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Stressed horizontal convection
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We consider the problem of a Boussinesq fluid forced by applying both non-uniform
temperature and stress at the top surface. On the other boundaries the conditions are
thermally insulating and either no-slip or stress-free. The interesting case is when
the direction of the steady applied surface stress opposes the sense of the buoyancy
driven flow. We obtain two-dimensional numerical solutions showing a regime in
which there is an upper cell with thermally indirect circulation (buoyant fluid is pushed
downwards by the applied stress and heavy fluid is elevated), and a second deep cell
with thermally direct circulation. In this two-cell regime the driving mechanisms are
competitive in the sense that neither dominates the flow. A scaling argument shows
that this balance requires that surface stress vary as the horizontal Rayleigh number to
the three-fifths power.
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1. Introduction
In 1908, Sandström began his work on horizontal convection with the remark: ‘The

motive for these experiments was the following observation I made at the Bornö
station in the Gullmarfjord on the west coast of Sweden. When the wind swept
over the fjord, the water at the surface flowed in the direction of the wind. Yet, as
soon as the wind ceased, it flowed back in the opposite direction.’ For an English
translation of Sandström’s paper, and the history of the horizontal-convection problem,
see Kuhlbrodt (2008).

Horizontal convection is convection generated by imposing non-uniform buoyancy
along a horizontal surface (Stern 1975). The problem has attracted considerable
attention due to the suggestion of Munk & Wunsch (1998) that mechanical energy
sources – such as the wind stress observed by Sandström (1908) – are necessary
to sustain the ocean circulation. Recent work on horizontal convection is reviewed
by Hughes & Griffiths (2008). Despite Sandström’s pioneering recognition of the
importance of surface wind stress, there has been only a little discussion of the
interaction between imposed surface stress with surface buoyancy forcing within the
context of horizontal convection. An early exception is the study by Beardsley & Festa
(1972). More recently Ilicak & Vallis (2011) have examined the effect of an oscillatory
surface stress on horizontal convection. In this paper we revisit the surface-stress
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problem formulated by Beardsley & Festa (1972) with greater computational resources,
and with an improved understanding of horizontal convection.

The point of Munk & Wunsch (1998) regarding energy sources can be appreciated
by considering the mechanical energy budget of horizontal convection (Paparella &
Young 2002). Consider a three-dimensional rotating fluid in a rectangular box and
represent the density as ρ = ρ0(1 − g−1b), where b is the ‘buoyancy’. The Boussinesq
equations of motion are then

Du
Dt
+ 2Ω × u+∇p= bẑ+ ν∇2u, (1.1)

Db

Dt
= κ∇2b, (1.2)

∇ ·u= 0. (1.3)

The kinematic viscosity is ν and the thermal diffusivity is κ . The boundary conditions
on the velocity u= (u, v,w) are u · n̂= 0, where n̂ is the outward normal. The vertical
coordinate is −H < z< 0. At the top surface, z= 0, the boundary conditions are

b= bs(x, y) and νuzx̂+ νvzŷ= τ s(x, y); (1.4)

the surface buoyancy bs and surface stress τ s are prescribed with 0 6 bs(x, y) 6 bmax

and 0 6 |τ s(x, y)| 6 τmax . There is no flux of heat through the bottom, z = −H, or
through the sidewalls. The viscous boundary conditions on the bottom and sidewalls
are some combination of no-slip and no-stress.

We denote the total volume and time average by angular brackets 〈〉. Thus, the
average mechanical energy dissipation is

ε
def= ν〈|∇u|2+ |∇v|2+ |∇w|2〉. (1.5)

(The contents of 〈〉 above differ from the local dissipation by a divergence term with
zero volume integral.) Taking the dot product of the momentum equation in (1.1)
with u and averaging over the volume, one has

ε = 〈wb〉 + H−1 us · τ s, (1.6)

where us
def= u(x, y, 0, t) is the surface velocity and the overbar denotes an average over

x, y and t. This shows that the viscous dissipation ε is balanced by the conversion of
potential energy into kinetic energy via the correlation in 〈wb〉 and by the stress work
τ s ·us. In Sandström’s observation the wind is doing net positive work because the
surface velocity is in the direction of the wind, i.e. τ s ·us > 0. However, if the surface
velocity is against the direction of the wind, then the atmosphere is extracting energy
from the ocean.

