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ABSTRACT

The Reynolds stress induced by anisotropically forcing an unbounded Couette flow, with uniform shear g,

on a b plane, is calculated in conjunction with the eddy diffusivity of a coevolving passive tracer. The flow is

damped by linear drag on a time scale m21. The stochastic forcing is white noise in time and its spatial

anisotropy is controlled by a parameter a that characterizes whether eddies are elongated along the zonal

direction (a, 0), are elongated along themeridional direction (a. 0), or are isotropic (a5 0). TheReynolds

stress varies linearly with a and nonlinearly and nonmonotonically with g, but the Reynolds stress is in-

dependent of b. For positive values of a, the Reynolds stress displays an ‘‘antifrictional’’ effect (energy

is transferred from the eddies to the mean flow); for negative values of a, it displays a frictional effect.

When g/m � 1, these transfers can be identified as negative and positive eddy viscosities, respectively. With

g 5 b 5 0, the meridional tracer eddy diffusivity is y02/(2m), where y0 is the meridional eddy velocity. In

general, nonzero b and g suppress the eddy diffusivity below y02/(2m). When the shear is strong, the sup-

pression due to g varies as g21 while the suppression due to b varies between b21 and b22 depending on

whether the shear is strong or weak, respectively.

1. Introduction

In this work we consider a canonical linear problem:

the stochastically forced, linearized b-plane vorticity

equation with a background mean shear g:

z0t 1 gyz0x1by0 1mz05 j . (1)

The eddy vorticity is related to the eddy streamfunction

by z0 5c0
xx 1c0

yy, and the eddy velocities are (u0, y0)5
(2c0

y,c
0
x). The random forcing j(x, y, t) is spatially ho-

mogenous and white noise in time and is characterized

more precisely in section 2. Drag, with coefficient m, is

the dissipative mechanism.

Our main concern is the eddy transport of momen-

tum, potential vorticity, and tracer in the ultimate sta-

tistically steady state of the model (1). Despite the

evident importance of this linear problem, to our

knowledge, it has only been discussed previously by

Farrell and Ioannou (1993) and Bakas and Ioannou

(2013) for the case of weak background shear. The prob-

lem is, however, closely related to the initial value problem

for the evolution of linearized disturbances on an

unbounded viscous Couette flow, first considered by

Kelvin (1887) and Orr (1907). A main result of these

early studies is that an initial sinusoidal disturbance

with crests ‘‘leaning’’ into the shear is amplified for

some time. Various aspects of the Kelvin–Orr initial

value problem, such as the inclusion of planetary vor-

ticity gradient b and a spectrum of initial disturbances,

were subsequently discussed by Rosen (1971), Tung

(1983), Boyd (1983), and Shepherd (1985). The tran-

sient amplification of Kelvin and Orr is now under-

stood as one consequence of the nonnormality of the

linear vorticity equation in the energy norm (Farrell

1982).

In conjunction with the vorticity equation in (1), it

is instructive to consider the coevolution of a passive

tracer c0(x, y, t) satisfying the linearized tracer equation

c0t 1 gyc0x 1bcy
01mc0 5 0, (2)

where bc is the large-scale tracer gradient. For simplic-

ity, we assume that the scalar damping rate m is the same

as that of the vorticity. The tracer c0 differs from the

vorticity z0 because there is no stochastic forcing in (2).

Instead, scalar fluctuations are created by the eddy ve-

locity y0 stirring the mean gradient bc.
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Statistically steady solutions of (1) and (2) are char-

acterized by the Reynolds stress

s 5
def

u0 y0 (3)

and the tracer eddy diffusivity

ke 5
def

2
y0 c0

bc

. (4)

The overbar above indicates either a zonal or an en-

semble average. Using the correlation-function formal-

ism of Srinivasan and Young (2012), we provide explicit

analytic results for s, ke, and other quadratic statistics,

such as the eddy kinetic energy and enstrophy, and the

anisotropy of the velocity field.

The correlation function formalism—introduced in

sections 2 and 4—is an economical framework for anal-

ysis of the statistically steady flow.Rather than solving (1)

and (2) explicitly and then averaging the solution, one

averages at the outset, and then solves steady deter-

ministic equations that directly provide s and ke.

Farrell and Ioannou (1993) have previously discussed

the statistically steady flow corresponding to (1) with

b 5 0. Farrell and Ioannou (1993) use the eddy kinetic

energy (rather than s and ke) as the main statistical de-

scriptor of the flow and they emphasize viscosity (rather

than Ekman drag) as the dissipative mechanism. In a

related geophysical context, the tracer equation has re-

cently been considered (with g 5 0) by Ferrari and

Nikurashin (2010) and Klocker et al. (2012).

The forcing and drag terms in (1) incorporate the ef-

fects of two different processes, which we characterize as

‘‘external’’ and ‘‘internal.’’ External processes, such as

small-scale convection in planetary atmospheres (Smith

2004; Scott and Polvani 2007) or baroclinic instability

(Williams 1978), are oftenmodeled as a stochastic driving

agent combined with a damping term representing

Ekman friction. On the other hand, internal nonlinear

interactions—that is, J(c0, z0)—are sometimes repre-

sented using a stochastic turbulence model (DelSole

2001). This is the interpretation of j andm in the studies of

Farrell and Ioannou (2003, 2007), Ferrari and Nikurashin

(2010), and Klocker et al. (2012). As suggested by fluc-

tuation–dissipation arguments, the turbulence model

has a stochastic forcing term and eddy damping; the

combination ensures energy conservation. In section 2,

we introduce a forcing that is distributed anisotropically

around a circle in wavenumber space.

Section 2 contains a description of the forcing structure

and symmetries of the correlation functions. Section 3

shows that (1) and (2) have a statistical Galilean symmetry

implying that all quadratic statistics, in particular s and

ke, are independent of y. Section 4 summarizes the

quadratic power integrals that follow from taking qua-

dratic averages of (1) and (2). These power integrals are

used to obtain some simple and general bounds on s and

ke. Analytic expressions for s and ke are presented in

sections 5 and 6. Section 7 is a conclusion and dis-

cussion of the results. Technical details are relegated to

the appendixes.

2. Correlation functions and statistical symmetries

We assume that the stochastic forcing j(x, y, t) in (1) is

temporal white noise, with a two-point, two-time cor-

relation function

j (x1, t1)j(x2, t2)5 d(t1 2 t2)J(x) . (5)

We restrict attention to spatially homogeneous forcing,

so that J depends only on the difference x 5 x1 2 x2.

