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This review of shear dispersion emphasizes that the usual one-dimensional diffusion equation, 
derived by Taylor [ Proc. R. Sot. London Ser. A 219, 186 ( 1953) 1, is an asymptotic result that 
is valid only at large time. One route to earlier validity is a systematic wave-number expansion 
based on the center manifold theorem. This procedure captures much of the early behavior but 
it does discard exponentially decaying transients. However, in some cases of practical 
importance, such as tracer release experiments in rivers, the observation of “anomalous 
diffusion” (i.e., tracer variance growing nonlinearly with time) is at odds with this asymptotic 
reduction. Alternative approximations and models, which account for exponential transients 
using a description that is nonlocal in time are reviewed. A secondary theme of this review is 
the application of shear dispersion to mixing of passive and active scalars in rivers and 
estuaries. An example is shear dispersion of salt in which the shear flow is created by salinity 
gradients. Other examples include fixed flux convection. 

I. INTRODUCTION 

In 1953, Taylor published a remarkable paper on the 
dispersion of a passive scalar (“tracer”) by laminar Poi- 
seuille flow in pipe.’ The problem is to develop a quantita- 
tive theory for the spread of tracer along the axis of the pipe, 
while avoiding the detailed solution of the advection-diffu- 
sion equation 

c, + UC, = DV2c. (1) 
In Eq. (l), c(x,y,z,t) is the concentration of scalar, 
u (y,z) = 2( U/a’) (a5 - y2 - 9) is the axial velocity along 
the pipe, and D is the molecular diffusivity of the tracer. 

Taylor’s theory of “shear dispersion” focuses on the sec- 
tionally averaged concentration C(x,t) and shows that, at 
large times, this quantity satisfies a simpler advection-diffu- 
sion equation: 

CT, -+ UC, = DerC.xx, (2) 
where 

C&t) ~5 c(x,y,z,tjdA and U=$ 
s s 

U(Y,ZjdA. 

(3) 
Here, Den is an “effective diffusivity” and Taylor finds 

Des = D + UZa2/48D. (4) 
[Taylor’s heuristic derivation of Eqs. (2)-(4) assumes 

that the P&let number PraU/D is large so that the first 
term on the right-hand side of Eq. (4) is much smaller than 
the second. The complete expression in Eq. (4) was given by 
A.&.’ There are mistaken claims in the literature that Eq. 
(4) applies only when the P&let number is small, so that the 
second term on the right-hand side is a small enhancement of 
D-1 

In going from Eq. ( 1) to Eq. (2) I the number of inde- 
pendent variables has been reduced from four to two, and the 
the concept of an effective diffusivity for the averaged con- 

centration is very appealing. Equation (2) has been exten- 
sively used by hydrologists, physiologists, chemical engi- 
neers, and many other practical-minded scientists. At a 
fundamental level, Taylor’s result is a good example of a 
general mathematical technique: the simplification of a com- 
plicated system by the elimination of “fast modes.” Taylor’s 
problem is discussed from this perspective in Sec. II. 

It must be stressed that Eq. ,(2) is an asymptotic result. 
In an initial value problem, in which the tracer is released in 
some arbitrary configuration, the reduced description in Eq. 
(2) is valid only when ts a’/D. At large times, molecular 
diffusivity mixes the tracer in the transverse direction while 
the shear stretches it out in the axial direction. Thus if the 
concentration is written as 

c(x,y,z,t) =F C(W) + c’(x,y,z,t>, (5) 
then, at large times, the transverse differences in concentra- 
tion represented by c’ are much less than the axial variations 
contained in C. This observation is at the heart of Taylor’s 
derivation of Eq. (2) and is essential in more complicated 
problems with dynamically active scalars such as buoyancy 
(see Sec. III). 

A heuristic derivation of Eq. (2) begins by sectionally 
averaging Eq. ( 1) to obtain 

C, + UC, + u’c; = DC,,, (6) 
where the overbar is a sectional average (e.g., U = U) and U’ 
is defined by analogy with c’ in Eq. (5). Subtracting Eq. (6) 
from Eq. ( 1) gives a rather complicated equation for c’, but 
when t % a’/D there is a simple dominant balance: + 

u’C, zDC$, + c;, 1. (7) 

Equation (7) has a compelling physical interpretation: 
Transverse variations in concentration are created by the 
shear flow tilting and stretching the averaged concentration 
and these same variations are destroyed by transverse molec- 

1087 Phys. Fluids A 3 (5), May 1991 0899-8213/91 I051 087-l 5$02.00 @  1991 American Institute of Physics 1087 

Downloaded 18 Jul 2002 to 132.239.127.60. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ular diffusion. Because C does not depend on the transverse 
coordinates, it is easy to solve Eq. (7) for c’. The correlation 
-7-T. u c m Eq. (6) is then seen to be proportional to C, and 

evaluating the integral one obtains Eqs. (2) and (4). Notice 
-77 that both C’ and u c vary inversely with D, which explains 

the inverse proportionality in the last term of Eq. (4). 
Scale analysis of the complete c’ equation shows that the 

dominant balance in Eq. (7) depends on two different ap- 
proximations. First, one requires a/l 4 1, where I is the axial 
length over which variations in c occur. In particular, there 
is no restriction on the size of P = au/D, provided that the 
aspect ratio a/Z is sufficiently small. For instance, with a 
posteriori scale analysis, one can show that the ratio of a 
neglected term, such as u’c:, to a retained term, for instance, 
u’C,, is aP/Z. This becomes small as t-t CO and the tracer is 
spread over a large axial distance. 

The second approximation used in Eq. (7) is that the 
time scale of evolution of C and U’ be much longer than the 
transverse diffusion time a’/D. If this condition is not satis- 
fied, then the term c; must be retained in Eq. (7). An exam- 
ple is given in Sec. IV B. Other examples include the shear 
dispersion by time periodic velocity fields.3.4 If u(z,t) has a 
period that is comparable to the transverse diffusion time, 
then c; is not negligible, even though the average field C is 
evolving on a much longer time scale. 

BatcheIo? remarks that the referees who first received 
Taylor’s paper on shear dispersion could not fail to recognize 
“the fundamental character of the result that differential 
unidirectional convection and transverse diffusion together 
yield a longitudinal diffusion process far downstream.” In 
fact, this article is the most frequently cited of Taylor’s 
works-see Fig. 1. We emphasize the importance of the re- 
striction to unidirectionalvelocity fields. Of the two approxi- 
mations discussed above, the first is essential and depends 
crucially on the anisotropy of the velocity. The second ap- 
proximation can be avoided at the expense of solving a time 
dependent diffusion equation in the transverse plane. 

Figure 1 also shows citations of two other papers’,’ on 
dispersion by Taylor. In 1954, Taylor applied a similar anal- 
ysis to tracer dispersion in turbulent Poiseuille ~ow.~ Once 
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FIG. 1. Citations of three papers (Ref. 1, 6, and 7) by Taylor. 

again, the evolution of the sectionally averaged concentra- 
tion is described by Eq. (2) but the reasoning used to obtain 
D,, is less compelling than that in the earlier discussion of 
laminar Poiseuille flow. In the turbulent case, Taylor gives 
an estimate based on the Reynold’s analogy 

D er z 10. lau,, (8) 
where u.+ is the friction velocity. 

While Taylor’s experiments in the laminar and turbu- 
lent cases generally supported his theory, there were some 
discrepancies. In both the laminar and turbulent experi- 
ments the measured concentration profiles show “persistent 
skewness,” i.e., concentration measured at a fixed point as a 
function of time has a long tail, as in Fig. 2. This difficulty is 
more pronounced in the turbulent case and Taylor attribut- 
ed it to tracer retention in the viscous sublayer so that trans- 
verse mixing is incomplete. The implication is that, in Tay- 
lor’s experiments, Eq. (2) is inaccurate because insufficient 
time has elapsed-a conclusion drawn by Chatwin’ and 
reinforced with a model that accounts for tracer retention in 
the viscous sublayer. 

The conclusion that the diffusion approximation in Eq. 
(2) becomes valid only after a time of order a”/D is correct. 
However, an incorrect corohary, that the transient is asso- 
ciated with incomplete transverse mixing, is sometimes 
drawn. In fact, there are cases in which the transverse varia- 
tions in concentration are very small and yet Eq. (2) is not 
valid. Some explicit examples are given in Sec. IV. In gen- 
eral, thorough transverse mixing is necessary, but not suffi- 
cient, for the validity of the Taylor diffusion equation. The 
correct physical condition for the validity of Taylor’s ap- 
proximation is that every element of tracer has had time to 
sample the entire cross section of the flow. 

Many authors since Chatwin have attempted to im- 
prove Taylor’s theory to obtain earlier validity, and experi- 
ments, particularly in rivers, have shown that some improve- 
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FIG. 2. This figure, reproduced from Ref. 39, shows field measurements in 
the Monacy River (top panel) and the Amite River (lower panel). In both 
cases, concentration is recorded as a function of time at fixed sites down- 
stream from a release point. The long tail on the concentration records (per- 
sistent skewness) indicates that the Taylor limit has not been achieved. 
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ment is necessary. Indeed, many experimental investigators 
would probably argue that the predictions of Eq. (2) are so 
at variance with experience that alternative theories are re- 
quired. The review by Chatwin and Allen’ is a good sum- 
mary of research on the dispersion of pollutants in natural 
waterways. 

