ~'. Then
v~k~% /T ~0.1m’s"'. We previously estimated
C ~ 0.005 m s ™' for climatological temperature gra-
dients. With these numbers the dissipation length is

(4.10)

Even if our estimates of » and « were small by a factor
of 100 (as they might be for strong Langmuir circula-
tions ), the instability would extend down to lengths at
which the dynamics is certainly not geostrophic. [Note
that in frontal regions C can be a factor of 20 larger
than the value of 1/ cms™' used in the estimate
(4.10).] Comparing (4.5) with (4.10) we see that
ki' > Lpss, so that it is most likely stable stratification,

(4.9)

Loiss =

I')DISS ~ 3 m.
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rather than scale selective dissipation, that imposes a
high wavenumber cutoff on ML baroclinic instability.

5. Discussion and conclusions

In this paper we have used the subinertial mixed
layer approximation to discuss the low-frequency dis-
turbances that can exist in a ML and exploit the peculiar
stratification found in this region. We have made a
comparison of two limiting model assumptions. First
there is the slab ML, in which case the horizontal ve-
locity has no vertical shear because of rapid mixing of
vertical momentum. The complementary limit is the
geostrophic ML, in which case the horizontal velocity
is sheared according to the thermal wind relation.

The differences between the two cases are qualita-
tive. For instance, in the geostrophic case thermohaline
gradient alignment can act to tighten the 7—S relation.
This process, relying as it does on shear dispersion, is
absent in the slab limit. In the geostrophic case the SML
approximation reproduces the low-wavenumber behav-
ior of the Eady baroclinic instability problem. Although
there is an instability in the slab case, the relation to
the Eady problem is obscure: the slab velocity profile
means that the usual physical interpretation of baro-
clinic instability in terms of slanting particle displace-
ments releasing potential energy is inapplicable.

In the geostrophic ML, which we believe is more
realistic, disturbances with inverse wavenumbers be-
tween about 2 km and 10 km are unstable. These num-
bers, 2 km and 10 km, should not be taken too literally
because the actual values depend sensitively on details
of the basic state, particularly the inclination of the ML
base (e.g., see Fig. 1) and the buoyancy frequency
within the ML. The low wavenumber cutoff (i.e.,
waves with inverse wavenumber longer than about 10
km are stable) is associated with the deformation of the
ML base: the relevant length scale is £ = Vg'H/f,
where J is ML depth. The high wavenumber cutoff
(i.e., waves with inverse wavenumber shorter than 2
km are stable) is associated with the weak vertical strat-
ification within the ML: the relevant length scale is
kg' ~ N&/f, where N is the buoyancy frequency
within the ML. The essential point is that the peculiar
stratification of the ML' ensures that £ > kg', and so
there is generally a band of unstable waves. The length
scales suggested by this calculation are rather shorter
than those usually associated with the mesoscale eddy
field, and this finding supports the hypothesis that
small-scale fronts in the ML are the result of shallow
baroclinic instability.

' A weakly stratified layer with N/f < 20 bounded below by an
almost discontinuous increase in density so that g’ ~ 107> m s™2.
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