We do not assume that the forcing is isotropic: J(x)

might depend on the direction of the two-point separa-

tion x5 (x, y). One motivation for examining the effect

of anisotropy is that in many studies of zonal jets on

the b plane (Vallis and Maltrud 1993; Smith 2004) and

on the sphere (Williams 1978; Scott and Polvani 2007;

Showman 2007), the small-scale forcing used to drive the

jets is assumed to be isotropic, even though the physical

processes that the forcing models, such as baroclinic

instability in the ocean and moist convection in plane-

tary atmospheres, are typically not isotropic (Arbic and

Flierl 2004; Li et al. 2006).

a. A remark on scale separation and homogeneity
in y

The background mean flow, gy in (1), can be inter-

preted as a local approximation to a mean flow U(y)

that is slowly varying relative to the eddy scale and to

the scale of J(x). At a particular position y, the mean

flow is

U(y)’U(0)1 gy , (6)

where g 5 U0(0). However, the constant U(0) has no

physical consequences in this model: one can move the

origin of the coordinate system with ~y5 y1U(0)/g to

remove U(0) from the problem. This removal hinges on

the spatial homogeneity of the statistical properties of

j(x, y, t)5 j[x, ~y2U(0)/g, t]. In particular, J is un-

altered by this shift of the origin.

b. Statistical properties of the solution

The statistical properties of the solution are encap-

sulated in two-point same-time correlation functions:
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Z(x)5
def

z01z
0
2 , and C(x)5

def
c0
1c

0
2 . (7)

In (7), z0n 5 z0(xn, yn, t) is the eddy vorticity at point

(x1, y1) and likewise for c0
n; x and y are the components

of the two-point separation x 5 x1 2 x2. In (7), we have

anticipated that statistical properties of the solution are

spatially homogeneous so that the correlation functions

Z andC depend only on the separation x5 x12 x2. The

correlation functions are connected by the biharmonic

equation

Z5 (›2x1 ›2y)
2C . (8)

The statistics of the scalar are characterized by

P(x) 5
def

c0
1c

0
2 and Q(x) 5

def
c0
2c

0
1 and (9)

C(x) 5
def

c01c
0
2 . (10)

c. Exchange symmetries

Because the notation of one point as ‘‘1’’ and the other

point as ‘‘2’’ is arbitrary, the correlation function J has

the ‘‘exchange symmetry’’

J(x, y)5J(2x,2y) . (11)

The exchange symmetry implies that J is unchanged by

a rotation of 1808 in the plane of x, and ensures that the

spectrum,

~J(p,q) 5
def
ðð

e2ipx2iqyJ(x, y) dx dy , (12)

is real.

The autocorrelations functions Z, C, and C all satisfy

the exchange symmetry (11). For the mixed statistics in

(9), exchange implies

P(x, y)5Q(2x,2y) . (13)

The Fourier transform of this relation shows that

~P(p, q)5 ~Q*(p,q) . (14)

d. Reflexion symmetry

If the statistics of the forcing are reflexionally sym-

metric in the axis of x, then the correlation function has

a second symmetry

J(x, y)5J(x,2y) . (15)

The exchange symmetry (11) in concert with (15) im-

plies that J is an even function of both arguments.

Now the left-hand side of (1) is unchanged by

c/c, t/ t, x/ x , (16)

g/2g, y/2y . (17)

This transformation induces (u0, y0) / (2u0, y0) and

therefore s / 2s. If the statistics of the forcing j also

obey (15), then (17) is a statistical symmetry of (1) and

therefore

s(g)52s(2g) . (18)

But the symmetry (15) is not compulsory; for example,

the single-wave forcing of Ferrari and Nikurashin (2010)

and Klocker et al. (2012) does not satisfy (15). However

we make the assumption that the forcing is reflexionally

symmetric and we proceed confining attention to j with

statistics obeying (15). As a consequence of this re-

striction, s(g), calculated explicitly in section 5, sat-

isfies (18).

e. The stochastic forcing

Our main illustrative example is provided by the cor-

relation function

J5 2«k2f [J0(kf r)2aJ2(kf r) cos2u] , (19)

where (x, y) 5 r(cosu, sinu), kf is the ‘‘forced wave-

number,’’ and Jm(z) is the Bessel function of order m.

The corresponding spectrum is

~J(p,q)5 4pkf «(11a cos2f)d(k2 kf ) , (20)

with (p, q) 5 k(cosf, sinf). The forcing is concentrated

on a circle with radius kf in wavenumber space. To en-

sure that the spectrum is nonnegative, the anisotropy

parameter a must satisfy 21 # a # 1. Figure 1 shows

model correlation functions and forcing obtained by

varying a in (19).

3. Statistical Galilean invariance

The linearized vorticity equation in (1), with the

rapidly decorrelating forcing in (5), has a form of sta-

tistical Galilean invariance. To explain this, consider

two observers—one of whom is stationary and at the

origin of the (x, y, t) coordinate system in (1). The other

observer is at y5 b and moves ‘‘with the mean flow,’’ at

speed gb along the axis of x relative to the first. Because

of the rapid temporal decorrelation of the forcing j,

these two observers see statistically identical versions of

the problem (1). Thus all zonally averaged quantities are
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independent of y. This simple argument allows us to

anticipate some curious aspects of the detailed calcula-

tions that follow in section 5.

Notice that if the forcing has a nonzero temporal

decorrelation time then the statistical properties of j are

different in the two frames of reference, and conse-

quently the problem is no longer statistically Galilean

invariant (or even Galilean invariant). If there is a non-

zero decorrelation time, then averaged quantities do

depend on y. A clear example is steady forcing, such as

j 5 coskfx used by Manfroi and Young (1999). In the

frame of the observer at y5 b, this forcing is periodic in

time. In this example, the forcing breaks Galilean in-

variance because there is a special frame in which the

forcing is steady (or has the longest decorrelation time in

the stochastic case).

To formally prove statistical Galilean invariance,

suppose that the second observer above uses coordi-

nates (~x, ~y, ~t). The relation between the two coordinate

systems is

~x5 x2 gbt, ~y5 y2b, ~t5 t . (21)

In the ‘‘tilde frame’’ the equation of motion (1) is

FIG. 1. (a)–(c) Plots ofJ in (19) and (d)–(f) corresponding snapshots of j for (a),(d) a521, (b),(e) the isotropic case

a 5 0, and (c),(f) a 5 11.
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z0~t 1 g~yz0
~x
1by01mz0 5 j(~x1 gbt, ~y1 b, ~t ) . (22)

If the right-hand side of (22) has the same statistical

properties as j(x, y, t) in (1), then this Galilean trans-

formation is a statistical symmetry. And indeed, because

of the d(t1 2 t2) correlation in (5), this is the case.

The important consequence of statistical Galilean

invariance is that zonally averaged quantities are in-

dependent of y, despite the explicit y dependence in (1)

and (2). As an application of this result, the eddy vor-

ticity flux is related to the Reynolds stress by the Taylor

identity

y0 z0 52(u0 y0)y . (23)

Because u0 y0 is independent of y, it follows that the

statistically steady solution of (1) must have

y0 z05 0. (24)

That is, there is no eddy flux of vorticity, even though the

planetary vorticity by is stirred by eddies [but see the

discussion surrounding (45)].