In Sec. II, we review some recent work that builds on 
Eq. (2) as the first term in a systematic expansion. In Sec. 
III, we discuss some problems in which a dynamically active 
tracer, such as buoyancy, is dispersed by a shear tlow driven 
by its own gradients. In Sec. IV, we review the tracer release 
experiments in rivers in more detail and present some theo- 
retical models of nondiffusive dispersion by a unidirectional 
velocity field. 

II. A WAVE-NUMBER EXPANSION FOR SHEAR 
DISPERSION 

In this section, we review some recent developments 
that provide a systematic route to the approximation in Eq. 
(2). These developments, mainly due to Roberts and colla- 
borators in Refs. 10-13 improve on the approximation in Eq. 
(2) by adding terms of higher order in a wave-number ex- 
pansion, e.g., D, C,, , etc. Indeed, even Eq. (2), as it cur- 
rently stands, is not complete because the initial condition is 
not known. Even though C = C, the appropriate initial con- 
dition for Eq. (2) is not C(x,y,z,O). This surprising point is 
explained with specific examples in the next subsection. 

A. initial displacement and variance deficit 

Aris” realized that it is easy to obtain a closed hierarchy 
for the axial moments 

-.72 
cp WJ) = 

I 
xpc (x,y,z,t) dx (9) 

-.x! 
of the concentration directly from Eq. ( 1) . To find each cP, 
one must solve a diffusion equation in the transverse plane. 
Using Fourier-Bessel series, Aris calculated up top = 3 and 
provided exact results that can be used to assess the accuracy 
of the approximation in Eq. (2). 

The center of mass of the tracer is 

, x -.fxcdV J-c, dA 
‘“==ScdVgiiTc, (10) 

Aris found that if the initial release is a point delta function 
c(v,z,O) = &x)Kv --y. >&z - z, 1, at a distance 
i;, ?&@qjQq 0 rom the axis of the pipe, then 

X,, = Ut+ (Pai24)(2-66r; +3r;) +E.S.T. (11) 
The first term on the right-hand side is the transport of the 
tracer downstream by the sectionally averaged velocity. The 
second term is the initial displacement of the center of mass. 
The last term (E.S.T.) is exponentially small as t--+ CO. The 
initial displacement depends on the position of the point re- 
lease and retlects the transport of the tracer in the early 
phase of shear dispersion. If we solve Eq. (2) with the initial 
condition C(x,O) = Z(xa,z,O) = S(x), we get the inaccur- 
ate result x,~ = Ut. There is an order one error (the initial 
displacement) which does not disappear as t+ ~0. 

Of course a point release is the harshest test of a theory 
that assumes that the tracer is well mixed across the section 
of the pipe. But it is also possible to solve the the moment 
hierarchy with an initial condition c(x,y,z,O) = S(x). In- 
deed in this case, in which the tracer is initially uniform in 
the transverse section, the initial displacement is zero. That 
is, one finds the exact result x, = Ut + E.S.T. so that the 
errors in the prediction of x, from Eq. (2) with 
C(x,O) =‘S(x) are exponentially small as t-+ a. 

However, there is a problem with sectionally uniform 
releases that appears when one calculates the variance 

p2s J’(x-&J2cdV- SC, dA x2 

ScdV SC, dA m 
(121 

from the moment hierarchy. With c(x,y,z,O) = S(x), the ex- 
act result is 

(T 2 = 2D,, t - a’P ‘/360 + E.S.T. (13) 
The second term on the right-hand side is the variance deficit 
and, like the initial displacement, it reflects early dispersion. 

Now if Eq. (2) is solved with the initial condition 
C(x,O) = C(x,y,z,O) = S(x), then the inaccurate result 
0 ’ = 2D,,t follows. Thus changing the initial condition so 
that the release is sectionally uniform has merely deferred 
the difficulty from the center of mass to the variance. 

Based on evidence such as this, Frankel and Brennerr4 
concluded that a systematic improvement of Eq. (2) is not 
possible. However, following Mercer and Roberts,r2 we ar- 
gue that there is a cure for Eq. (2) that ensures that its pre- 
dictions for the moments agree with the exact results apart 
from terms that decay exponentially as t+ M). That is, the 
method of Mercer and Roberts’* gives exact expressions for 
the initial displacement and variance deficit. And when 
higher-order gradient terms such as D, C,,, are incorporat- 
ed, the method provides this same exponential accuracy for 
the skewness. The key is that a consistent expansion results 
not only in additional terms such as D, C,, in Eq. (2) I but 
also in a wave-number expansion of the initial condition so 
that C(x,O) = C(x,y,z,O) + E, d,c(x,y,z,O) + . . . . 

B. Advantages of the center manifold approach 
The method of Mercer and RobertsI is based on the 

center manifold theorem. Obtaining the initial displacement 
and variance deficit is a relatively minor success for this 
powerful method. In fact, these results have been obtained in 
the past using a variety of different approaches: 

(i) Aris’ using the moment method summarized above. 
(ii) Chatwin,” who developed an asymptotic solution 

of Eq. ( 1) by an expansion in powers oft - “‘. 
(iii) Frankel and Brenner14 using “generalized Taylor 

dispersion theory.” In the classic Taylor problem discussed 
above, this specializes to an ingenious calculation of the mo- 
ments that avoids the Fourier-Bessel series used by Aris. 

(iv) Smith16 using a “delay-diffusion” equation that, in 
execution, requires the same eigenfunction expansions as (i) 
and (ii). We return to Smith’s approach in Sec. IV. 
The expansion based on the center manifold theorem is alge- 
braically simpler than all of the above, but this hardly justi- 
fies the detailed derivation given below. Instead, we empha- 
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size the following advantages of the center manifold verse structure of the k = 0 neutral mode. The remaining 
machinery: terms are 

(i) The theory can easily be extended to encompass 
gradual axial variations in pipe diameter, diffusivity, and so 
on. Unlike (ii) and (iii) above, there is no restriction on the 
transverse structure of the initial conditions and there are no 
extra complications in treating a time dependent source. 

c’ = ZC + R, where Z-=a, (y,z)J, + a, (y,z)a”, + ... 
(15) 

(ii) Nonlinear problems (such as the shear dispersion of 
buoyancy” or chemically reacting tracers18 ) are contained 
in the same framework. 

(iii) The calculation of higher-order corrections is 
structurally simple and can be done by computer. Mercer 
and Roberts” calculate up to D,, using the algebra manipu- 
lation package REDUCE. Standard techniques can then be 
used to estimate the radius of convergence of the wave-num- 
ber expansion. 

is an operator that commutes with ~3, and 8,. The functions 
a, (y,z) will be determined systematically as the procedure 
unfolds. Here, c’ contains all of the rapidly decaying modes 
with transverse structure. 

Equation ( 15) appears at the moment as an unmotivat- 
ed assumption about the asymptotic structure of the solu- 
tion. From the perspective of the CMT, it is obtained by, 
first, Fourier transforming Eq. ( 1) with respect to the spa- 
tial variable x. Thus *a, - ik, and one then appends a trivial 
evolution equation: k = 0. This trick enables one to regard 
the terms ikc(k,y,z,t) and - Dk’c(k,y,z,t) in the trans- 
formed version of Eq. ( 1) as nonlinear. Linearizing this ex- 
panded nonlinear system for k and c shows that there are 
actually two neutral modes, viz., (c,k) = (1,0) and 
(c,k) = (0,l) . The amplitudes of these two modes are the 
master variables to which the decaying modes are slaved. 
The ansatz in Eq. (15) is the untransformed form of this 
relation and is a Taylor series expansion in the small ampli- 
tude of the (c,k) = (0,l) mode. For more details see Mercer 
and Roberts.r2 

C. The expansion 

In this review, we do not attempt a systematic exposi- 
tion of the center manifold theorem” (CMT) but instead 
we apply in a cookbook fashion to the particular problem of 
shear dispersion. Our approach is motivated by Mercer and 
Roberts12 but does not follow them closely in execution. 
Some readers may prefer the more formal development in 
Ref. 10-12, though we believe the following development is 
useful pedagogically both as nontrivial application of the 
center manifold theorem and as a conclusive resolution of 
what Frankel and Brenner14 called “a long-standing puzzle 
in longitudinal dispersion theory.” 

The essential idea is that the modes of Eq. ( 1 ), obtained 
by substituting c = exp ( - st + ikx ) 2 (y,z) , decay at differ- 
ent rates. The most slowly decaying mode is the branch that 
has s = 0 and 2 = 1 when k = 0. (Note that the no flux 
boundary conditions at the pipe wall are essential for this 
neutral mode.) When k is slightly different from zero, this 
mode decays on the slow time scale k ‘/D. In addition to the 
slow mode, there are more rapidly decaying branches with 
nontrivial transverse structure at k = 0. These fast modes 
decay on the time scale a 2/D, i.e., the transverse diffusion 
time across the channel. The CMT assures us that it is possi- 
ble to “filter” the rapidly decaying modes and obtain a sim- 
plified dynamics, such as Eq. (2), which describes the long 
time evolution of the slow mode with exponential accuracy. 