Taking the (x, y, t)-average of (1.2), and using the no-flux condition at z = −H, one
has

wb− κ b̄z = 0. (1.7)

Thus there is no net vertical buoyancy flux through every level z = constant. The
‘zero-flux’ constraint (1.7) is a distinctive feature of horizontal convection, and remains
in force when the problem is enriched by the addition of either surface stress forcing
τ s or an interior body force (Tailleux & Rouleau 2010). Another expression for the
buoyancy flux 〈wb〉 in (1.6) is obtained by averaging (1.7) over z:

〈wb〉 = κ1b̄

H
, (1.8)
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where 1b̄ ≡ b̄(0) − b̄(−H) is the difference between the horizontally averaged
buoyancy at the top and bottom of the box.

The role of available potential energy in horizontal convection has recently been
examined by several authors (Hughes, Hogg & Griffiths 2009; Tailleux 2009; Winters
& Young 2009). Relevant to this discussion is that 〈wb〉 is the net rate of transfer
between available potential energy and kinetic energy, and also the conversion between
total potential energy and kinetic energy. Thus (1.8) provides a restrictive bound on
conversions between kinetic and both forms of potential energy.

Eliminating the buoyancy flux 〈wb〉 between (1.6) and (1.8), one then has

Hε = κ1b̄+ τ s ·us. (1.9)

The left-hand side of (1.9) is positive definite. But, in general, the sign of the
individual terms on the right is indefinite. For instance, if τ s ·us > 0, then it is
impossible to discount the statically unstable possibility that 1b̄ 6 0.

Most work on horizontal convection has taken τ s = 0 so that 1b̄ is positive, and
then the strength of the kinetic energy source is bounded with ε 6 κbmax/H. The
literal statement of Sandström’s theorem in Defant (1961) is contradicted by many
experiments (Mullarney, Griffiths & Hughes 2004; Wang & Huang 2005; Coman,
Griffiths & Hughes 2006). Nonetheless, the bound ε 6 κbmax/H provides a rigorous
foundation for the thrust of Sandström’s (1908) thermodynamic argument that non-
uniform surface buoyancy alone cannot supply significant mechanical energy to the
ocean circulation; see also McIntyre (2009) and Nycander (2010). A main point of
interest in mechanically forced horizontal convection is that the system is relieved
from this restrictive constraint on ε by additional source terms such as τ s ·us.

2. A model of stressed horizontal convection
For the numerical simulations we consider a two-dimensional non-rotating

Boussinesq fluid in a rectangular box, where the motion is in the (y, z)-plane, with
the vertical coordinate −H < z < 0, and horizontal coordinate 0 < y < L. Following
Beardsley & Festa (1972) and Rossby (1998), we consider horizontal convection in the
streamfunction–vorticity formulation with equations of motion

∇2ψt + ψx∇2ψz − ψz∇2ψx = by + ν∇4ψ, (2.1)

bt + ψxbz − ψzbx = κ∇2b. (2.2)

Above, the streamfunction is ψ(y, z, t), and the incompressible velocity is (v,w) =
(−ψz, ψy). On the boundary of the domain ψ = 0.

Mechanical and buoyancy forcing is via the surface boundary conditions

b(y, 0, t)= bmaxcos2
(
πy

2L

)
, νvz(y, 0, t)=−τmax sin

(
πy

L

)
. (2.3)

The surface buoyancy decreases smoothly and monotonically from b = bmax at y = 0
to b = 0 at y = L. On the sidewalls and bottom there is no flux of buoyancy and no
stress.