4. Power integrals

a. Enstrophy

The enstrophy power integral is obtained by multi-

plying (1) by z0 and zonally averaging. Using (24), the

result is

mz025 j z0 . (25)

Because there is no production of eddy enstrophy by

stirring of the b gradient, there is a strict balance in (25)

between local eddy enstrophy production on the right-

hand side and enstrophy dissipation by drag on the left-

hand side.

b. Energy

The energy power integral is obtained by multiplying

the vorticity equation [see (1)] by c0 and zonally aver-

aging. Again, because of statistical Galilean symmetry,

zonally averaged quantities, such as u02, are independent

of y and one finds

gu0 y05 «2m(u021 y02) . (26)

The left-hand side of (26) is the transfer of energy be-

tween the eddies and the shear flow. The first term on

the right-hand side of (26),

« 5
def

2c0 j , (27)

is the rate of working of the stochastic force. Because the

forcing is white in time, « in (27) is the same as « in (19)

and (20). A more detailed discussion of this aspect can

be found in Srinivasan and Young (2012).

c. Tracer variance

The tracer variance equation is obtained by multi-

plying the scalar equation [see (2)] by c0 and zonally

averaging:

bcy
0 c0 1mc025 0. (28)

Thus, ke 5mc02/b2
c : the tracer eddy diffusivity is nonzero

and positive. Taylor’s analogy between eddy transport

of vorticity and eddy transport of scalars fails: according

to (24) there is no eddy flux of vorticity, while from (28),

there must be a downgradient tracer flux.

d. Covariance of tracer and vorticity

The fourth and final power integral is obtained by

‘‘cross multiplying’’ the vorticity equation [see (1)] and

the scalar equation [see (2)]:

by0 c0 1 2mc0 z05 0, (29)

and therefore ke 5 2mz0 c0/bbc. The power integral in (29)

relates the tracer eddy flux to the covariance c0 z0 and, in

combination with (28), shows that 2bcc
0 z0 5bc02 . 0.

e. A bound on the Reynolds stress

Combining the energy power integral in (26) with the

inequality u02 1 y02 $ 2u0 y0, we obtain

s#
«

g1 2m
. (30)

This bound on the Reynolds stress is important because

it is independent of the details of the forcing (i.e., the

model for J) and because in (44) below, the bound is

saturated.

f. Bounds on the eddy diffusivity

Combining the tracer variance power integral (28)

with the Cauchy–Schwarz inequality,

jy0 c0j#
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c02 y02

q
, (31)

we obtain

ke# 2ky , (32)

where

JUNE 2014 SR I N IVASAN AND YOUNG 2173



ky 5
def y02

2m
. (33)

Another bound on ke is obtained by combining the

covariance integral in (29) with the Cauchy–Schwarz

inequality for z0 c0. One finds

ke # 2kz , (34)

where

kz 5
def 2mz02

b2
. (35)

A more elaborate analysis in appendix A shows that

(33) and (35) can be combined into a single stronger

inequality

ke #
2kykz
ky 1kz

, (36)

or equivalently in terms of harmonic averages

1

ke
$

1

2

 
1

ky
1

1

kz

!
. (37)

We will see later that the bounds above are typically too

generous by a factor of 2.

The four power integrals, and the ensuing bounds on

s and ke, provide important and general connections

between quadratic statistics characterizing the main

properties of the flow. However, these relations are

unclosed and to make further progress, we consider the

dynamics of correlation functions.

5. Reynolds stress and anisotropy

An evolution equation for Z in (7) is obtained using

the replica trick: take (1) at point 1 and multiply by z02
and vice versa. Adding these two expressions and then

zonally averaging one finds

gy›xZ5J2 2mZ . (38)

The enstrophy and energy power integrals in (25) and

(26) are immediately recovered by evaluating (38), and

the inverse Laplacian1 of (38), at zero separation.

A surprising aspect of (38) is the lack of a term con-

taining b: the b term that would appear in the left-hand

side of (38), on performing the replica trick mentioned

above, is

b(y01z
0
2 1 y02z

0
1 )5b(›x

1
1 ›x

2
)=2C . (39)

The term above is zero because, owing to the ho-

mogeneity property of C in section 2a, ›x1 52›x2 5 ›x.

For a more detailed and general derivation of (38), see

Srinivasan and Young (2012).

Once one has the solution of (38), the Reynolds stress

is given by

u0 y05Cxy(0, 0) . (40)

It is remarkable that the vorticity correlation equation in

(38) is independent of b; that is, anisotropic Rossby wave

propagation does not affect the vorticity correlation

function Z(x, y) nor the Reynolds stress in (40). Thus, all

results in this section, which follow from the solution of

(38) alone, apply to b-plane flows, even though the

parameter b does not appear.

a. Reynolds stress

A general solution of (38) is detailed in appendix B.

With the anisotropic ring forcing in (15), the Reynolds

stress s5u0 y0 obtained from (40) is

s5
«a

4m
F1

�
g

m

�
, (41)

where the function F1 is

F1

�
g

m

�
5
def

4mg

ð‘
0

t2e2t

16m21 g2t2
dt . (42)

The function F1 can be expressed in terms of the expo-

nential integral (see appendix C) and is shown in Fig. 2.

We emphasize the linear dependence ofs in (41) ona.

In particular, if a 5 0 (isotropic forcing), there is no

FIG. 2. Plot of F1 in (42) as a function of g/m. The dashed curve is

the approximation F1(g/m) 5 4m/g 2 8pm2/g2 1 O[m3/g3 ln(m/g)].

1Note that (38) can be written identically as g=2(y=2Cx 2 2Cxy)5

J2 2m=4C. One can take the inverse Laplacian with impunity be-

cause there are no zero eigenmodes.
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Reynolds stress. This recapitulates the result that an-

isotropic forcing, or initial conditions, is essential to the

generation of nonzero Reynolds stress (Kraichnan 1976;

Shepherd 1985; Farrell and Ioannou 1993; Holloway

2010; Cummins and Holloway 2010; Srinivasan and

Young 2012).

The Reynolds stress in (41) depends nonlinearly on g

and thus the concept of an eddy viscosity is not generally

useful. Instead, there is a nonlinear, and nonmonotonic,

stress–strain relation encoded in F1. However in the

weak-shear limit, g/m� 1, the integral in (42) simplifies

and the Reynolds stress is then

s’
«a

8m2|{z}
52n

e

g . (43)

The sign of the eddy viscosity ne is determined by a, with

a . 0 being the antifrictional case. A negative viscosity

in the weak-shear limit, with the same form as (43), was

also found by Bakas and Ioannou (2013) using a forcing

function that is similar to the a 5 1 case in this paper.

