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ABSTRACT

The eddy heat flux generated by statistically equilibrated baroclinic turbulence supported on a uniform,
horizontal temperature gradient is examined using a two-layer �-plane quasigeostrophic model. The de-
pendence of the eddy diffusivity of temperature, D�, on external parameters such as �, bottom friction �,
the deformation radius �, and the velocity jump 2U, is provided by numerical simulations at 110 different
points in the parameter space �* � ��2/U and �* � ��/U. There is a special “pivot” value of �*, �piv

* �
11/16, at which D� depends weakly on �*. But otherwise D� has a complicated dependence on both �* and
�*, highlighted by the fact that reducing �* leads to increases (decreases) in D� if � is less than (greater than)
�piv

* . Existing heat-flux parameterizations, based on Kolmogorov cascade theories, predict that D� is non-
zero and independent of �* in the limit �* → 0. Simulations show indications of this regime provided that
�* � 0.04 and 0.25 � �* � 0.5.

All important length scales in this problem, namely the mixing length, the scale of the energy containing
eddies, the Rhines scale, and the spacing of the zonal jets, converge to a common value as bottom friction
is reduced. The mixing length and jet spacing do not decouple in the parameter regime considered here, as
predicted by cascade theories. The convergence of these length scales is due to the formation of jet-scale
eddies that align along the eastward jets. The baroclinic component of these eddies helps force the zonal
mean flow, which occurs through nonzero Reynolds stress correlations in the upper layer, as opposed to the
barotropic mode. This behavior suggests that the dynamics of the inverse barotropic cascade are insufficient
to fully describe baroclinic turbulence.

1. Introduction

Rhines (1977) and Salmon (1980) characterize en-
ergy transfers in baroclinic turbulence as a direct cas-
cade of the baroclinic mode and a simultaneous inverse
cascade of the barotropic mode. This dual cascade sce-
nario serves as an interpretive framework for recent
parameterizations of meridional eddy heat and poten-
tial vorticity fluxes (Larichev and Held 1995; Held and
Larichev 1996; Lapeyre and Held 2003). In these theo-
ries, the barotropic inverse cascade proceeds to small
wavenumbers until the cascade halts at a wavenumber
k0. The length k�1

0 characterizes the largest barotropic
eddies and k�1

0 is also the mixing length of heat and
potential vorticity. There are two mechanisms that
might determine k0 by slowing or halting the inverse

cascade: the planetary potential vorticity gradient, �,
and bottom friction.

Because the � effect does not dissipate energy, �
alone cannot halt the inverse cascade and determine k0.
Thus, bottom drag plays an essential role at the termi-
nus of the inverse cascade by dissipating the kinetic
energy continually supplied by the release of available
potential energy. In other words, truly halting the in-
verse cascade requires dissipation at large scales, and
only bottom drag can accomplish this. An extreme case
that makes this point is the problem of statistically
steady baroclinic turbulence with � � 0. At this � � 0
end point, the eddy heat flux is exponentially sensitive
to the strength of the bottom drag coefficient (Thomp-
son and Young 2006).

In view of the importance of bottom drag, it is dis-
maying that the bottom drag coefficient does not play
an explicit role in the heat-flux parameterizations pro-
posed by Held and Larichev (1996) and Lapeyre and
Held (2003, hereafter LH03). A defense of these drag-
less heat-flux parameterizations relies on the ability of
� to direct energy into zonal flows (Rhines 1975; Wil-
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liams 1979; Panetta 1993; Vallis and Maltrud 1993; Lee
1997). Zonal flows do not contribute to meridional
eddy diffusion and therefore do not release available
potential energy. In this view, the strong zonal flows
spontaneously generated by baroclinic turbulence, see
Figs. 1, 2, serve as a nondiffusive reservoir of barotropic
kinetic energy and, through bottom friction, as the en-
ergy sink at the terminal wavenumber of the inverse
cascade (Smith et al. 2002). Thus it is possible to main-
tain, following LH03, that with � � 0 the amplitude of
eddy heat fluxes is insensitive to the bottom drag coef-
ficient.