In (2.3), τmax > 0 so that the surface stress drives an anticlockwise circulation in
the box. This is opposite in direction to the clockwise circulation forced by the
surface buoyancy. We refer to this sense of mechanical forcing as ‘thermally indirect’,
meaning that buoyant fluid near y = 0 is being pushed downwards by the stress, and
the dense fluid at y= L is elevated: e.g. Cessi (2007).
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Thermally indirect forcing is relevant to the ocean: an east–west wind stress drives
north–south Ekman surface flow, which is parallel to the main north–south temperature
gradient, as in the two-dimensional system formulated above. In the thermally indirect
case, the Ekman flow advects dense water over lighter water, triggering convection and
creating weakly stratified ‘mode waters’ (Thomas 2005). The sub-polar oceans provide
striking examples: the westerly wind stress drives an Ekman transport towards the
equator in both hemispheres, producing basin-scale thermally indirect overturning.

2.1. The control parameters
As a dimensionless measure of the strength of the surface mechanical forcing, we
introduce the stress parameter

S
def= τmaxL2

ν2
. (2.4)

The other three dimensionless parameters specifying this problem are familiar from
earlier studies of unstressed horizontal convection. In the notation of Chiu-Webster,
Hinch & Lister (2008), these are the aspect ratio, the horizontal Rayleigh number and
the Prandtl number:

A
def= H

L
, R

def= bmaxL3

νκ
, σ

def= ν

κ
. (2.5)

2.2. Discussion of two representative solutions
Figure 1 shows snapshots of two numerical solutions. The steady flow in figure 1(a)
is unstressed horizontal convection. The main features in the upper panel, such as the
thin surface boundary layer and the almost unstratified abyss, are familiar from many
earlier studies. In this solution the average bottom buoyancy is 0.12bmax , which is
considerably less than the mean surface buoyancy bmax/2.

Figure 1(b) shows the more complicated unsteady flow resulting from thermally
indirect stress. It takes about half a vertical diffusion time, H2/κ , to reach a
statistically steady state. There is a shallow stress-driven anticlockwise cell and a
second deep clockwise cell. Animations show that the deep cell is associated with
pulses of dense fluid falling cyclically along the right-hand wall, beneath the densest
part of the top surface. These pulses hit the bottom, turn the corner, and establish an
unsteady bottom current flowing from y = L towards y = 0. The flow in the upper left
quadrant of the domain is steady.

A two-cell circulation is also evident in the relatively low-Rayleigh-number
solutions shown in Figure 6 of Beardsley & Festa (1972). The two-cell circulation
requires intermediate values of τmax so that the stress is strong enough to reverse the
surface velocity, vs = v(y, 0, t), but is not so strong as to overpower the buoyancy-
driven circulation throughout the domain. A more quantitative estimate of the requisite
τmax is given below in the discussion surrounding (3.5).

In figure 1(b), vs is in the same direction as the applied stress, so that the stress is
doing positive work on the fluid. Using the surface stress in (2.3), the stress work in
the power integral (1.9) is

τ s ·us =−τmax vs sin(πy/L). (2.6)

In figure 1(b) the abyssal fluid is more buoyant than in figure 1(a): stress increases
the abyssal buoyancy by pumping buoyant fluid downwards in the upper cell. In fact,
the average bottom buoyancy is 0.55bmax , so that in (1.9) 1b̄ = −0.05bmax ; because
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FIGURE 1. Two snapshots of the buoyancy field (shading) and the streamfunction ψ . Solid
contours are ψ > 0, dashed contours are ψ < 0; the contour interval is 1ψ = 10κ . (a) Steady
solution at t = H2/κ with with no stress, i.e. the stress parameter S defined in (2.4) is S = 0.
(b) Unsteady solution at t = 1.3H2/κ with S = 1.1× 106. The direction of the applied surface
stress is indicated by⇐. These solutions have R = 64 × 107, A= 1/4 and σ = 1. (a) Sδ = 0,
(b) Sδ = 5.8.

1b̄ < 0, energy is being converted from kinetic to potential energy. Thus the positive
τ s ·us balances the dissipation ε, and τ s ·us also provides the net production of
potential energy required by 1b̄< 0.

Figure 1(a) shows the unstressed case, and figure 1(b) shows a case with moderately
strong stress in which there is a top-to-bottom inversion of the density. Figure 2(a),
showing the horizontally averaged buoyancy b̄(z), summarizes a suite of solutions in
which τmax varies between the extremes shown in figure 1. The abyssal buoyancy
increases monotonically with τmax ; very small τmax produces small density inversions
confined to the upper cell. At a particular value of τmax – which is less than the value
in figure 1(b) – the average bottom buoyancy is equal to bmax/2, so that 1b̄= 0.