The integral in (42) also simplifies in the strong-shear

limit g/m � 1, reducing to

s’
«a

g
. (44)

The inverse dependence of stress on shear in the strong-

shear limit is striking. This might be interpreted as an

indication that strong shear is rapidly pushing wavy

disturbances into the Farrell and Ioannou’s ‘‘unfavor-

able’’ sector of the wavenumber plane, where they damp

away because of the Kelvin–Orr mechanism.2 But as we

show in the next section, a complicating factor is the

dependence of the kinetic energy density on the shear.

Another interpretation of (44) is that if a 5 61, then

the Reynolds stress bound in (30) is an asymptotic

equality as g/2m / ‘. One might say that the g21 de-

pendence in (44) is the strongest possible Reynolds

stress that can be achieved, consistent with the energy

power integral (26) and the associated bound (30). No-

tice that (44) was obtained with the anisotropic ring

forcing in (19), but the bound (30), which makes no as-

sumptions about the structure of the forcing, indicates

that s } g21 is a general result in the strongly sheared

limit.

b. The vorticity flux of a slowly varying mean flow

In the discussion surrounding (23) and (24) we argued

that y0 z0 is zero. However, if following (6), we view g as

the shear of a slowly varying U(y), then a nonzero y0 z0

can be calculated with our results. Using this ‘‘slowly

varying’’ argument, we can write the Reynolds stress as

a function of the shear:

u0 y05s(Uy) , (45)

where s is the function in (41). Then using the Taylor

identity (23), one has

y0 z052s0(Uy)Uyy , (46)

where s0 is the derivative with respect to g.

c. Eddy kinetic energy and enstrophy

In addition to the Reynolds stress, the statistically

steady solution is characterized by the eddy enstrophy

and the eddy kinetic energy. The eddy enstrophy is

obtained by evaluating (38) at x 5 0 and is simply

z025
J(0, 0)

2m
5

«k2f

m
. (47)

There is no dependence of the eddy enstrophy on the

parameter g/m (nor on b).

The eddy kinetic energy is obtained from the energy

power integral in (26). For anisotropic-ring forcing, the

result is

1

2
(u021 y02)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

5
def
E0

5
«

2m

�
12

ga

4m
F1

�
. (48)

Figure 3a shows the scaled eddy kinetic energy 2mE0/« as

a function of g/m. The antifrictional case is a511, with

2mE0/« , 1; that is, the eddy kinetic energy is depleted

below the unsheared value by transfer to the large-scale

shear flow. In the frictional case (a 5 21), the eddy

kinetic energy is enhanced by transfer from the mean

flow: the energy level approaches twice that of the iso-

tropically forced flow as the shear increases.

In the strong-shear limit in Fig. 3a, there is muchmore

eddy energy in the frictional flow (a 5 21) than in the

antifrictional flow (a 5 11). Specifically, if g/m / ‘
then, using (C5), the eddy kinetic energy is

E0’
«

4m

�
(12a)1

2pam

g

�
. (49)

2 In the solution in appendix B, the sheared wavenumber is

q5 q̂2pgt, where q̂ is the initial meridional wavenumber. The

unfavorable sector is q, 0. In this sector, according to the solution

of the Kelvin–Orr initial value problem, the energy of the distur-

bances decreases.
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This shows that the case a5 1 is special: only in this case

does the E0 vanish in the strong-shear limit. The rela-

tively energetic a521 eddies are inefficient at forming

the requisite correlation to produce a Reynolds stress.

This motivates further examination of the anisotropy of

the eddies.

d. Velocity anisotropy

In appendix B we show that the mean square merid-

ional velocity is

y025
«

2m

�
11

a

2

�
F22

g

2m
F1

��
, (50)

where F1 is in (42) and

F2

�
g

m

�
5 16m2

ð‘
0

te2t

16m2 1g2t2
dt . (51)

Figure 4a shows F2 as a function of the nondimensional

shear g/m, and Fig. 3b shows the variation of the mean-

square meridional velocity with g/m.

As a nondimensional index of the flow anisotropy, we

use the quantity

aniso 5
def y02 2u02

y02 1u02
, (52)

or equivalently

y02

u02
5

11 aniso

12 aniso
. (53)

Using (50), the numerator in (52) is

y02 2u02 5
«a

2m
F2

�
g

m

�
. (54)

The dependence of the index aniso in (52) on the shear is

shown in Fig. 4b.

In the large-shear limit, the case a 5 21 in Fig. 4b

rapidly tends to isotropy (a511 also tends to zero, but

much more slowly than a 5 21). This is consistent with

the earlier result that the amplitude of the Reynolds

stress in (44) is the same for a 5 11, as for a 5 21,

despite the great difference in the energy level of the two

flows as g/m / ‘. In other words, with a 5 21, the

eddies are energetic but almost isotropic and are therefore

not very efficient at producing a nonzero Reynolds stress.

e. Tenacity of isotropy

Figure 4b shows that if the forcing is isotropic (a5 0),

then the flow is also isotropic; that is, if the flow is iso-

tropically forced, then neither the mean shear nor the b

effect induces anisotropy of the eddies. Moreover, if the

forcing is anisotropic, then the effect of shear is to make

the flowmore isotropic: in both Fig. 4a and 4b, the index

of flow anisotropy approaches zeromonotonically as g/m

increases.We cannot provide an intuitive explanation of

this result.

For a recent discussion of isotropy in the context of

fully nonlinear sheared turbulence, see Cummins and

Holloway (2010): a main point is that nonlinear eddy–

eddy interactions also decrease anisotropy. We summarize

all these results by saying that isotropy is tenacious.

FIG. 3. (a) The nondimensional eddy kinetic energy as a function

of g/m, calculated from (48). (b) The nondimensional meridional

velocity variance as a function of g/m.

FIG. 4. (a) The function F2(g/m) defined in (51). The dashed

curve is the asymptotic approximation (16m2/g2)[ln(g/4m) 2 gE],

where gE 5 0.577 21. . . is Euler’s constant. (b) The index aniso in

(52), with a 5 21, 0, and 1.
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6. Eddy diffusivity

We turn now to the eddy diffusivity, viewed as a func-

tion of the four main parameters: ke(a, b, g, m). Using

the replica trick, one can obtain evolution equations for

the tracer correlation functions defined in (9) and (10).

Combining (1) and (2) one has

gy=2Px1bPx 1 2m=2P5bc=
2Cx , (55)

and from (2) alone, one has

gyCx1 2mC52bc(Px2Qx) . (56)

The equation for Q is obtained by P / Q and (x, y) /
2(x, y) in (55). After solving (55), the tracer diffusivity

defined in (4), is obtained as

ke 52
Px(0, 0)

bc

. (57)

The solution of (55), and the calculation of the tracer

diffusivity defined in (4), is summarized in appendix D.