Of course Eq. ( 1) is linear, so that the modes as de- 
scribed above are uncoupled and decay independently. The 
second ingredient is to use the modal structure at k = 0, i.e., 
?(y,z) = 1, even though k is slightly different from zero (i.e., 
long but not infinite horizontal scales). When this is done, 
the modes (or “quasimodes”) are coupled and this coupling 
produces the effective diffusivity. 

This procedure described above is executed by assuming 
the ansatz 

ckJGz,t) = ax,0 
+ [a, (y,z)d, -i- ff, (y,z)d: + -**I C(W) 
-t R (x,y,z,t). (14) 

The first term on the right-hand side has the trivial trans- 

Thus the philosophy behind the approach in Eqs. ( 14) 
and ( 15) is that, as t+ CO, there is a “master” variable C(x,t) 
[this is the amplitude of the (c,k) = (1,0) mode] whose 
evolution is determined from Eq. (2)) and the remainder of 
the solution, the “slave” variable c’, is related diagnostically 
to the master through c’ = 3C. However, because of forc- 
ing or initial conditions in general, one must include the term 
R, which is a “remainder” or “displacement” of the slave 
variables away from the exact center manifold relation 
c’ = YC. For instance, in an initial value problem, 
c’(x,y,z,O) and C(x,O) will usually be specified so that the 
system is displaced away from the center manifold. Here, R 
represents this displacement or remainder. In a pure initial 
value problem, in which there is no source of tracer other 
than the pulse that sets up the initial condition, R decays 
exponentially as the system settles onto the center manifold. 
On the other hand, if there is a sustained source, injecting 
tracer at different instants, then the solution is constantly 
being tugged away from the center manifold and R does not 
decay. Cox and RobertsI provide a general discussion of the 
CMT for forced dynamical systems, while the development 
below is specialized to shear dispersion. 

Apart from the final term R, the ansatz in Eq. (14) is 
similar to the “separation of variables” expansion intro- 
duced heuristically by Gill and Sankarasubramanianzo [In 
this reference, the functions ar, depend on t as well as y and z 
(see also Smith” ). This is an attempt to obtain earlier valid- 
ity of the expansion. In the present development, this is ac- 
complished by a systematic treatment of R.] Frankel and 
Brenner14 showed that, without the inclusion of R, the an- 
satz is incapable of systematically improving the leading or- 
der approximation in Eq. (2). This emphasizes the impor- 
tance of correctly incorporating R into the expansion. 
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_. 

We consider a slight extension of Eq. ( 1) by allowing for 
an arbitrary external source of tracer: 

c, -I- UC, = DV% + s. (16) 
Initial conditions are contained as a special case, 
s(x,y,z,f) = c(x,y,z,O)??(t). Other extensions, such as a non- 
constant diffusivity or a tracer that sediments, are easily in- 
cluded in the formalism. 

Sectionally averaging Eq. ( 16)) we have for the master 
variable 

C, + UC, + u’c; - DC,, = S, (17) 
where S(x,t) is the sectional average of s(x,y,z,t) , defined in 
analogy with U and C in Eq. (3). For the slave variable, 

c; + UC: + (u’c’ - n, x - DV%’ = - u’C, $ s’. 
(18) 

Substituting Eq. (15) into Eq. (17), we 6nd for the master 
variable 

I-- C,~UC,-CD,,C,+D,C.~~t-...,=S- uR,, 
(19) 

where 
D =- 

i+1- * and D,, ==D+D,. (20) 

Now substitute Eqs. (15) and (19) into Eq. (18) and 
separate the terms proportional to R from those proportion- 
al to Cso that 

DV&YC= u’C, + (u’YC, - =C,) - Y u’YC,, 
(21) 

and for the remainder 
-r-- R,+UR,+(u’R- uR), 

- -5 u’R, - DV=R = s’ - -5S. (22) 
In Eq. (21), V$=Jz + 8: is the transverse part of the La- 
placian. Equations ( 19), (21) , and (22) are exact conse- 
quences of ( 16). Simplification is possible because of the 
separation in time scales noted above. We also have a small 
parameter: The wave number k of the master mode is very 
close to zero, or equivalently, a, is small. 

Equation (2 1) determines the functions aj (v,z) . Col- 
lecting equal powers of d :, one has for the first two terms 

--i- DV$a, = u’ and DV$a, = - u a, + da,, (23) 
and thereafter 

n-2 

DVh,, = =- u(cc,F + u’a, _ , + C aiD,, -I’ (24) 19 1 

The boundary conditions in Eqs. (23) and (24) are 
V,a]*n = 0 (i.e., no-flux) and we also note that Zj = 0. Be- 
cause of the self-adjoint form of the left-hand side of Eqs. 
(23)) one can obtain D, without explicitly solving for a, : 

-7 D, s - G- - da;. (25) 
A similar trick works at higher orders--given a,,, one can 
obtain D,, + 2 as a bonus. 

The evolution equation for the remainder, Eq. (22)) can 
be solved in the same way. One writes 

R = R, t ER, -l- 01.) where 13, and a,--. (26) 

Collecting powers of d we have for the first two orders x 
DV2,R, = -s’ 

and 

DV;R, = (a, + Udx)R, 

+d,.(u’R, - u’R,) +a, d,S’. (27) 
In the final evolution equation, Eq. ( 19), we require only 
-i- u R and again we can take advantage of the self-adjoint 
form to avoid explicit solution of Eq. (27). For instance, it is 
easy to show that 

----i 7-- ---i u’Ro= - a,s and uR,u, = - a,s, (28) 
and introducing DV$& =a,, one finds that 

.--7 -7 u/R, = - (d, + Ud, ) /?, s + ai d,S - d, &,s’. 
(29) 

Thus, to second-order, the evolution equation is 
I C, + c/c, = D,&,, + S+ 4 a,s 

+ a:( a,s’ - T@) + (a, + ua,)a, ppf. 
(30) 

Apart from exponentially decaying transients, this equation 
gives the exact evolution of the second moment and second 
cumuiant from an arbitrary initial condition. In the next 
subsection, we compare its predictions. with some well- 
known exact results for the classic Taylor problem. 

D. Poiseuille flow in a circular tube 

For the classical Taylor problem, which is dispersion by 
Poiseuille flow in a circular pipe, one obtains from Eq. (23) 

a, = - (&~/24)(2-663~+3?~), 

a2 = (P’a’lll 520) (31) 

x(31- 180i~+300?-4-20036+45~s), 
where P= r/a and PG Us/D is the P&let number. 

In Sec. II A, we noted that a point release at a distance r, 
from the axis leads to the initial displacement of the center of 
mass given by the third term in Eq. ( 11) . From Eq. ( 3 1 ), we 
recognize that Eq. ( 11) is X, = Ut - a, (r, ) + E.S.T. and 
withs-S(x)S(y-y,)S(z-z,)S(t) thissameresultisob- 
tained from Eq. (30). 

If s’ = 0, then the calculation of R is simpler (e.g., 
R, = 0, RI = fil a, S, etc.) and for the classic Taylor prob- 
lem it is easy to improve Eq. (30) by one extra term in the 
wave-number expansion. One finds 

=s-Esx, .+17p3ajs.;xx ’ 
720 322 560 

+ (32) 

In the earlier discussion surrounding Eq. ( 13), the ini- 
tial release was given by s = S = S( t)S(x). Adopting this 
forcing function in Eq. (32), one finds that the center of 
mass is X, = Ut and this agrees with the earlier calculation 
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using the moment method. For the variance, Eq. (32) gives the layer and, as in the Introduction, this results in a buoyan- 

* 2 = s”_ .,, (x - W=C(x,t)dX P =a2 
cy profile in which 

.J‘“I m C(x,t)dx 
=2Q,fft--, 

360 
(33) b(x,z,t) = B(x,t) + b ‘(x,z,t) with b ‘gB, (36) 

which also agrees with the exact result in Eq. (13), apart where B(x,t) is the vertically averaged buoyancy defined in 

from the exponentially small terms. Finally, for the third analogy with Eq. (3). The vertical momentum balance is 

cumulant, we recover Chatwin’sr5 result hydrostatic so that 

s 

.w 17P2a3 pkz,t> z5pjJ W) SpoBW)z, (37) 
(34) 

-m 
(x- Ut)3Cdx=zt----. 

53 760 where the constant of integration pB is the bottom (z = 0) 

Chatwin” found not only the simple expressions for the 
variance and third moment given in Eqs. (33 ) and (34), but 
he also calculated the exponentially small corrections. Using 
a comparison with this exact solution, he concluded that the 
exponentially small terms are negligible when Dt /a ’ > 0.2. 
To get information about the higher moments and cumu- 
lants, such as the kurtosis, one must calculate more terms in 
the wave-number expansion such as D4 C,,,, . 

Finally, the expansion above can be extended to capture 
the exponentially small terms by including additional master 
variables. A possibility is to use the amplitudes of two or 
more of the most slowly decaying modes as master variables. 
The result is coupled advection-diffusion equations for these 
amplitudes. One approach to this calculation is given by 
Smith.=* An alternative is discussed below in Sec. IV, where 
the exponential transients are captured by a single equation 
that is, however, nonlocal in tirne.16*== 

Section III is an intermezzo in which we review density- 
driven shear dispersion. The formulation is informal and 
heuristic although a more systematic approach along the 
same lines as the present section is possible. 