If τmax is increased past the value at which 1b̄= 0, as it is in figure 1(b), then there
is a top-to-bottom density inversion, even though the squared buoyancy frequency,

N2 def= b̄z, (2.7)

is negative only in the relatively small upper cell: see figure 2(b).
Increases in τmax lead to the point where the buoyant ‘blob’ evident in the top

left corner of figure 1(b) is pushed down to the bottom. At this threshold, the lower
thermally direct cell collapses and the circulation is thermally indirect everywhere,
i.e. the stress wins. Except at the top boundary, where a non-uniform buoyancy is
prescribed, the buoyancy is homogenized to around 0.65bmax . In this mechanically
dominated regime the buoyancy is almost a passive scalar and the top boundary layer
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FIGURE 2. (a) Horizontally averaged buoyancy profiles, b̄(z), (b) the buoyancy frequency in
(2.7). The Rayleigh number is R = 64 × 107 with various values of S. The end points S = 0
and 9.6× 105 are the solutions in figure 1. The parameter in the legend is Sδ defined in (3.5).

becomes very thin, and our resolution is no longer sufficient. Figure 1(b) shows the
largest τmax at which we can afford the requisite boundary-layer resolution.

The stress work τ s ·us has an interesting dependence on τmax . Small τmax does
not manage to reverse the sign of vs, and therefore the surface flow is against the
direction of the stress, so that τ s ·us < 0. That is, the first effect of thermally indirect
surface stress is to make the circulation weaker. However, increasing τmax eventually
reverses vs so that τ s ·us becomes positive. The transition can be identified precisely
by the condition that τ s ·us = 0, which happens at a smaller value of τmax than the
full-depth inversion signalled by 1b̄ = 0. In § 3 we use a scaling arguments to more
quantitatively delineate the occurrence of the two transitions τ s ·us = 0 and 1b̄= 0.

2.3. Remarks on the numerical solution
The system in (2.1) and (2.2) is solved using the same code as Paparella & Young
(2002). The numerical representation of vorticity and temperature is a second-order
finite difference in space with a staggered grid. The Jacobian terms are discretized
with the Arakawa Jacobian formulation (Arakawa 1966) and the elliptic problem for
the streamfunction, with a given vorticity, is solved with a multigrid method (Briggs
1987). The Laplacian terms are based on the DuFort–Frankel discretization (DuFort
& Frankel 1953), which is a stable and relatively accurate scheme as long as the
time step obeys the Courant–Friedrichs–Lewy condition (CFL) condition. We adjusted
the time step so that the CFL number is less than 0.05. When the spatial resolution
appears to be too coarse for the features in the simulated flow, runs at double the
resolution were performed in order to achieve a more accurate solution; the highest
spatial resolution we could afford was 1024 × 256. Unfortunately the simulations at
R= 64× 108 must be treated with caution because resolutions less than 1024× 256 do
not adequately resolve the small-scale structures in the flow, and we cannot afford to
substantially increase the resolution beyond 1024× 256. At the less demanding setting
R = 64 × 107, we compare averaged quantities from 512 × 128 solutions with those
from solutions at 1024 × 256. Global averages, such as 〈wb〉, τ s ·us and ε, change by
less than 3 %. We do not present the results with error estimates: globally averaged
quantities have error estimates in the order of a few per cent. Typically, the unstressed
simulations reach a steady state, or statistically steady state, within one half of a



Stressed horizontal convection 323

vertical diffusion time, H2/κ . We integrated all solutions for at least one full diffusion
time.