The result is

ke 5
1

b2

ðð
~J(p,q) ~M(p, q)

dp dq

(2p)2
; (58)

the kernel in (58) is

~M(p, q;b, g,m)5 12 2m

ð‘
0
e22mt cosx dt , (59)

with the phase

x5
b

gp

�
arctan

�
q

p
2 gt

�
2 arctan

�
q

p

��
. (60)

a. The case g 5 b 5 0

If b 5 g 5 0, then we do not need the complicated

expressions for ke above: cancel =
2 in (55) and then take

an x derivative to obtain

ke(a, 0, 0,m)5
y02

2m|{z}
k
y

, (61)

where we have used y02 5Cxx(0, 0), and we recalled the

definition of ky in (33). Notice that the upper bound on

ke in (32) is too generous by a factor of 2 relative to (61).

Using results from section 5, the eddy diffusivity in (61)

can also be written as

ke(a, 0, 0,m)5
«

4m2

�
11

a

2

	
; (62)

the dependence of ke on the anisotropy a reflects that

of y02.

b. The suppression factor

One can view (61) as saying that the eddy diffusivity is

the product of a typical meridional eddy velocity, equal

to the root-mean-square of y0, times the mixing lengthffiffiffiffiffiffi
y02

q
=2m . (63)

We adopt this interpretation and express ke in terms of

ky and Ferrari and Nikurashin’s (2010) suppression

factor S as

ke 5 kyS . (64)

In (61), S5 1. But the effect of nonzerob and g is usually

to make ke less than ky.

c. The case g 5 0

Unlike the Reynolds stress in (41) and the anisotropy

in (52), the eddy diffusivity depends on the planetary

vorticity gradient. This dependence is illustrated by the

special case g5 0.With nomean shear, the phase in (60)

simplifies to x 5 vt, where

v52
bp

p2 1q2
(65)

is the Rossby wave frequency. Thus, the kernel in (59)

reduces to

~M(p, q;b, 0,m)5
v2

(2m)21v2
. (66)

For the anisotropic ring forcing in (19), the g 5 0 tracer

diffusivity obtained from the integral in (58) is then

ke(a,b, 0,m)5
«

4m2

�
B0 1

a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ~b2

q
B2
0

�
, (67)

where

~b 5
def b

2mkf
(68)

is a nondimensional planetary vorticity gradient and

B0(
~b) 5

def 2

~b2

 
12

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ~b2

q
!
. (69)
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Following (64), the eddy diffusivity in (67) can alterna-

tively be written as

ke(a,b, 0,m)5
y02

2m|{z}
k
y

2B01a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 ~b2

q
B2
0

21a|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

. (70)

Figure 5a shows the eddy diffusivity in (67) as a function

of b, and Fig. 5b shows the factor S in (70). Increasing b

reduces both measures of the tracer diffusivity.

The dependence of ke on a in Fig. 5a is intuitive: in

Fig. 1f, a . 0 forces meridionally elongated eddies re-

sulting in enhanced diffusive fluxes in the y direction.

The difference between a 5 1 and a 5 21 is a factor of

3 in diffusivity at ~b5 0, but the dependence on a is re-

duced as ~b increases.

When ~b/‘:

B0(
~b)5 2~b221O(~b23) , (71)

and therefore for large ~b, the eddy diffusivity is

ke(a,b/‘, 0,m)5
«

4m2

2

~b2
, (72)

5
2mz02

b2|fflffl{zfflffl}
k
z

, (73)

where we have recalled the definition of kz in (35). The

bound (34) is too generous by a factor of 2 relative to (73).

The b/ ‘ diffusivity in (73) is a general result that is

not specific to the anisotropic ring forcing in (20). To see

this, we note that if b / ‘ then the kernel ~M in (66)

simplifies to

~M(p,q;b/‘, 0,m)/ 1. (74)

Setting ~M5 1 in (70) and substituting for the enstrophy

from (47), we arrive at (73).

d. Comparison with Klocker et al. (2012)

The b22 suppression of transport in (73) is via the

mechanism of Ferrari and Nikurashin (2010) and Klocker

et al. (2012): nonzero b enables Rossby wave propaga-

tion so that eddies drift relative to the mean flow. We

have used the anisotropic ring forcing in (20), whereas

Klocker et al. force a single wave. To fully explain the

connection, we briefly consider the single-wave forcing

of Klocker et al. with correlation function

J(x, y)5 2«k2f cos(pf x1 qf y) . (75)

The spectrum is

~J(p, q)5 4«p2k2f [d(p2 pf )d(q2qf )

1 d(p1 pf )d(q1qf )] , (76)

where k2f 5 p2f 1 q2f . Ferrari and Nikurashin (2010) and

Klocker et al. (2012) do not have damping in the scalar

equation [see (2)], so to see the connection to their work,

we replace mc0 in (2) by mcc
0. Ferrari and Nikurashin

(2010) and Klocker et al. (2012) take mc5 0. With g 6¼ 0,

this change complicates the expression for the diffusivity

in (58). But, for comparison with Klocker et al. (2012),

we restrict attention to g5 0. Then there is only a minor

modification in the tracer correlation equation [see (55)]

and the diffusivity formula in (D11): every 2m term is

just replaced by m 1 mc. In particular, the kernel ~M is

modified from (66) to

~M(p, q;b, 0,m)5
v2

(m1mc)
21v2

. (77)

The diffusivity integral in (58) is modified by a factor of

(m 1 mc)/2m and the diffusivity then evaluates to

ke 5
p2f

k2f

m1mc

m

«

(m1mc)
21 c2Rp

2
f

, (78)

where

cR52
b

k2f
(79)

FIG. 5. (a) The nondimensional g 5 0 tracer diffusivity in (67)

as a function of ~b5b/(2mkf ). (b) The suppression factor, defined

in (70).
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is the intrinsic Rossby wave phase speed in the zonal

direction. Alternatively, we can express (78) in terms

of the meridional velocity variance obtained from

(B10),

y02 5
«p2f

mk2f
, (80)

in the form

ke5
y02

m1mc|fflfflfflffl{zfflfflfflffl}
k
y

1

11 c2Rp
2
f /(m1mc)

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S

. (81)

If m 5 mc, then the expression above has the same form

as the anisotropic ring diffusivity in (70); if mc 5 0, then

the expression in (78) is identical to (20) in Klocker et al.

(2012). Further, in the limit of b/ ‘, the general result
ke } b22 in (73) is recovered by using z02 5 «k2f /m.

There are two important remarks to make about (81).