Ill. SHEAR DISPERSION OF DENSITY 
In this section, we discuss the shear dispersion of a dy- 

namically active tracer: density or buoyancy. We represent 
the densityp of the fluid as 

p =po(l -g-lb,, (3% 

where g is the acceleration of gravity and b is the “buoyan- 
cy.” The shear flow that disperses buoyancy is driven by the 
buoyancy gradients themselves and the result is a nonlinear 
diffusion equation. This process was first discussed by Erdo- 
gan and Chatwin” in 1967. Since then, it has been redisco- 
vered in a variety of different configurations and often not 
recognized as an example of shear dispersion. The goal of 
this section is to heuristically derive the “Erdogan- 
Chatwin” equation and discuss some of its applications to 
estuarine dynamics and convection in cavities. 

A. Shear dispersion of buoyancy in a shallow horizontal 
layer of fluid 

We begin with an elementary pedagogical problem: a 
shallow layer of fluid with nonuniform density is in a two 
dimensional container (depth d and length I) with insulated 
walls. The fluid is diffusive and viscous so that, ultimately, 
all density variations within the container disappear. When 
Igd, this process takes place on two disparate time scales. 

The fast process is vertical diffusion over the depth d of 

pressure. 
The slow process is lateral shear dispersion of buoyancy. 

Following arguments originated by Erdogan and Chatwin” 
we show below that the slow process of lateral mixing is 
described by a nonlinear diffusion equation 

4 =KB,, +dBil),, (38) 
where K is the molecular diffusivity of the buoyant contami- 
nant. The constant a is 

(39) 

The dependence of a on the eighth power of the layer depth 
is notable. Some properties of Eq. (38) in the strongly non- 
linear limit (K = 0) are discussed by SmithZ3 and this refer- 
ence also reviews earlier work on the mathematical proper- 
ties of Eq. (38). 

For the moment, we suppose that there are end walls on 
the cavity so that the volume flux past any section is zero 

(40) 

If the density varies over a length I+d, then the lateral pres- 
sure gradients a, p = a,‘p, + pOz a, B are balanced by ver- 
tical stresses, i.e.,p,/p, zvuvu,. The scaling arguments justi- 
fying this balance are the same as those in lubrication theory. 
Thus, with no slip conditions at z = 0 and d, we find the 
horizontal velocity 

vu’ = (B,/12)(2z’- 3 dz2 + d=z), (41) 

where Eq. (40) was used to determine a, pB . The vertically 
averaged buoyancy equation is 

-i-r B, + u b =-K& (42) 
and to calculate the second term we first obtain b ’ from the 
analog of Eq. (7). The result is 

b’=(B~/1440v~)(12,“-30dz~+20d=z~-d~) 

(43) 
-7-i and evaluating u b we obtain Eqs. (38) and (39). 

It is easy to relax the restriction in Eq. (40) and allow 
for a net flow, driven, for instance, by a pressure gradient. 
The resulting evolution equation is 

B, + UB., = K,~B, + a(B; I,, (44) 

where ~~~ given by a relation analogous to Eq. (4). [In Eq. 
(44), it is assumed that the boundary conditions at the top 
and bottom of the layer are both no-slip. If there is a stress- 
free upper boundary and a no-slip lower boundary, then the 
velocity profile is no longer symmetric about the middle of 
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the layer and, as a result, there is a quadratic nonlinear term 
(B z )x on the right-hand side of Eq. (44). ] 

Our derivation has been informal, although using the 
methods of Sec. II, a more rigorous development is possible. 
The most important point to note is that the inequality in Eq. 
(36) demands that the fastest time scale in Eq. (38) be much 
longer than the transverse mixing time d “/K. In the interest- 
ing nonlinear case, we can estimate the time scale from Eq. 
(38) as Z4/(AB)‘a, where AB is the scale of horizontal 
buoyancy variations in the layer. Then, from Eq. ( 39)) if this 
is-to be much greater than d 2/~, one must have 

h?14/d “(AB)‘) 1. (45) 

In the preceding discussion, we considered an initial val- 
ue problem in which the buoyancy ultimately becomes uni- 
form. However, the approximations used above are also cen- 
tral to a number of convection problems in which motion is 
sustained by heating and cooling the boundary of a cavity. 
For instance, Cormack et al., in Refs. 24-26, studied the 
convection driven in a shallow layer of fluid by heating one 
side wall and cooling the other, while the top and bottom are 
insulated. In the central portion of the cavity, far away from 
the diabatic side walls, the solution is given by Eqs. (39) and 
(41) with a uniform buoyancy gradient B,. Indeed, because 
Bxx = 0, the velocity is unidirectional and this is an exact 
solution of the full equations of motion. Thus the steady 
version of Eq. (38) describes the transfer of heat from one 
end wall to the other, and we see that, in the strongly nonlin- 
ear limit, the flux is proportional to the cube of the gradient. 

Another class of problems in which shear dispersion of 
buoyancy is important is fixed flux convection.27-29 If the 
heat flux is prescribed at the top and bottom of the layer, 
then the most unstable mode has infinite horizontal wave- 
length. (This is in contrast to the classic Rayleigh-BCnard 
problem in which the temperature is prescribed and the most 
unstable mode has a horizontal wavelength comparable to 
the layer thickness d.) Once again, the extreme aspect ratio 
of the flow hints that shear dispersion is likely to be impor- 
tant and indeed the finite amplitude evolution -equations in 
Refs. 27-29 all contain the nonlinear diffusion term (B 1 )x, 
which is symptomatic of buoyancy-driven shear dispersion. 

B. Dynamics of well-mixed estuaries 
Models such as Eq. (44) have been used to describe the 

distribution of salinity in a well-mixed estuary (for example 
see Smith3’ and Godfrey31 ). The classic field study of such a 
system is Pritchard’s32-34 analysis of the James River Es- 
tuary. Two of his illustrations are reproduced in Figs. 3 and 
4. Figure 3 contrasts the surface salinity in the estuary at two 
phases in the tidal cycle. It is this strong tidal flow that gener- 
ates the small-scale turbulence that is actually responsible 
for mixing the buoyancy vertically and, in the calculation 
above, this is modeled by the eddy mixing coefficients K and 
V. Figure 4 shows that the vertical buoyancy variations are 
much weaker than the variations along the axis of the es- 
tuary [as asserted in Eq. (36) ] so that the contours of sur- 
face salinity in Fig. 3 are actually good approximations to the 
vertically averaged salinity. Because of the horizontal varia- 
tions in salinity, the fractional change in density is of order 

I 

FIG. 3. This figure, reproduced from Ref. 32, shows surface salinity in the 
James River Estuary. The variation in salinity along the axis estuary pro- 
duces fractional changes in density of the order of 1%. The units are salinity 
in parts per thousand by mass. 

1.5%. It is the pressure gradient associated with this hori- 
zontal nonuniformity in buoyancy that drives a recirculating 
estuarine flow [as in Eq. (4 1) ] in which fresh surface water 
moves seaward and deep salty water landward. As a result 
this recirculating flow transfers salt away from the ocean. 

Of course the net flux of salt up the James River must be 
zero. This balance is possible because salinity flux associated 
with the vertically averaged flow U cancels the salinity flux 
of the recirculating flow described in the previous para- 
graph. Specifically, from Eq. (44), we have in the steady 
state 

UB-K~~B~ ---cYB: =O. (46) 
When the last term on the left-hand side is negligible, one has 
the well-known no&x solution of the linear diffusion equa- 
tion. For instance, if the mouth of the river is x = 0 and the 
ocean occupies x > 0, and has fixed buoyancy B, < 0, then in 
the river 

B = BoeK’x’x’r if x ~0. (47) 

However, Pritchard’s observations show that the rel- 
evant case for the James River is the complementary limit in 
which the first and third terms in Eq. (44) balance. (In the 

MEAN SALINITY %. 
4 5 6 13 14 15 16 17 I8 

0 A- 

5 

FIG. 4. Vertical sections of salinity in the James River Estuary show that 
the salinity is much more thoroughly mixed in the vertical than in the hori- 
zontal. The units are the same as in Fig. 3. The important point is that the 
vertical variation in salinity is roughly 2 parts per thousand while, in the 
axial direction, the salinity variations are of order 18 parts per thousand. 
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James River, u’ is of order 5 cm set - I, while U is two orders 
of magnitude smaller. ) Then, following Godfrey,3 the solu- 
tion is 

B=B,[l+ (x/~>]“” if -{<x<O, 
B=O ifx< -6, 

(48) 
; 

where 6~ (3) IBO 12’3(&U) 1’3. This is a grossly simplified 
model of the salinity distribution at the mouth of a well- 
mixed estuary. Complications, such as variations in depth, 
tidal turbulence parametrizations, and Coriolis force, have 
all been ignored in favor of presenting a simplified model 
that emphasizes the importance of buoyancy-driven shear 
dispersion. Perhaps the most important process that has 
been ignored is the transverse circulation driven by horizon- 
tal density variations across the channel (i.e., in they direc- 
tion) . Figure 3 shows these are of order 2 parts per thousand, 
which is the same order as the vertical variations in Fig. 4. 
Thus there is circulation driven by both the longitudinal and 
transverse density variations. Smith3’ has formulated a 
model of this three-dimensional flow, which is relevant to 
estuaries. 