3. Scaling arguments
3.1. Rossby scaling

In the unstressed case, with S = 0, the scaling argument of Rossby (1965) provides a
satisfactory condensation of all known numerical solutions: e.g. Siggers, Kerswell &
Balmforth (2004), Chiu-Webster et al. (2008) and Ilicak & Vallis (2011). The first step
in Rossby’s argument is assuming that the typical vertical variation of buoyancy within
the surface boundary layer is bmax . If the dominant boundary-layer balance in (2.1) is
between by and vertical diffusion of vorticity, νψzzzz, then one has

V ∼ bmaxδ
3

νL
, (3.1)

where δ is the boundary-layer thickness, and V is the typical horizontal velocity in
the boundary layer. A second scaling relation comes from a dominant balance in the
buoyancy equation (2.2) between the advective terms, which scale as Vbmax/L, and the
vertical diffusion scaling as κbmax/δ

2, leading to

V ∼ Lκ

δ2
. (3.2)

From (3.1) and (3.2), Rossby (1965) obtains the boundary-layer thickness

δ ∼ L

R1/5
, (3.3)

and the boundary-layer velocity

V ∼ κ
L

R2/5. (3.4)

3.2. A scaling regime for stressed horizontal convection
In order for the surface stress to be competitive with the buoyancy forcing, one must
have τmax ∼ νV/δ, so that the magnitude of the imposed surface stress is comparable
to the stress across Rossby’s purely buoyancy boundary layer. In terms of control
parameters, this condition is S ∼ σ−1R3/5. This motivates the introduction of the non-
dimensional ratio

Sδ
def= σS

R3/5
. (3.5)

If Sδ � 1, then the stress τmax is only a weak perturbation of the buoyancy-driven
boundary layer, while if Sδ � 1, then the flow is strongly mechanically forced. Notice
that the solutions summarized in figure 2 have Sδ of order unity.

The scaling relations in (3.3) and (3.4) motivate the hypothesis that in the
distinguished limit R→∞ and S→∞, with σ , A and Sδ fixed, the boundary-layer
thickness and velocity are given by

δ = LR−1/5 δ∗(σ, Sδ,A), V = κL−1R2/5 V∗(σ, Sδ,A), (3.6)

where δ∗ and V∗ are non-dimensional functions. In this sense Rossby scaling applies
to stressed horizontal convection and Sδ provides an objective means of comparing the
strength of the stress forcing with that of the buoyancy forcing. We present numerical
evidence in support of this hypothesis in § 4.
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3.3. Static instability in the upper boundary layer
In the solutions shown in figures 1 and 2, the stress is dragging dense fluid over
light and inducing a statically inverted buoyancy field. This density inversion can
remain stable if the local vertical Rayleigh number within Rossby’s boundary layer is
sufficiently small. One can estimate the relevant boundary-layer Rayleigh number as
bmaxδ

3/νκ ∼ R2/5. This motivates the definition of a boundary-layer Rayleigh number

Rδ
def= R2/5. (3.7)

If the mechanical stress is thermally indirect, with Sδ = 0(1), and R is increased
sufficiently, then experience with Rayleigh–Bénard convection suggests that the static
inversion should trigger convection once Rδ > 103. The solutions at R = 64 × 107 and
64×108 have Rδ = 3330 and 8365 respectively, yet there is no indication of convection
within the boundary layer in any of our simulations. Either Rδ = 8365 is too small, or
the shear across the boundary layer, V/δ ∼ κR3/5/L2, is suppressing convection.

In a three-dimensional situation, rolls parallel to the y-axis, with overturning
orthogonal to the plane of figure 1, would be unaffected by the boundary-layer shear
vz, and are therefore the most likely mode of instability; e.g. as in Gayen & Sarkar
(2010). We proceed by considering only the two-dimensional configuration.

To assess the possible role of boundary-layer shear in the regime with

Sδ = O(1), (3.8)

we compare the shear time scale with the time it takes a parcel to fall through the
boundary-layer density inversion. The shear time scale can be estimated as either
δ/V or, from the boundary condition (2.3), as ν/τmax . The requirement that these two
estimates of the shear time have the same magnitude is our starting point in (3.8). If
the boundary-layer buoyancy inversion is of order bmax , and occurs over a distance δ,
then the time it takes a heavy parcel to fall to its neutral level is

√
δ/bmax . Thus we

obtain a non-dimensional ratio

fall time through δ
shear time scale

=
√

δ

bmax

τmax

ν
= Sδ√

σ
. (3.9)

Convection might occur if the parameter above is sufficiently small, i.e. if parcels can
release potential energy by falling through the boundary layer, before being sheared
into oblivion. On the other hand, to invert the boundary-layer buoyancy requires that
Sδ be sufficiently large. With σ = 1 these two requirements cannot both be satisfied;
that is, if the shear is strong enough to invert the boundary-layer buoyancy, it is also
strong enough to stabilize the inversion by preventing convective overturning in the
plane of figure 1.