First, and intuitively, it is y02, rather than the eddy kinetic

energy, that determines the unsuppressed eddy diffu-

sivity. Second, it is the intrinsic Rossby wave speed,

proportional to the base-state potential vorticity gradi-

ent, which appears in the suppression factor. In the

model of Klocker et al. (2012), the intrinsic zonal phase

speed is

cR52
b1UL22

d

k2f 1L22
d

, (82)

whereU is the background mean flow in the upper layer

of their equivalent barotropic model (the lower layer is

quiescent) and Ld is the deformation length. Because

the potential vorticity gradient, b1UL22
d , is modified

by the background mean flow, strong mean flow in-

creases cR and therefore suppresses ke. By comparison,

in (79), our cR does not depend on a background mean

flow. In both models, it is the meridional potential vor-

ticity gradient, b in (79) and b1UL22
d in (82), that en-

ables eddies to move relative to the mean flow, resulting

in a nonzero cR 5 c2 U and the associated suppression

of ke. (Note that theDoppler-shifted phase speed c is the

observed zonal speed of eddies, as seen, for example, in

satellite altimetry.)

e. The case b 5 0

With b5 0, we evaluate the integrals for ke in (58) and

(59) numerically. Figure 6a shows ke(a, 0, g, m) as

a function of g/m. In Fig. 6b, we express the diffusivity in

terms of S in (64). The three curves are much closer

together in Fig. 6b than in Fig. 6a and therefore the

variation in ke with a and g/m is due mainly to variation

in y02.

The case a 5 21 in Fig. 6b shows a slight enhance-

ment of ke above ky. Thus, in some cases at least, shear

can enhance eddy diffusivity, so that S is slightly greater

than 1. This weak effect is due to the Kelvin–Orr mecha-

nism: a 5 21 loads the forcing variance deep in Farrell

and Ioannou (1993)’s favorable sector of the wavenumber

plane. The diffusivity in (58)–(60) is given by a weighted

time integral of the y02 associated with a sheared wave.

Apparently, this time integral is not necessarily bounded

above ky (though it is by 2ky).

f. Large shear

When ~g � 1, and provided ~g � ~b, the kernel ~M in

(59) is concentrated near f 5 p/2, and the integrals can

be evaluated approximately (see appendix E). In this

large-shear limit, the eddy diffusivity is

ke(a,b, g/‘,m)’ (12a)
p«

2gm
B1(p

~b) , (83)

where the function B1 is

B1(b) 5
def

b22

�
pb2 2b arctan

1

b
2 ln(11b2)

�
. (84)

Figure 7a shows the variation of B1(p~b) with ~b while

Fig. 7b shows that the approximate expression in (83) is

in good agreement with numerical computation of ke
using (58).

FIG. 6. (a) The nondimensional tracer diffusivity as a function of

g/m with b 5 0 and different values of a. (b) The corresponding

suppression factor defined in (64).
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In the limit of large shear, the meridional velocity

variance in (50) becomes

y025
«

2m
(12a)1O(~g21) , (85)

and can be used to rewrite the eddy diffusivity in terms

of S in the form

ke(a,b, g/‘,m)’ ky
2p

~g
B1(p

~b)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
S

. (86)

This result leads to two important conclusions: first, S }
g21; that is, large shear suppresses eddy diffusivity and

in the large-shear limit, the g21 dependence is the same

as the earlier result for the Reynolds stress in (44).

Second, the effect of anisotropy on the diffusivity is

completely included in y02, so that S is independent of a.

Limiting forms of the suppression factor in (86) for large

and small ~b can be inferred from Fig. 7a as

S’

2p

~g
if ~b/ 0,

2p

~g~b
if ~g � ~b � 1.

8>>><
>>>: (87)

Figure 8a shows comparisons of the numerically com-

puted diffusivity integral in (58) for isotropic forcing

(a 5 0), with the asymptotic forms displayed in (87).

Finally, we note that in the limit ~b � ~g � 1, the

general result of (73) is recovered; that is,

ke 5 kz if ~b � ~g � 1. (88)

In Fig. 8b, the normalized eddy diffusivity is plotted as

a function of ~b/~g for a large value of the shear (~g5 100).

It is clear that when ~b/~g is small, the diffusivity asymp-

totically approaches the lower result in (87) and to (88)

[written in the equivalent form, (72)] for large values

of ~b/~g.

7. Discussion and conclusions

The model (1) and (2) has a special status as an ana-

lytically tractable example whose solution sheds light on

eddy transport of momentum, vorticity, and tracer. To

be sure, the model is linear and, unless one has strong

faith in stochastic turbulence models, the results might

therefore apply only in the case of weak, externally

forced eddies in a strongmean flow.We caution also that

the Kelvin–Orr mechanism is quite special to the infinite

shear flowU5 gy: at first, a wave ‘‘leaning into the shear’’

gains energy from the mean. Ultimately, the energy is

returned as the shear tilts the wave into the unfavorable

quadrant; that is,U has no discrete shearmodes that serve

as a repository for eddy energy. The next step is to con-

sider the eddy diffusivity and Reynolds stresses of more

structured shear flows.

Key results for (1) and (2) detailed in this paper em-

phasize the dependence of the statistical properties of

the solutions of the linear vorticity equation [see (1)]

FIG. 7. (a) The functionB1(p~b) given in (84) shown as a function

of ~b. The large ~b approximation is the dashed curve. (b) A com-

parison of the numerically computed nondimensional tracer dif-

fusivity for g/m 5 500 (dashed curve) with the approximate

expression in (83) (solid curve).

FIG. 8. (a) The numerically computed nondimensional tracer

diffusivity as a function of g/m, with different values of b, anda5 0.

Also plotted are the large g asymptotes for ~b5 0 (dashed line) and
~b5 50 (dot–dashed line) in (87). (b) Comparison of the numeri-

cally computed nondimensional ke for ~g5 100 (solid line) as

a function of ~b/~g, with asymptotes corresponding to the limits ~b �
~g � 1 (dot–dashed line) and ~g � ~b � 1 (dashed line).
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and the scalar equation [see (2)] on the spatial structure

of the forcing j and the shear g. However, the role of b is

peculiar: a great and unexpected simplification is that

the eddy kinetic energy level and the Reynolds stress s

are independent of b. But s is a nonlinear and non-

monotonic function of the g. Thus, while it is sensible to

define an eddy diffusivity according to (4), one cannot

define an analogous eddy viscosity because s is not lin-

early proportional to g. Thus, our result for s in (41)

provides an explicit analytic example of Dritschel and

McIntyre (2008)’s ‘‘antifriction’’ (as opposed to negative

eddy viscosity).

The spatial structure of j is characterized by the an-

isotropy parameter a in (19). The Reynolds stress is

found to be directly proportional to a, so ‘‘frictional’’

and ‘‘antifrictional’’ stresses are obtained when a is

negative and positive, respectively. And if the forcing is

isotropic, then the Reynolds stress is identically zero.

When g is weak, the Reynolds stress is proportional to g.

Thus, in this special case, one can identify an effective

viscosity ne whose sign is opposite to that of a. The ex-

pression for ne in (43) connects with a similar result

obtained by Bakas and Ioannou (2013) for a forcing

function resembling our a 5 1: in this case ne , 0.