IV. PREASYMPTOTIC DISPERSION 
Analysis of tracer release experiments in rivers has re- 

lied heavily on Eq. (2) and simple extensions of it. Invaria- 
bly, the comparison between theory and experiment has 
been unsatisfactory. The usual explanation is that the theory 
does not apply because insufficient time has elapsed. The 
observations summarized below in Sec. IV A seem to dis- 
agree so strongly with Eq. (2)) and even with the improve- 
ments discussed in Sec. II, that alternative models are sug- 
gested. In this section, we review both the experiments and 
some of the theoretical models that describe “preasymptotic 
dispersion.” We use this term to denote a regime in which 
the exponentially decaying transients (the terms E.S.T. in 
Sec. II) are not small. 

Besides dispersion in rivers, there are many other con- 
texts in which preasymptotic effects are important. Engi- 
neers deal with flow and mixing in very complicated geome- 
tries such as packed beds. Physiologists are interested in 
transport through capillary networks. In these systems, a 
macroscopic description, analogous to Eq. (2), is obtained 
by averaging over the microscale geometry. But once again 
this diffusive description only applies at very long times. We 
restrict attention to dispersion in unidirectional velocity 
fields and do not attempt a detailed review of these allied 
fields. We refer the reader to an excellent collection of recent 
reviews in the volume edited by Guyon et aI.35 and to the 
articles by Koch and Brady.22,3(C38 

A. Tracer release experiments in natural streams 

Nor-din and Sabo13’ compiled the results of 51 tracer 
release experiments in North American rivers. In some of 
these experiments, the variance defined in Eq. (12) grew 
nondiffusively 

a2-f20 (49) 
with fljl-0.7. Power laws, such as Eq. (49), are often red 

ferred to as anomalous diffusion. The case fi > 4 is superdcjk 
sive and /!I < .& is subd@isive. The observation of anomalous 
diffusion disqualifies Eq. (2) [or the extensions of it, such as 
Eq. (32) ] as an adequate model. One-dimensional transport 
equations with constant coefficients predict that variance 
grows linearly as in Eq. ( 13 ) . 

Other experiments in the suite analyzed by Nordin and 
Sabo13’ did exhibit a linear increase of variance with time, 
i.e.,fi = 4. One might be tempted to conclude that, at least in 
some experiments, there is support for the diffusion model in 
Eq. (2). This view is frustrated by a later contribution in 
which Nordin and Troutman4’ show that, in some experi- 
ments in which the variance grows diffusively, the temporal 
skewness coefficient does not agree with the predictions of 
Eq. (2). We discuss Nordin and Troutman4’ in more detail 
below. 

Similar results, both anomalous diffusion and persistent 
skewness, were reported by Day” in an analysis of five trac- 
er release experiments in small mountain streams in New 
Zealand. He states unequivocally that Eq. (2) is not an ade- 
quate model. Valentine and Wood4’ argued that in a natural 
stream there is often a stationary eddy structure next to the 
bed that traps tracer and so protracts the preasymptotic re- 
gime. They suggested that many rivers are simply not long 
enough for Taylor’s theory to work. Day and Wood,43 in a 
further analysis of the data from New Zealand, reached the 
intriguing conclusion that the concentration profile is self- 
similar, but not Gaussian, as the tracer moves downstream. 

Both anomalous ditIusion and persistent skewness have 
often been attributed to tracer retention in quasistagnant re- 
gions. In a river there are lagoons, recirculating eddies, 
junked cars, beaver dams, and fallen trees and all are respon- 
sible for trapping tracer and protracting the approach to the 
Taylor limit. “Dead-zone” models attempt to account for 
the cumulative effects of these obstacles by partitioning the 
total concentration of tracer C(x,t) into two parts: 

C=f+g, (50) 
wherefis free, actively transporting tracer and g is trapped. 
Thus tracer conservation is 

j; -kg, -1 UC =D?x, (51) 
so that only gradients infare responsible for transport. The 
second relation betweenfand g is usually taken to be capaci- 
tance coupling 

g, =y(d-gh (5.2) 
or, if all of the tracer is released in the untrapped region at 
t = 0, then 

g(x,t) = ep J ff(x,r)&‘T - ‘j dc 
0 

(53) 

Sundaresan et a1.44 remark that this is an “old and honorable 
problem whose solution has been rediscovered many times 
under various guises.” A complete review would lead us into 
chemical engineering, soil science, physiology, etc. In the 
chemical engineering literature,36’22 the term “hold-up dis- 
persion” refers to an analogous class of phenomena in which 
tracer is trapped in recirculating pockets or in permeable 
particles, etc. In the context of river dispersion, Nordin and 
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Troutman40 and Valentine and Wood42 are relevant refer- 
ences. In the following discussion, we provide a slightly 
more general development by replacing Eq. (53) with 

g(w) = J 
I 

K(t - Q(x,T)dz 
0 

(54) 

For a discussion of the physical basis of this class of models, 
see Young.” Here, we just remark that the kernel K(t) is 
essentially the distribution of waiting times in the dead 
zones. Theexponential kernel in Eq. (53) corresponds to the 
very special case of tracer arrest with a constant probability 
per time of escape. In other examples, such as those in Ref. 
45, the kernel has a much slower power law decay as t-t CI) . 

Nordin and Troutman concluded that the dead-zone 
model was incapable of explaining the field observations. 
Their argument is powerful and will be recapitulated and 
generalized here. The field observations, such as those in 
Fig. 2, are measurements of concentration as a function of 
time at several fixed points (usually four to six) downstream 
from the tracer release. From these observations, Nordin 
and Troutman calculated the first three temporal moments 
of the data: 

(t”) E 
S;C(x,t>t” dt 

So” C&t) dt 
, for n = 1,2, and 3, (55) 

at the observation points. These same temporal moments 
can be computed analytically from the model in Eqs. (52) 
and (53). One then attempts to determine the model param- 
eters U;D, ,LL, and E by matching these two results. The diffi- 
culty is that the model predicts that the normalized temporal 
skewness, 

Sk (xl =s,/u get 
where 

a;me3 (Cl--- 0))“) and s,,=((t- (t>)‘), (56) 
decays like x - “2, where x is the distance downstream from 
the release. The data show that S’, (x) is constant, i.e., inde- 
pendent of x. 

This observation is a strong criticism of the model in 
Eqs. (52) and (53) and one response is that, perhaps, the 
generalization in Eq. (54) can explain the persistent skew- 
ness. In fact, this more elaborate model is easily solved with 
Laplace transforms and one finds as x-+ CO 

(t)-(1 +k,)(x/U), 

o- f,“, --2[k, + a(1 -I- k,P] (x/U), (57) 

s,-3[4~“(1+k,)3+4a(l+k,)k, +k,]wU), 
where 

asD/U’ and k, s J c-3 
t “K(t)dt. (58) 

0 

Thus, provided the kernel decays quickly enough to ensure 
that li, < co, this whole class of models is disqualified by the 
observation of persistent skewness. 

Another failure of the dead-zone model is that it does 
not predict superdiffusive spreading of the tracer. Young45 
showed that an algebraically decaying kernel in Eq. (54) 
results in subdiffusive dispersion. The observations indicate 

that the superdiffusive case [e.g., B = 0.7 in Eq. (49) ] is the 
relevant one. 

The dead-zone model above has been introduced in an 
ad hoc fashion without any attempt to relate it directly to 
detailed fluid mechanics. For more careful derivations, see 
Purnama46*47 and Smith.48 But the essential point is that the 
dead-zone model is not able to account for either the persis- 
tent temporal skewness or the superdiffusive dispersion evi- 
dent in some field observations. 

With this motivation we turn to a review of some theo- 
retical models of superdiffusive dispersion in unidirectional 
velocity fields. We emphasize the importance of the restric- 
tion to unidirectional fields. The models below are distin- 
guished from other examples of anomalous diffusion in fluid 
mechanics (such as those of Koch and Brady37*38 ) by the 
fact that the tracer samples the velocity field through molec- 
ular diffusion, rather than through random advection by a 
spatially disordered velocity field. 