These considerations led us to obtain solutions with σ = 10 so that Sδ can be
significantly larger than one, while Sδ/

√
σ is less than one. Then, according to (3.9),

the inverted boundary-layer buoyancy might result in convection within the boundary
layer. Figure 3 shows the three σ = 10 solutions, and indeed unsteady boundary-layer
convection is evident in figure 3(b).

It is remarkable that boundary-layer convection occurs only in the intermediate case
in figure 3(b): the other solutions in figure 3 are steady. In panel (a) the stress is
weak and the thermally indirect upper cell is undeveloped. Consequently the buoyancy
inversion is not strong enough to result in boundary-layer convection. In panel (c) the
strong stress produces a complex, but steady, pattern with two co-rotating cells within
the boundary layer. Although the buoyancy inversion is strong, the flow in panel (c) is
steady.
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FIGURE 3. Buoyancy and streamfunction of three solutions with R = 64 × 107, σ = 10 and
A = 4. The parameter in (3.9) is Sδ/

√
σ = 0.39 (a), 0.65 (b) and 1.05 (c). Solid contours are

ψ > 0, dashed contours are ψ < 0; the contour interval is 1ψ = 10κ .

Animations of the solution in figure 3(b) show that the thermally indirect flow in
the upper cell produces an inversion which steadily becomes stronger until convective
plumes suddenly appear and release the potential energy. Discharging the top-heavy
inversion and quenching the convection requires several plumes to form and then
fall through the boundary layer. As shown by the time series of potential energy in
figure 4, this process repeats cyclically so that there are epochs of convection followed
by epochs during which the inversion is re-established: see figure 5 (which shows only
the top right corner of the domain). Both stages are slow: a gradual build-up of the
stress-driven inversion, followed by a slow discharge via a sequence of plumes.

4. Verification of the scaling
With the Rossby scaling relations we can collapse the results of computations in the

range 64× 105 6 R 6 64× 108 and 0< Sδ < 5.8. In figure 6(a) we confirm the scaling
argument from § 3 by showing that the vertical coordinate z/δ collapses b̄(z) profiles at
fixed values of Sδ.



326 J. Hazewinkel, F. Paparella and W. R. Young

0.605

0.615

0.625

0.635

0.610

0.620

0.630

0.640

H2

b
P

E
  H

3

0.05 0.250.200.150.100

FIGURE 4. (Colour online available at journals.cambridge.org/flm) A time series of potential
energy, PE(t)=− ∫ zb dV , for the solution shown in figure 3(b).

y  L

z  H

z  H

0

0.5

0

0.5

(a)

(b)

–0.5

0

10.5

–0.5

0

0.5 1

FIGURE 5. (a) Snapshot of the solution at the first peak of the potential-energy time series in
figure 4. (b) Snapshot at the minimum PE immediately after the snapshot in (a). The top right
quarter of the domain in figure 4 is shown, and the colour scale has been changed to better
show structure in the boundary layer. Eight plumes fall through the boundary layer between
the two snapshots. Solid contours are ψ > 0, dashed contours are ψ < 0; the contour interval
is 1ψ = 10κ .

Figure 6(b) shows the horizontally averaged bottom buoyancy b̄(−H); the bottom
buoyancy increases monotonically with increasing S at fixed R. At fixed Sδ, b̄(−H)
decreases slowly with increasing R and seems to approach a non-zero constant as
R→∞; we have not been able to obtain a satisfactory scaling for the dependence of
b̄(−H)/bmax on R. In figure 6(b) we see that 1b̄= 0.5bmax (i.e. 1b̄= 0) when Sδ is in
the range four to five (the value depends on R). In the sequence with R= 64× 108, the
flow is weakly unsteady for all solutions with Sδ > 3 and b̄(−H) is never larger than
the mean top buoyancy b̄(0)= 0.5bmax . This leads us to speculate that as R→∞, with

http://journals.cambridge.org/flm
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FIGURE 6. Solutions with σ = 1. (a) Horizontally averaged buoyancy b̄ against z/δ.
(b) Horizontally averaged buoyancy at the bottom z = −H. (c) The index Φ in (4.1).
(d) Averaged surface velocity v̄s. Double markers at the same Sδ correspond to results at
different resolution.