This seems too good to be true, and throughout most
of the parameter space it is: a main goal in this compu-
tational study of baroclinic instability is to document

the importance of bottom drag in limiting baroclinic
eddy heat fluxes. We consider the combined effects of
� and bottom friction on meridional eddy heat fluxes
and report results based on a suite of 110 statistically
equilibrated simulations of baroclinic turbulence.
These simulations significantly extend and augment the
parameter regimes of previous studies. Although the
dependence on bottom drag is not nearly as strong as
the exponential relation found by Thompson and
Young (2006) in the � � 0 limit, the new simulations
show that, even with substantial �, bottom drag remains
an important control parameter.

In section 2 we introduce the energy balance integral
and define the eddy diffusivities that are used to sum-
marize the suite of simulations. In section 3 we review

FIG. 1. (a) Growth rates of the linear baroclinic instability for three values of �* 	 ��/U, all with �* 	 ��/U � 0.02;
bottom friction produces instability at the frictionless critical value �* � 1. (b) Three time series of the eddy diffusivity
D� /U� all at �* � 0.02. The “instantaneous” diffusivity is defined by taking the angle brackets in (1) only as an (x, y)
average. (c) Hovmöller diagram of the zonally averaged barotropic velocity �
y with �* � 0.5, �* � 0.02. (d) Snapshot
of the eddy streamfunction 
� � 
 � 
 for the simulation in (c); 
� is dominated by isotropic eddies with the same scale
as the zonal jets in (c). (e), (f) As in (c), (d) but for a simulation with �* � 1 and �* � 0.02.
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and assess the LH03 theory of baroclinic eddy fluxes. In
section 4 we survey the important length scales in the
problem (the mixing length, the scale of the energy
containing eddies, the Rhines scale, and the spacing of
the zonal jets) and show that, when the bottom drag is
sufficiently weak, all length scales converge to a com-
mon value. We also show that large, jet-scale eddies
make the dominant contribution to the eddy heat flux
and force the zonal mean flow through upper-layer (not
barotropic) Reynolds stresses. In section 5 we confirm
that eddy diffusivities and heat fluxes are insensitive to
the domain scale L and to the hyperdiffusivity. Our

conclusions are presented in section 6. The equations of
motion are summarized in the appendix.

2. Eddy fluxes and diffusivities

To summarize the results of our simulations, we cal-
culate an eddy diffusivity of temperature, D�, and ob-
tain the dependence of D� on external parameters such
as the domain size L, the bottom drag coefficient �, the
Rossby deformation radius �, the imposed velocity
jump 2U, and �. Our notation is introduced systemati-
cally in the appendix and is largely the same as that of

FIG. 2. Zonal mean fields at the (c),(f) parameter values. (a),(d) The velocities, Un � Un �

ny in the upper (solid) and lower (dashed) layers. The basic state velocity jump between the
layers, 2U, is indicated by the dotted lines. (b),(e) The PV gradients in the upper and lower
layers. The basic state gradients, 1 � �* and 1 � �*, are indicated by dotted lines. In (c) and
(f) the thick solid curve is the barotropic PV, �y � 
yy; the thin jagged curve is an instanta-
neous section of barotropic PV, �y � 2
, along the line x � 0.

3216 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 64



Larichev and Held (1995): �(x, y, t) and 
(x, y, t) are the
disturbance streamfunctions of the baroclinic and baro-
tropic modes, respectively. The baroclinic streamfunc-
tion � plays the role of an interface displacement or a
thermal field. The large-scale gradient of the baroclinic
mode is �U, and thus a precise definition of the eddy
diffusivity of temperature, D�, is

D� 	 U�1��x��. �1�

Here angle brackets denote both a horizontal average
over the square 2�L � 2�L domain and an additional
time average to remove residual turbulent fluctuations.
An important point is that D� is useful only if it is
insensitive to the domain size L (Haidvogel and Held
1980). In this case one can hope that D� inferred from
a spatially homogeneous calculation can be employed
in a more realistic flow with scale separation between a
slowly varying mean and baroclinic eddies (Pavan and
Held 1996).