Finally, the phenomenon of anomalous diffusion is not 
restricted to fluid mechanics and the literature is enormous. 
Good reviews from the perspective of statistical physics and 
chemistry are Montroll and Shlesinger,49 Montroll and 
West.” and Haus and Kehr.s’ 

8. Preasymptotic shear dispersion in random velocity 
fields 

In this subsection, we discuss a class of models that 
show how shear dispersion in a random velocity field leads to 
superdiffusive dispersion and persistently non-Gaussian 
concentration densities. Following de Marsily and Math- 
eron,52 who were concerned with modeling tracer dispersion 
in aquifers, we consider solutions of Eq. ( 1) and suppose 
that u (z) is a realization from an ensemble of random veloc- 
ity fields. Specifically, the domain is periodic in z with wave- 
length A and 

U(Z) = 5 ukeikz, 
j= po1 

where 
k=(2r/A)j and j= a-. - l,O,l;.* . (59) 

Here, uk is a random variable satisfying the reality condition 
uh = UT k, where * denotes the complex conjugate. For sim- 
plicity, we assume that u. = 0 so that there is no net transla- 
tion in any realization. Using ( ) to denote the ensemble 
average, the mean-square velocity is 

= &l?,, = -& (uku;)= J Sckldk, (60) -m 
where dks2r/h and the velocity. spectrum is 

S(k)=(A/2a)(u,u:). (61) 
We now follow the heuristic argument from the Intro- 

duction and obtain an evolution equation for the zero wave- 
number component of the concentration field. In any partic- 
ular realization, we represent the solution of Eq. ( 1) as 

c(x,z,t) = 2 ck (x,t)eikz = co (i&t) + c’(x,z,t). (62) 
k 
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We suppose that the initial condition in every realization is 
c(x,z,O) = 6(x) so that the tracer is thoroughly mixed in the 
transverse direction. The analog of Eq. (6) is 

-i d,c, + ax UC = Da&, (63) 
where now the overbar denotes integration over a period: 
J’z A - ‘If dz. To obtain c’ in terms of c, , we solve the analog 
ofEq. (7): 

d,c’- Dd:c’= -u&c,, (64) 
with the initial condition c’(x,z,O) = 0. To capture the ex- 
ponentially decaying transients, we have retained the time 
derivative &c’ in Eq. (64). Thus we do not require that the 
evolution of the concentration is slow relative to the trans- 
verse diffusion time AZ/D. However, we do consistently ne- 
glect the terms d, (tic’ - z) because these are of order as 
a “, c,, rather than a, cc. The solution of Eq. (67) is straight- 
forward and one finds 

z= -p,U:J) - Dk’(t--r’)a,c,(x,t’)dt’. (65) 

The final step is to ensemble average Eq. (65). This 
gives 

-7 (UC) = -fK(t-t’ja,C(x,t’)dt’, (66) 
0 

where C(x,tj E (co (x,t)) and 
m 

K(r) = 
T 

(u&)f?-Dk”r~ 
s 

S(k)e - Dk2Tdk. 167) 
-m 

To obtain Eq. (66)) we have consistently neglected a correla- 
tion (u,u&~), whereZ;, =co - C. Once again this neglected 
term is higher order in a,. 

The final evolution equation, 

I f d, C=DJ:C+ K(t - t’)a;C(x,t’)dt’, (68) 
0 

is nonlocal in time.‘6,22*45,53 On very long times, of order 
h”iD, it simplifies to a diffusion equation with 

s 

c.3 
m De= = D + K(r)dr=D+D-’ 

s 
k -‘S(k>dk. 

0 -m 
(69) 

However, before this limit is reached there may be a pro- 
longed period of anomalous diffusion. To illustrate this, we 
consider a model spectrum which is nonzero only when 
0 < k, < 1 k I< k, . In this band of wave numbers, we suppose 
that 

S(k) =S,k -Y, (70) 
where 

&,, = [2S,/(l -a)](k;-n-k;-n), 

and - 1~~1. 
On intermediate times, (k:D)-‘<t<(k{D)-‘, the 

kernel in Eq. (67) is 

K(r) zA/lY(v)~ ’ - “, (71) 
where we have introduced 

v’_(a + 1)/2 
and 

Because - l<a<l, the exponent v in Eq. (71) is in the 
interval O<vg 1. 

It is now easy to calculate the evolution of the spatial 
moments from Eqs. (68 j and (7 1) . Assuming the normali- 
zation .fC dx = 1, one finds for the second moment 

s xSCdx=2Dt+ [2A/I?(v+2jlt’+‘. (73) 

The special case a = 0 or v = f corresponds to a white spec- 
trum and recovers the anomalous diffusion found previously 
by de Marsily and Matheron.” 

Equation (68) with the kernel in Eq. (71) is a simple 
model of superdiffusive transport. Actually, there is a slight- 
ly more general model equation that contains these previous 
results as special cases and also subsumes various examples 
of subdiffusive transport. This model is 

a,g = a$q g = *.P-“f; g(x,Oj = S(x), (74) 
where O<,u, Y< 1, and the integral of fractional order is an 
operator defined by 

W. 

s t ,py 3 f’b,rW 0 r(g)(t-r)‘-j* (75) 

The first three nonzero spatial moments of the system in 
(74) are 

gdx = 1, s x’g dx = 
2t z/3 

r(ltw) ’ 
s 24t 4* 

x”g dx = ~ 
r(l+4Dj ’ 

(76) 

where 
@(l fv-#Uj/2. (77) 

Thus, apart from the subdominant term 2Dt in Eq. (73 j, our 
previous superdiffusive results are recovered when y = 0. 
Subdiffusive dispersion is obtained if y = 0 and, in this case, 
Eq. (74) reduces to transport equation studied by Young et 
a1.54 and Young.45 In particular, the case Y = 0 and p = 4 
describes the initial dispersion of passive scalar in an array of 
steady convection cells. 

The kurtosis of the concentration is 

KU+x2+$;)2 = 6;;: -++;;2. 
X 

(78) 

The Gaussian value Ku = 3 is recovered when /+’ = 1. If 
fi = 1, we find that Ku = 1, which is consistent with the 
observation that Eq. (74) reduces to the wave equation 
when ,LL = 0 and Y = 1. Finally, when fi = 0, we have 
Ku = 6. This is consistent with the symmetric exponential 
density, which is the solution of Eq. (74) in the limit Y = 0 
andp+ 1. 

The expression in Eq. (78) for Ku is an exact conse- 
quence of Eq. (74). But the derivation of Eq. (74) is usually 
based on a wave-number expansion. Just as in Sec. II, there 
are additional terms, nonlocal in time and proportional to 
a z, that appear on the right-hand side of Eq. (68) or (74) if 
the expansion is continued to higher order. The fourth spa- 
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tial moment cannot be correctly calculated without inclu- diffusion time a2/D. Throughout this subsection we ensure 
sion of these higher-order terms and explicit calculation of this condition by taking D = 0.) With this model, Saffman 
these requires consideration of the cubic and quartic statisti- identified two mechanisms that are responsible for a pro- 
cal properties of the velocity field. Thus Eq. (78) with fi = a tracted nondiffusive regime. First, some capillaries are ori- 
does not give the correct kurtosis for the problem posed by ented almost at right angles to the pressure gradient and, 
de Marsily and Matheron.*’ This quantity has been been consequently, are almost stagnant. Second, the no-slip con- 
calculated numerically by Bouchaud et al” and they found dition at the capillary walls ensures that some tracer is re- 
Kuz3.3 + 0.03. tained in a particular capillary for a very long time. 

The nonlocal transport equation in Eq. (68) is a good 
illustration of an important point: Complete transverse mix- 
ing does not ensure the validity of the Taylor diffusion equa- 
tion. The initial condition c’(x,z,O) = S(X) ensures that the 
tracer is uniformly mixed in the transverse direction, yet 
there is a prolonged regime of anomalous diffusion that lasts 
until times of order (k : D) - I. On this very long time scale, 
the algebraic decay of the kernel in Eq. (7 1) changes to an 
exponential decay, and one recovers Taylor’s result in Eq. 
(69). This slow adjustment is required so the most slowly 
decaying modes in Eq. (65) come into quasistatic equilibri- 
um and this condition is not the same as thorough transverse 
mixing. From a Lagrangian point of view, this is also the 
time required for every fluid element to diffuse across the 
random velocity field and sample the complete range of 
transverse variations in speed. 

We introduce the one-dimensional simplification of 
Saffman’s model shown in Fig. 5. Tracer particles are ad- 
vetted down a channel by a Couette flow. The longitudinal 
coordinate is x and the transverse coordinate is y. The veloc- 
ity is 

The Lagrangian sampling condition leads to a simple 
heuristic argument, which explains the connection between 
the spectral slope a in Eq. (70)) and the anomalous diffusion 
exponentl+Y=(a+3)/2inEq.(73).Inatimet,aparti- 
cle will have diffused through a transverse distance that 
scales as (Dt) *‘2 and will have sampled velocity variations 
with wavelengths less than this length scale. Thus, in the 
integral that defines Taylor’s effective diffusivity, Eq. (69 ), 
there is a low wave-number cutoff that decreases as 
iDt)- . ‘I2 With the spectral shape in Eq. (70), this gives 
D. - t (a + ’ )“. Finally, ir ’ 
d&ion law in Eq (73). 

-D,, leads to the anomalous 

u(y) = 2y where O<y<l. (79) 

The tracer particles remain on the same streamline until they 
hit a “scrambler.” The scramblers are located at 
x = 1,2,3 ,..., and are thought of as perfect black box mixers 
whose input is a concentration of particles that depends on y 
and whose output is uniform concentration. Inside the black 
box, we imagine some device that rapidly and efficiently ho- 
mogenizes the tracer passing through the scrambler so that 
the exit concentration is independent of y. Thus the 
scramblers are analogous to the capillary junctions in Saff- 
man’s more complicated model. The scrambler model iso- 
lates the effect of the no-slip boundary condition by eliminat- 
ing the geometric complications of stagnant side branches. 