Sδ fixed at a largish value such as five or six, the bottom buoyancy b̄(−H) saturates
at bmax/2, so that 1b̄= 0. In other words, at very high horizontal Rayleigh numbers it
is impossible for surface stress to coerce a top-to-bottom density inversion. Via (1.8),
this scenario also entails a shutdown of the conversion between potential energy and
kinetic energy.

As an index of the strength of horizontal convective heat transport and diapycnal
mixing, Paparella & Young (2002) introduced

Φ
def= 〈∇b ·∇b〉
〈∇c ·∇c〉 , (4.1)

where c(x) is the solution of the conduction problem ∇2c = 0, with c satisfying the
same boundary conditions as b, i.e. c = b at the top surface and the normal derivative
of c is zero at the other boundaries. For the unsteady solutions, temporal pulsations in
Φ are removed by averaging over half a diffusive time.

Figure 6(c) shows Φ for various R as a function of Sδ. For all R there is an initial
decrease in Φ for increasing Sδ. The weakest horizontal convection, as indicated by
the minimum in Φ, is at Sδ ≈ 2. Thereafter Φ increases with Sδ. For small stress the
surface velocity is determined by the buoyancy forcing and is therefore against the
wind, so that τ s ·us < 0. In this regime the surface stress is working against the fluid
and slowing down the circulation. But if the stress is strong enough to reverse the sign
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of the surface velocity, then the stress work τ s ·us becomes positive; that is, if the
surface flow is downwind then the surface stress is doing work on the fluid. In this
wind-powered regime, Φ increases with stress.

The behaviour observed in both b̄(−H) and Φ is qualitatively similar to the R= 104

solutions shown in figures 7 and 9 of Beardsley & Festa (1972). Using kinetic
energy as an index, Beardsley & Festa (1972) also remarked on the non-monotonic
dependence of the strength of the circulation on the surface stress.

Strong evidence supporting the earlier scaling arguments is provided by the variation
of the surface velocity vs with the surface stress. In figure 6(d) we plot the scaled
mean surface velocity R−2/5v̄s against Sδ: there is good collapse of the data and v̄s

changes sign at Sδ ≈ 1 for all R.

5. Conclusion and discussion
One motivation for studying stressed horizontal convection is to better understand

the role of mechanical forcing in the power integral (1.9). Here, and in Ilicak &
Vallis (2011), a surface stress is applied to the system. Tailleux & Rouleau (2010)
use an interior body force to inject mechanical energy, and in a laboratory study
Whitehead & Wang (2008) use three-dimensional grid-generated turbulence to supply
mechanical energy to a horizontal convective system. In the same vein, Dewar et al.
(2006) suggest that the locomotion of marine organisms might supply significant
mixing energy to the interior ocean. These are all strategies for avoiding the constraint
ε < κbmax/H by adding a term analogous to the stress work τ s ·us to the right of
the power integral (1.9). We have shown that sufficiently strong mechanical forcing
leads to an increase in the strength of the circulation, as indicated for example by the
ultimate increase in Φ with Sδ in figure 6(c).

However, the power integral (1.9) is only a single relation between globally
averaged quantities, and thus cannot strongly constrain the phenomenology of
horizontal convection throughout the four-dimensional parameter space (R, S, σ,A);
for example, the circulations in figure 1 (with σ = 1) and figure 3 (with σ = 10)
are quite different, even in the cases with no surface stress. Ilicak & Vallis (2011)
provide further examples of the diverse phenomenology of horizontal convection. A
characteristic feature of the steady surface stress investigated in this paper is the
two-celled circulation shown in figures 1 and 3. The shallow, thermally indirect cell is
evident even in the early study of Beardsley & Festa (1972). The generalized Rossby
scaling proposed in (3.6) proves very useful in condensing the results in this two-cell
regime.