The quantity �
x�� in (1) is the product of the baro-
tropic meridional velocity, 
x, and the thermal field � ;
that is, the meridional heat flux is proportional to �
x��.
Moreover, the mechanical energy balance in a statisti-
cally steady state (see the appendix) is

U��2��x�� � �� |�� ��2�� |2� � hyp�, �2�

where “hyp�” indicates the hyperviscous dissipation of
energy. The first term on the right-hand side of (2) is
the mechanical energy dissipation (watts per kilogram)
by bottom drag, �. We will refer to dissipation by bot-
tom friction as

� 	 �� |�� ��2�� |2�, �3�

which neglects the hyperviscous contribution in (2).
The left-hand side of (2) is the energy extracted from
the unstable horizontal temperature gradient by baro-
clinic instability. Enstrophy budgets also identify �
x��
as the large-scale source balancing the hyperviscous en-
strophy sink at high wavenumbers.

As an alternative to the baroclinic–barotropic de-
composition, the system can be represented in terms of
two layers; the layerwise velocities and potential vor-
ticities are defined in terms of 
 and � in the appendix.
The domain-averaged PV fluxes in the upper and lower
layers are linearly related to the eddy heat flux by the
Taylor–Bretherton relationship:

���1q1� � ��2q2� � ��2��x��. �4�

The basic state gradients of upper and lower layer PV
are � � U��2 and � � U��2, respectively. Thus the

upper (n � 1) and lower (n � 2) layer PV diffusivities
are related to D� by

D� � D1�1 �
��2

U �, �5�

D� � D2�1 �
��2

U � . �6�

Thus a single quantity, conveniently defined as D� in
(1), summarizes all of the important quadratic power
integrals and fluxes in homogeneous baroclinic turbu-
lence.

Dimensional considerations (Haidvogel and Held
1980) show that

D� � U� � D�*�L

�
,
��

U
,
��2

U
,

	

UL7�, �7�

where D�* is a dimensionless function. The final argu-
ment of D�*, involving the hyperviscosity �, is relatively
small (see section 5). For brevity we suppress any ref-
erence to this hyperviscous parameter. We also focus
on a single value L/� � 25; however, we check for
dependence on L as described in section 5.

Figure 3a summarizes a suite of 110 numerical simu-
lations revealing the main features of the function
D�*(25, �*, �*), where �* 	 ��2/U and �* 	 ��/U.
Here D�* varies over five orders of magnitude in re-
sponse to much smaller changes in �* and �*. Some
trends in Fig. 3 are clear: D�* decreases monotonically
with increasing �*. However, other dependences are
more complicated, particularly those related to bottom
drag. Close to the special “pivot” value �* � �piv

* �
11/16, D�* has a weak dependence on bottom friction.
For �* � �piv

* increasing bottom friction reduces D�*,
whereas for �* � �piv

* increasing bottom friction in-
creases D�*. This behavior is shown in Fig. 3b, which
illustrates the �* variation of D� at five values of �*.
The same trends are evident in Fig. 14 of Panetta
(1993).

Thompson and Young (2006) discuss the limiting
case �* � 0 in detail. Their conclusion is that a well-
defined D�—independent of domain size—exists pro-
vided that �* is not too small. The �* � 0 points in Fig.
3 satisfy this condition and are in Thompson and
Young’s local mixing regime. However, this constraint
means that the weakly damped runs with �* � 0.08
cannot be extended to values of � less than about 0.25:
to go below � � 0.25 and �* � 0.08 requires increasing
the domain size, so the largest eddies are smaller than
the domain.

Notice that Fig. 3 shows nonzero diffusivities when
�* 
 1. This is because bottom friction destabilizes the
system beyond the frictionless critical value �* � 1
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(Holopainen 1961; Pedlosky 1987; Arbic and Flierl
2004). Consequently statistically steady, small nonzero
values of D� are achievable out to at least �* � 1.5.