The scrambler model is simulated numerically by start- 
ing an ensemble of particles at x = 0. Each particle has a 
different random y coordinate, picked uniformly between 0 
and 1. Thus a particle whose initial ordinate is y, hits the first 
scrambler at x = 1 when f = 1/2y,. It then instantly 
emerges at a new random value of y, say y, . The correct 
specification of the probability density function (pdf) of the 
random variable y, is important. One must realize that, al- 
though the concentration of particles leaving the scrambler is 
independent of y, the flux is not. Because the flux is the 
number of particles per time emerging at a particular value 
of y, it is the flux that determines the relative likelihood of 
different exit locations. C. Logarithmic effects due to the no-slip condition 

We turn now to an alternative model of anomalous dif- 
fusion in a unidirectional velocity field. This model identifies 
a subtle mechanism for preasymptotic dispersion, which re- 
lies on the no-slip condition at solid surfaces. This process 
results in “mildly anomalous” diffusion in which the vari- 
ance of tracer with no molecular diffusivity grows as t In t. 
This serves as a warning that anomalous diffusion is not al- 
ways characterized by power laws such as Eq. (49)) and, in 
experimental or field data, the logarithm is insidious. 

The logarithmic anomalous diffusion produced by the 
no-slip condition is illustrated with a kinematic construction 
that we call the “scrambler model.” It is a pedagogical sim- 
plification of Saffman’P model of a consolidated porous 
medium. Saffman considered a random network of capillar- 
ies through which viscous fiuid is pumped by a large-scale 
pressure gradient. The capillaries meet at nodes and it is 
assumed that perfect mixing takes place at these junctions 
where different tubes meet. (Shear dispersion in an individ- 
ual capillary is unimportant if the average transit time 
through a capillary I/U is much less than the cross-sectional 

Now, the tlux of particles leaving the first scrambler is 
the product of the uniform exit concentration and the veloc- 

------- 
- 

I :;- .‘+, /: ::.:.; .~.,,..,, :’ ,..- “-..: . . . Y . ...‘.. -I . . . . . _ . . . . 7’-T-“‘- “‘-...,‘“. ,, ,( 
, _“.._^_, - 

e L...A.i.~ . . . ...1. ;;k”;*> ,....., ::: .<.*.,....,*,,....... a..n.-*iii .,,,,., ‘..,‘“.“” 11 .* .,,,,.’ 
- 

I 2 3 4 

FIG. 5. An illustration of the scrambler model. Particles move downstream 
in the Couette flow II = 2~ and change streamlines at thescramblers located 
at x = 1,2,... The prescription for the pdf of exit ordinates in Eq. (60) 
ensures that particles spend equal times in equal areas, such as the two 
shaded regions above. However, the occupancy statistics are different. Par- 
ticles pass through the upper region frequently but do not stay long. Parti- 
cles enter the lower domain infrequently but stay for a long time before 
retiching the next scrambler. 
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ity at this exit is u = 2~. Thus particles leave more frequently 
where the velocity is larger. In fact, the pdf of exit ordinates, 
denoted by 2 (y), is just proportional to u(y). Thus, assum- 
ing for the moment a general velocity profile that is mono- 
tonic withy and positive [i.e., u(y) )O] , the pdf of exit ordin- 
ates after a scrambler is 

2(Y) =ucY)(l ucYMY)-‘. (80) 

With u(y) = 2y, the normalization constant in the denomi- 
nator of Eq. (63) is equal to one and the pdf of exit ordinates 
is just 2y. 

The particle eventually hits the next scrambler at x = 2 
and the ordinate y is reset again by random selection from 
the density in Eq. (80). Thus each particle in the ensemble 
moves down the channel changing its y coordinate only 
when it strikes a scrambler. After striking a scrambler, it is 
more likely to emerge where the velocity is larger. Of course, 
if a particle does happen to emerge near the lower boundary, 
then it takes a very long time to reach the next scrambler. In 
the meantime, the center of mass of the ensemble moves 
downstream with the sectionaily averaged velocity U = 1. 
Thus particles near the no-slip boundary move’with a speed 
u’ru(y) - uz - 1 relative to the center of mass, and do so 
for long periods of time. 

Figure 6 shows histograms of particle positions obtained 
from a numerical simulation of the scrambler model with 
N = 20 000 particles at t = 10 000. The particles are distrib- 
uted uniformly in the transverse direction and usually this 
would be taken as prima facie evidence that the diffusive 
Taylor limit has been reached. In the longitudinal direction 
x, the peak concentration is at x = Ut = 10 000 as expected. 
However, the distribution is skew and non-Gaussian. In Fig. 
8, we show the variance divided by 2t. If the dispersion were 
diffusive, as in the Taylor limit, this would approach a con- 
stant. Actually, it increases as In t. 

To explain this logarithmic dispersion, we begin with 
Taylor’s7 expression for the rate of change of the variance in 
terms of the Lagrangian velocity autocorrelation function 

320 

FIG. 6. This shows histograms 
of particle positions produced 
by a simulation of the scram- 
bler model at t = 10 000. There 
are N = 20 000 particles in the 
ensemble. The upper panel 
shows that transverse mixing is 
complete. The lower panel 
shows the skew distribution 
that develops as the ensemble 
moves downstream. The mean 
position is x = Ut = 10 000. 

X-+ 

FIG. 7. Initially, the area in a strip 0 <x < 1 and 0 <y < E (the square) is 
uniformly occupied by particles. Because of differential advection at t, only 
the stippled area contains particles that were in the strip initially. Thus the 
fraction of particles that remain in the strip for the entire interval (0,t) is the 
ratio of the area of the stippled triangle to the square, i.e., i/4&. 

‘& (t, )dt, . 

Here, 

(81) 

is the ensemble average of the velocities relative to the center 
of mass. Because of the logarithmic growth of variance in the 
scrambler model, we must have 

‘i (t) -p/t 

ast-rco. 
(83) 

We can calculate p by considering a thin strip 
0 <y < EQ 1 near the boundary. At any time, say t = 0, a 
fraction E of the N particles in the ensemble are in this strip. 
All of these particles have a velocity u’=: - 1 relative to the 
center of mass. At some distant time tin the future, most of 
the particles in the ensemble will have passed through a 
scrambler and “forgotten” their velocities at t = 0. How- 
ever, a certain fraction of the slow moving particles in the 
strip will not yet have encountered the next scrambler: This 
fraction is easy to calculate geometrically as in Fig. 7 and is 
equal to the ratio of the area of unevacuated region, 1/4t, to 
the initial area of the strip E. 

Long time correlations are due to these particles that 
haven’t passed through a scrambler and, as t-+ CO, the only 
nonzero terms in the sum in Eq. (82) come from particles 
that remained in the strip for the whole interval. For these 
particles, u’(O)u’(t) = ( - 1)’ and so the correlation func- 
tion is 

$y (t) z (+v) (-&j (- w=$ (84) 

The first factor on the right-hand side of Eq. (84) is the 
division by the total number of particles in the ensemble. The 
second factor is the number of particles in the strip at t = ‘0. 
The third factor is the fraction of these particles that still 
remain in the strip at t. The product of the second and third 
factors is the number of nonzero terms in the sum in (82). 
The final factor ( - 1 j’ is the value of each of these terms. 

Thus the correlation function decays slowly as in Eq. 
( 83 ) with p = 4. From Eq. (8 I), it follows that a ’ grows as 
it In t. This result is compared with the simulation in Fig. 8 
and with an exact solution in the Appendix. We emphasize 
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that the t In t growth of variance is a consequence of the no- 
slip condition aty = 0. Repeating the simulation with veloc- 
ity fields that slip at both boundaries results in a normal 
diffusion process with Q ’ - t. Also, returning to the no-slip 
case, if the tracer has a very small molecular diffusivity, then 
the t In t regime is transient and is replaced by true diffusion 
at very large times. This happens because molecular diffu- 
sion accelerates the evacuation of the strip in Fig. 8 and re- 
sults in an exponential decrease in % (t) as t+ m. 

The scrambler model shows, once again, that complete 
transverse mixing is not sufficient for the validity of the Tay- 
lor limit and also that anomalous diffusion does not always 
result in power laws such as Eq. (49). The principal point is 
that, without molecular diffusion, the Taylor limit is never 
reached because there are always a significant number of 
particles that are trapped near the walls and so have not 
sampled the entire cross section of the flow. 

The relevance of this scrambler model to dispersion in 
rivers is not at all obvious, but there are some similarities 
between the skew distribution in Fig. 6 and observations 
such as those in Fig. 2. However, the t In t growth of variance 
is not consistent with field observations that show a definite 
power law, such as Eq. (49 ), often with /3 as large as 1 .4’V43 

V. CONCLUSIONS 

In this review, we have emphasized the asymptotic na- 
ture of the Taylor diffusion approximation. It is valid only at 
large times when the rapidly decaying modes, with nontri- 
vial transverse structure, have reached a quasistatic equilib- 
rium and so can be treated as slave variables. An asymptotic 
formulation, based the center manifold theorem,” leads to a 
wave-number expansion in which the errors in the spatial 
moments and cumulants are exponentially small as t-+ CO. 