In general, the most important determinants of the

tracer eddy diffusivity ke are the meridional kinetic en-

ergy y02 and the drag m. With b5 g 5 0, the diffusivity is

precisely y02/(2m). But typically, ke is smaller than

y02/(2m) whenever b or g are nonzero. In other words,

both g and b suppress eddy diffusivity. If g 5 0, then the

suppression due to b is a consequence of propagation of

Rossby waves relative to a background mean flow. The

suppression of diffusivity due to b (or more generally,

any background potential vorticity gradient) has been

discussed previously by Klocker et al. (2012), and their

results can be interpreted as a special case of ours with

g 5 0. Strong shear also causes the diffusivity to de-

crease as g21, and this inverse proportionality mirrors

the g21 variation of the Reynolds stress for large g.

We caution against summarizing the results above by

saying that ‘‘mean flow suppresses eddy diffusivity.’’

The mean flow is gy and ‘‘mean-flow suppression’’ in-

vites the incorrect conclusion that ke would decrease

as jyj increases. Instead, fundamentally because of the

Galilean invariance in section 3, ke is independent of y.

The mean-flow suppression explained in Klocker et al.

(2012) and Ferrari and Nikurashin (2010) is caused by

the relative motion of eddies with respect to the mean

flow. However, this relative motion is due to a nonzero

potential vorticity gradient, which in the case of Klocker

et al. (2012) includes both b and a term resulting from

the baroclinic shear of the mean flow. If a barotropic

mean flow U(y) has Uyy 6¼ 0, then the background

potential vorticity gradient is modified to b2Uyy, and it

is this total gradient (rather than just b) that is relevant

for eddy suppression. Thus, it is not the mean flow di-

rectly, but rather the contribution of the mean flow to

the PV gradient that results in suppression of diffusivity.

We close by remarking that our results bear on the

historical controversy between Prandtl’s theory of mo-

mentum transfer and Taylor’s theory based on vorticity

transfer. The debate migrated into geophysical fluid

dynamics in the 1970s (Welander 1973; Thomson and

Stewart 1977; Stewart and Thomson 1977) and has re-

cently been recalled by Maddison and Marshall (2013).

The results here do not support Taylor’s view. Taylor

argued that in ideal two-dimensional fluid dynamics,

vorticity should be transferred much like a passive

scalar and thus advocated an eddy closure that, in our

notation, is

y0 z052keb . (89)

A prominent problem with this proposal has always

been that because of the identity (23), momentum is not

conserved on a b plane. Our results pile on more: al-

though the passive scalar eddy diffusivity is nonzero, the

vorticity flux on the left-hand side of (89) is zero. More-

over, in general agreement with Prandtl’s views, there is

a nonzero momentum flux that is, painfully for Taylor,

independent of the mean potential vorticity gradient b.

Thus, in the model solved here, b is an important control

on passive scalar transport, but it is irrelevant for mo-

mentum transport.
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APPENDIX A

A Bound on Eddy Diffusivity

In addition to the definition in (4), the eddy diffusivity

can be obtained from the power integrals in (28) and

(29). Thus, we can write the eddy diffusivity as a linear

combination of three different expressions:

ke5 p
mc02

bbc

1 2q
mz0 c0

bbc

2 r
y0 c0

bc

, (A1)

where p1 q1 r5 1. Completing the square involving c0,

assuming that p, 0, and then dropping the squared term

(which has the same sign as p) gives the inequality

JUNE 2014 SR I N IVASAN AND YOUNG 2181



ke#
1

2

q2kz 1 r2ky
q1 r2 1

, (A2)

where ky and kz are defined in (33) and (35). Minimizing

the right-hand side of (A2) over q and r, we find

q5
2ky

ky 1 kz
, r5

2kz
ky 1 kz

, (A3)

and therefore p 5 21. The smallest value of the right-

hand side of (A2) produces the best upper bound on ke,

which is the result in (36).

APPENDIX B

Details of the Z Solution

Using the convention in (12), the Fourier transform of

(38) is

2gp~Zq5
~J2 2m~Z . (B1)

The solution of the ordinary differential equation in

(B1) can be written as the time integral of a ‘‘sheared

disturbance’’:

~Z(p, q)5

ð‘
0
e22mt ~J(p, q̂) dt , (B2)

where

q̂ 5
def

q1 pgt . (B3)

a. A polar representation of ~J

It is convenient to use a polar representation of the

spectrum

~J5 ~J0(k)1 �
‘

n51

~J2n(k) cos2nf (B4)

above p 5 k cosf and q 5 k sinf. The anisotropic ring

forcing in (12) has this form. Because of the exchange

symmetry [see (11)], only even terms appear within the

sum on the right-hand side of (B4). And because of the

assumed reflexion symmetry in (15) there are no sin2nf

terms in (B4).

b. The Reynolds stress

In wavenumber space, the Reynolds stress in (40) is

u0 y052

ðð
pq~Z(p,q)

(p21 q2)2
dp dq

(2p)2
. (B5)

Combining (B2) and (B5) we obtain

gu0 y05 «2m

ðð
J1(p,q)

~J(p, q)
dp dq

(2p)2
, (B6)

where the kernel is

J1(p,q) 5
def
ð‘
0

e22mt

p21 (q2 pgt)2
dt . (B7)

The three terms in (B6) correspond to the three terms in

the energy power integral (26).

Substituting the Fourier series expansion of ~J(p, q) in

(B4) into (B6), and performing the f integrals using

(B16) below, one finds

u0 y05
m

g2
�
‘

n51

(21)n11T 2n

ð‘
0

~J2n(k)

2pk
dk . (B8)

The coefficients in (B8) are

T 2n 5

ð‘
0
e2mt/2

�
tffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 4
p

�n

Tn

�
tffiffiffiffiffiffiffiffiffiffiffiffiffi

t21 4
p

�
dt , (B9)

wherem 5
def

4m/g and Tn is the Chebyshev polynomial of

order n.

When the forcing ~J is specialized to the anisotropic

ring spectrum in (20), only the n 5 1 term in (B8) is

nonzero, and the k integral is trivial. The expression for

u0 y0 in (41) is obtained from (B9) with n 5 1.