Modern descriptive studies, based on strict use of isopycnal analysis, emphasize
that the Earth’s oceans have a multi-cell overturning structure, and that the shallow
wind-driven cell, which has the greatest vertical temperature differences, is responsible
for most of the heat transport (Talley 2003). We must cautiously interpret the
oceanographic application of the very idealized problem of stressed horizontal
convection (see below). But we cannot resist remarking that the two-cell overturning
pattern in our solutions is a feature of the ocean circulation, and probably for the same
reason: stress forcing drives the shallow cell, while the deeper cell is associated with
bottom-water formation and upwelling.

Further regarding the oceanographic implications of these results, the problem
of horizontal convection can be considered an idealized and instructive thought
experiment applying to the ‘Sandström ocean’ rather than the ‘real ocean’. Like the
real ocean, Sandström’s ocean is forced by stress and buoyancy at the top surface,
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and one can estimate the Rossby scales in (3.3) and (3.4) using oceanographic
parameter values (Stern 1975). Suppose that bmax = 5 × 10−2 m s−2, corresponding to
a temperature difference of 25 K and a thermal expansion coefficient of 2 × 10−4 K−1.
For the horizontal dimension, use the planetary scale L = 107 m, and molecular
parameters κ = 10−7 m2 s−1 and ν = 10κ . Then R= 5×1032, and the Rossby boundary-
layer scales are δ = 2.9 m and V = 0.12 m s−1. If instead one uses eddy diffusion and
viscosity with ν = κ = 10−4 m2 s−1 (without specifying the energy source required
to support this mixing), then the Rayleigh number drops to R = 5 × 1027, and the
implied Rossby scales are δ = 29 m and V = 1.2 m s−1. It is a remarkable prediction
of Rossby scaling that decreasing the Rayleigh number by increasing the diffusivity κ
results in a larger V .

Rather small values of τmax result in Sδ = O(1). For example, using the numerical
values corresponding to R= 5×1032 above, a typical ocean wind stress of ρ0τmax = 0.1
N m−2 gives S= 1022 and Sδ = 2400. If instead one uses eddy viscosity and diffusivity,
so that R = 5 × 1027, then S = 1018 and Sδ = 24. In both cases our computations
indicate that the flow would consist of a single, thermally indirect cell. That is, with
Sδ � 1 (and 24 is large enough), the circulation is a single-cell, thermally indirect,
stress-driven cavity flow; the buoyancy is almost a passive scalar.

The numerical estimates above suppose that Rossby’s scaling remains valid in the
distinguished limit R→∞ and S→∞, with Sδ fixed and order unity. We speculate
that three-dimensional effects and turbulence (energized by the surface stress) destroy
Rossby scaling once R is sufficiently large. With applied surface stress, either steady
or oscillatory, there is no energetic principle preventing the generation of shallow
turbulence, vertical radiation of internal gravity waves, wave breaking, abyssal mixing
and the development of deep stratification. Presumably this chain of events, which may
require three-dimensional dynamics (Scotti & White 2011), will destroy the Rossby
scaling so that the boundary layer is realistically thick and the abyss is significantly
stratified, even in Sandström’s ocean. But with R = O(108) we have not been able to
access this hypothetical regime, in which Sandström’s ocean is self-mixing and the
abyssal stratification is significant; see also Ilicak & Vallis (2011).

For the unstressed case, Hughes et al. (2007) have formulated a ‘recycling-box’
model of the very large Rayleigh number regime. Recycling-box solutions, using
oceanic parameter values, such as an eddy diffusivity κ = 10−5 m2 s−1, have a
boundary-layer thickness comparable to the depth of the ocean. Thus recycling-box
solutions predict that the boundary layer is much thicker than that of Rossby. It is not
clear how, or if, Rossby scaling gives way as to the different scaling of Hughes et al.
(2007) as R→∞. Certainly the Prandtl number σ should have some role in this issue.
Thus a main open question is finding a large-R replacement for Rossby scaling, and
then employing this hypothetical large-R scaling to objectively compare the strength of
buoyancy and stress forcing.
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