However, this description fails to explain observations 
of superdiffusive dispersion in rivers. We conclude that, in 
tracer release experiments in rivers, the exponential tran- 
sients continue to beimportant over the observational time 
scales. Indeed, Smith21*48 has given a multimode formula- 
tion of tracer transport in unidirectional shear flows and he 

time 

FIG. 8. This figure shows a comparison of three simulations using different 
numbers of particles. The solid curve is the theoretical result from Eq. 
(A25) withp= 1. 

has also presented a time delay formulation” that implicitly 
contains information about these exponentially decaying 
modes. However, these models have not yet led to an expla- 
nation for a prolonged regime of superdiffusive spreading in 
rivers. For this reason, we have found it interesting to exam- 
ine a multimode formulation of the de Marsily and Math- 
eron” model of superdiffusive dispersion in aquifiers. In this 
context, it is a quasicontinuous superposition of slowly de- 
caying exponential transients whose sum is an algebraically 
decaying kernel, such as Eq. (71)) that results in the super- 
diffusive dispersion. It is the algebraic decay of the kernel 
that distinguishes this model from the exponentially decay- 
ing kernel in Ref. 16. It is also clear that a quasicontinuous 
sum of exponentially decaying modes is required to con- 
struct an algebraically decaying kernel, which is why the 
finite truncations in Refs. 21 and 48 do not produce superdif- 
fusive dispersion. Thus an outstanding unsolved problem is 
the construction of a theoretical model that accounts for 
field observations of superdiffusive dispersion in rivers by 
identifying the physical mechanism that produces a contin- 
uum of slowly decaying modes. 
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APPENDIX: EXACT SOLUTION OF THE SCRAMBLER 
MODEL 

Our simulation of the scrambler model uses the Lagran- 
gian approach described in the text. In this appendix, we use 
an Eulerian formulation and obtain some exact results for 
this model. The most important result in this appendix is an 
exact expression for the variance in Eq. (A25). This result 
confirms the heuristic argument leading to Eq. (84). 

In Eulerian terms, the fundamental variable is the con- 
centration of tracer c(x,y,t). In between the scramblers, this 
function evolves according to the advection equation with no 
molecular di$sivity 

d,c + 2yd,c = 0. (Al) 
The scramblers provide boundary conditions for this equa- 
tion at x - 1,2,3,... . Just to the right of the nth scrambler, at 
x = II, 

cR (%ht) = an (t)? (A21 
where a, (t) is the uniform concentration obtained by mix- 
ing the tracer entering the scrambler from the left. Conserva- 
tion of tracer gives 

1 
a,(t) = 

s 
w, (n&WY, (A31 

0 

where, in the integral above, cL (n,y,t) is the concentration 
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just to the left of the nth scrambler. Equations (Al)-(A3) 
specify the scrambler model in Eulerian variables. 

We begin by introducing the inventory of the segment 
betweenx=nandx=n+ l.Thisis 

4, (0 = 
s 

ctx,y,w4, (A4) 

where the integral is over the domain n <x < n + 1 and 
0 <y < 1. Integrating (A 1) over this same region gives 

a,+, = -6 
44, = a, - a2, (A51 

44, = a2 - as9 

and so on. The physical interpretation of this system is 
straightforward, viz., the tracer that leaves one segment ap- 
pears in its neighbor downstream. 

Next, we solve Eq. (A 1) with the boundary condition in 
Eq. (A2). The solution is 

c(x,y,t) = a, [t - (x - n)/2y], if IZ <x<Iz i- 1. 
(A61 

This result, evaluated at x = n + 1, is now used in Eq. (A3) 
to relate a, + , (t) to a, (t) . One finds 

a .+1(t) =J','2-w,t(i-jf-)dy, (A7) 

or by changing the variables to T = 1/2y and using 
a, (tj = 0 if t < 0, we can rewrite this as a convolution 

f 
an+* tt) = 

I 
9 (T)a, (t - ~)a?-, (A81 

0 

where 

pcTj =1/zT3, if T&, 

$P(TjSO, if 7~1. (A9) 

The kernel p (7) can be interpreted as the probability den- 
sity function of the residence time in a section of channel 
between two scramblers. This interpretation makes Eq. 
(A8) intuitively plausible. The number of particles that en- 
ter section n at t - r is a, (t - T) and a fraction 9 (7) dr of 
these eventually leave at a time 7 later. Thus, in Eq. (A8), to 
calculate the total number leaving at t, one sums over the 
different arrival times in the past. 

Because of the convolution in Eq. (As), the Laplace 
transform 

$,(s)= 
s 

m 
f+,(t) exp( -st)dt (A101 

0 

immediately simplifies the system. If all of the tracer is ini- 
tially in the first section, then the initial condition is 

do (0) = 1 and +n (0) =O if n#O (All) 
and the transform of Eq. (A5) is 

s& (sj = 1 - Z, (S), 

$2, (s) = z, (s) - E2 (s), (A12) 

$2 (s) = 52 (s) - 5, tsj, 
and so on. The transform of Eq. (A8) leads to 

Z,(s) = .3qsjn-‘zz, (s). 

Putting Bq. (A13) into Eq. (A12), we have 

s& (s) = 1 - E,) 

s$,(s)=ZJl-.@), 

s&(s) =z~~(l- 3j, 
and so on. 

(Al3) 

(AI4) 

It is now convenient to summarize this solution by form- 
ing spatial moments. The first of these is 

pi=$ (A151 

and the inverse transform of this is just conservation of trac- 
er. The next three spatial moments are 

s 2 i$j =--Jff&, 
i=O 1-y 

s izo i2& = 
Z&(1+@) 

(l-i332 ’ 

s 2 i3$i = 
Z,(1+49 f .@j’> 

i-0 (&9))3 . 

(A16a) 

(A16b) 

(A16c) 

To invert these transforms we use Tauberian theorems that 
relate the inverse transform at large values oft to the behav- 
ior of the transform at small values of s. 

Expanding the right-hand sides when s is small, we be- 
gin by noting that, with 9 (t) in Eq. (A9), 

J?(S) = 2E3 (s/2) (A17aj 

=l----s--(:yln(t)+$+a.*, 

(A17b) 
where E3 is an exponential integra15’ and 

S, =2e3’2 Y-5.03 with y = 0.577 21.. *. (A181 
The function a1 (t) depends on the details of how the 

tracer is distributed initially. in our simulation, 
c( O,x,y) = 6(x) and, calculating the flux of tracer out of the 
first segment at x = 1, one finds 

a, (t) =O, if t<& 
(A19) 

a*(t) = 1/2t2 if t>+ 

The Laplace transform of this is 

5, (s) = E2 (s/2) 

~1 + (s/2) [ln(s/2) - 1 + yl + *** (A201 
ass-+ 0. One expects that, as t-+ CO, the initial distribution of 
the tracer does not affect the behavior of the center of mass 
or the mean square displacement c2. However, this is not 
clear until the end of the asymptotic analysis and, in order to 
treat a wide class of initial conditions, we assume that ass-+ 0 
the function EE, (s) behaves like 

z, (s) z 1 + fp, tsj + s/3+ *p2 0) + ***t (A21) 
where p, and ,u2 are “slowly varying” functions such as 
constants or logarithms. The expansion in (A20) is an ex- 
ample of this with fi = 1. To order the following asymptotic 
expansions, it is convenient to assume that fl> 1. As an ex- 
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ample of initial conditions that violate this inequality, we 
note that, if c(x,y,O) ay -‘asy-*O, then/? = 1 - il. Thus, if 
the initial condition has an infinite, but integrable, concen- 
tration near the no-slip boundary, thenfi may be less than 1. 
This unphysical case is excluded from the discussion below. 

Substituting Eqs. (A17b) and (A21) into Eq: (A16b) 
gives 

(A221 
SO that, as t-t r~), 

i$o iqb (t> z=t + $ In&t) + ( * ~~~~~) ) + . . . . 

(A23)’ 

The first term on the right-hand side of the above is the 
motion of the center of mass with the sectionally averaged 
velocity in the channel. Provided that fi> 1, the remaining 
two terms are subdominant as t-+ CO however, they must be 
retained for a consistent calculation of c~ ‘, 

Next, expanding the right-hand side of Eq. (A16b), and 
inverting the transform, we find that 

i$“iLA4tkt 2+ tln(s,t) -t 

-t (A24) 

Combining Eqs. (A22) and (A23), we now have, as t+ M, 

~Lo”i~oi2~t~t) - (izoi$iCt))?l 
+ t In(s,*) - t f 

2(B- l)t2--qL~ (l/t) 
--* . I?(2 -8) 

+ 

(A251 
The last term in the equation above isolates the possible 
asymptotic influence of the initial conditions. Provided that 
fi>l, this term is subdominant and, in the important case 
p = 1, it vanishes. Thus the initial conditions do not effect 
the asymptotic properties of the dispersion process. The re- 
maining terms on the right-hand side show that the growth 
of variance is anomalous and it is this analytic result that is 
compared with numerical simulation in Fig. 8. The leading 
term Jt ln t corresponds to a velocity autocorrelation func- 
tion dith the asymptotic structure in Eq. (84). 
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