Notice that the isotropic part of the spectrum [i.e.,
~J0(k) in (B4)] does not contribute to the Reynolds

stresses in (B8). This recapitulates the result that isotro-

pic forcing of a Couette flow does not produce Reynolds

stresses (Farrell and Ioannou 1993; Srinivasan and Young

2012).

c. Anisotropy

We first compute y02 starting from

y025

ðð
p2 ~Z(p,q)

(p21 q2)2
dp dq

(2p)2
. (B10)

Combining (B2) and (B10), we have

y025

ðð
J2(p, q)

~J(p, q)
dp dq

(2p)2
, (B11)

where the kernel is

J2(p, q) 5
def
ð‘
0

p2e22mt

[p21 (q2 pgt)2]2
dt . (B12)
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Owing to the complexity of the kernel J2(p, q), we

compute y02 only for the special case of the anisotropic

ring spectrum in (20). On combining with (B11) and

evaluating the angular integral as a special case of (B17)

gives

y025
«

2m

�
11 2a

ð‘
0
e2tB

�
gt

2m

�
dt

�
, (B13)

where the function B is defined in (B20). Using

y02 2 u02 5 2y02 2 (u02 1 y02), and the expression for the

eddy kinetic energy in (48), we obtain y02 2 u02 in (54).

d. Two angular integrals

Although the Fourier integral

An(t) 5
def
þ

e2inf

cos2f1 (sinf2 t cosf)2
df

2p
(B14)

defeats Mathematica, An(t) can be evaluated using the

method of residues:

An(t)5

�
2
t(t2 2i)

t21 4

�n
, (n5 0, 1, 2, . . . ) . (B15)

If n $ 1, real and imaginary parts of (B15) are sepa-

rated as

An(t)5 (21)n
�

tffiffiffiffiffiffiffiffiffiffiffiffi
t21 4

p
�n
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�
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��

2
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t21 4

p Un21

�
tffiffiffiffiffiffiffiffiffiffiffiffi

t2 1 4
p

��
, (B16)

where Un21 is the modified Chebyshev polynomial.

An integral required for the evaluation of y02 is

Bn(t) 5
def
þ

cos2fe2inf

[cos2f1 (sinf2 t cosf)2]2
df

2p
. (B17)

The method of residues gives

B0(t)5
1

2
(B18)

and

Bn(t)52

�
2
t(t2 2i)

t21 4

�n�1
2
1

n

t(t1 2i)

�
, (B19)

where n 5 1, 2, . . . . Although (B19) can be separated

into real and imaginary parts along the lines of (B16),

the resulting expression is long and is not stated here.

Instead, for the special case of n 5 1, we have

B(t) 5
def

RB1(t)5
8

(t2 1 4)2
2

t2

4(t21 4)
2

1

4
. (B20)

APPENDIX C

Properties of F1 and F2

The functions F1 in (42) and F2 in (51) can be written

compactly in terms of the exponential integral

E(z) 5
def
ð‘
z

e2u

u
du , (C1)

and the parameter m 5
def

4m/g, as

F1(g/m)5m1m2JeimE(im) , (C2)

F2(g/m)5m2<eimE(im) . (C3)

(Although the formula above is compact in terms of m,

in the main text we use the more natural nondimensional

group g/m.) We record some useful approximations. If

g/m / ‘ then
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APPENDIX D

Details of the Solution for ke

It is convenient to use the tracer–vorticity correlation

function

H 5
def

z1 c25=2P . (D1)

In terms of H, the Fourier transform of (55) is

2gp ~Hq 1 (iv1 2m) ~H5 i
bc

b
v~Z , (D2)

where

v(p,q) 5
def

2
bp

p21 q2
(D3)

is the Rossby wave frequency. Using the method of

characteristics, the solution of (D2) is
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~H(p, q)5 i
bc

b

ð‘
0

~Z(p, q̂)v(p, q̂)e22mt2ih(p,q,t) dt , (D4)

where q̂ 5
def

q1 pgt and

h(p,q, t) 5
def
ðt
0
v(p,q1 pgt0) dt0 . (D5)

Noting that v(p, q̂)5 ›th, one can integrate by parts in

(D4) and obtain a simpler expression for ~H:

~H(p, q)5
bc

b

"
~Z(p, q)2

ð‘
0
e22mt2ih ~J(p, q̂) dt

#
. (D6)

To calculate the eddy diffusivity in (D11) below one

needs the integral of ~H in (D6) over the wavenumbers p

and q. The ensuing triple integral is disentangled by

changing variables in the wavenumber integrals from

(p, q) to p̂5 p and q̂5 q1 pgt. One finds

ðð
~H(p, q)

dp dq

(2p)2
5
bc

b

"
z022

ðð
~K(p,q)~J(p, q)

dp dq

(2p)2

#
,

(D7)

where ~K(p, q)5 ~Kr(p,q)1 i ~Ki(p,q) is the kernel

~K(p,q) 5
def
ð‘
0
e22mt2ix(p,q,t) dt , (D8)

with

x(p,q, t) 5
def
ðt
0
v(p, q2pgt0) dt0 . (D9)

The phase x is evaluated explicitly in (60). The kernel in

(D8) has the symmetry

~K(p, q)5 ~K*(2p,2q) , (D10)

which shows that ~K is the Fourier transform of a real

function.

Our main goal is to calculate the tracer eddy diffu-

sivity ke in (4). Using the power integral (29), this is

ke 5
2m

bbc

ðð
~Hr(p, q)

dp dq

(2p)2
, (D11)

where ~Hr is the real part of ~H. Taking the real part of

(D7) we obtain from (D11)

ke5
2mz02

b2
2

2m

b2

ðð
~Kr(p, q)

~J(p, q)
dp dq

(2p)2
. (D12)

Using

z02 5

ðð ~J(p,q)

2m

dp dq

(2p)2
, (D13)

the result in (D12) is rewritten in (58).

APPENDIX E

Tracer Diffusivity in the Limit g/m / ‘

Using the exchange symmetry, we can perform the p

and q integrals in (58) over the right half plane p. 0, and

then multiply by 2. In polar coordinates, we there-

fore limit attention to 2p/2 , f , p/2, so that the

arctan(q/p) 5 f. As g/m / ‘ and ~g � ~b, the kernel ~M

in (59) becomes increasingly concentrated close to f 5
p/2. Indeed, in the distinguished limit g/m / ‘, with

t* 5
def 1

g

�
p

2
2f

� (E1)

fixed and order unity, the phase function in (60) sim-

plifies to

x’2
bt*
k

hp
2
1 arctang(t2 t*)

i
. (E2)

Moreover, as g becomes large, the arctangent above

approaches a discontinuous step function with a jump at

t 5 t*. In this limit, the function cosx(t) in (59) is con-

stant on either side of the jump at t*. This observation

enables one to easily perform the integral in (60) with

the result

~M(k,f)’ e
22mt

*

�
12 cos

�
pbt*
k

��
. (E3)

The errors are probably O(g21).

Using the anisotropic ring forcing in (19), we have

therefore

ke ’
2k2f «

pb2

ðp/2
2p/2

~M(kf ,f)(11a cos2f) df . (E4)

The main contribution comes from the neighborhood

of f 5 p/2, and after some approximations and trans-

formations,

ke ’ (12a)
2k2f «

pb2

ð‘
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"
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kfg

!#
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. (E5)

The integral above can be evaluated exactly:
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The result for ke is (70).
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