To summarize the results in Fig. 3 it is useful to have
a compact formula for D�* in terms of �* and �*. The
empirical formula

D�* � �*
�4�1.7 � �3 � 4�*��*�

�4, �8�

provided 0.25 � �* � 1.25, fits D�* to within �10%
over a broad range of �* and �* values (see Fig. 4). The
dotted curve in Fig. 3 is D�* � 0.12��4

* , which is ob-
tained from (8) by setting �* � 0. The fit (8) still has the
problem that D�* grows to infinity as �* → 0. At small
values of �*, a different expression tending toward the
exponential dependence on �* observed by Thompson
and Young (2006) is required.

3. Review and assessment of LH03

The energy balance in (2) provides one relationship
between the dissipation � and the energy production or,
equivalently, the eddy diffusivity D�. Specifically, using

the definitions of D� and � in (1) and (3) and neglecting
the hyperviscous dissipation we obtain

U2

�2 D� � �. �9�

Figure 5a shows that (9) is an excellent approximation;
the small deviation of the ratio ��2/U2D� from 1 is due
to the hyp� contribution to the dissipation. The hyper-
viscous dissipation is never more than 12% and can be
reduced further by increasing the resolution (see sec-
tion 5).

Held and Larichev (1996) propose a closure obtained
from cascade arguments in which � halts the barotropic
inverse cascade by directing energy into zonal modes.
Forming a diffusivity from � and the inverse cascade
rate (which is assumed to be equivalent to � in a steady
state), dimensional analysis gives D� � c�3/5��4/5,
where c is a dimensionless constant. This relation be-
tween D, �, and � is supported by the arguments and
numerical simulations of Smith et al. (2002), which em-
ploy a barotropic model. Combining D� � c�3/5��4/5

with (9) gives the Held and Larichev (1996) result,
namely D� � c5/2U3/(�3�2).

FIG. 3. (a) Survey of the nondimensional meridional eddy heat flux D�/U� at 110 different
values of the parameters �* and �*. The dashed curve indicates the D� parameterization in
(11) (with c � 1.65). The dotted line is an empirical fit 0.12��4

* . At �pivot � 0.72, there is weak
dependence on �*. (b) Data at five values of �* (indicated by the dotted lines) are expanded
to illustrate the weaker but still significant dependence on �*. The point at �* � 0.25 and
�* � 0.02 is flagged with a “?” to indicate possible dependence on domain size (see section 5).
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a. Selection of the lower-layer diffusivity

An immediate problem is that there are three diffu-
sivities: in addition to D� we have the PV diffusivities
D1 and D2 in (5) and (6). If one of these three diffu-
sivities involves only � and �, then the other two will
have additional dependence on other parameters. Thus
the association of the dimensional combination c�3/5

��4/5 with D�, as opposed to D1 or D2, is a significant
hypothesis. Indeed, LH03 updated the theory of Held
and Larichev (1996) by identifying the eddy diffusivity
c�3/5��4/5 with the lower-layer PV diffusivity D2 rather
than D�:

D2 � c�3�5��4�5. �10�

The motivation for (10) is that the weaker PV gradient
in the lower layer allows larger meridional particle ex-
cursions so that lower-layer PV behaves more like a
passive tracer. The ratio ��4/5�3/5D�1

2 is shown in Fig.
5b and there is strong and systematic dependence on
both � and �. However, the ratio is almost constant for
the runs with 0.25 � �* � 0.5 and �* � 0.08, and it is in
this corner of the parameter space that the theoretical
arguments of LH03 might apply. This region is dis-
cussed in greater detail below.

Using (6) and (9), D2 and � are eliminated from (10),
which yields the main prediction of LH03:

D� �U� � c5�2�*
�2�1 � �*�

5�2, �11�

FIG. 4. The ratio of the lhs of (8) to the rhs.

FIG. 5. (a) Ratio of terms in the energy balance approximation U 2D� /�2 � �. The systematic departure
from 1 is because the hyperviscous dissipation is not included in definition of � in (3). (b) The ratio
D2 � �3/5��4/5.
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where �* 	 ��2/U. The relation above is the dashed
curve in Fig. 3 with c � 1.65.1

b. The rampant barotropic mode

An important assumption in the LH03 heat flux clo-
sure (invoked implicitly in the paragraphs above) is that
the barotropic mode is rampant. Specifically, LH03 as-
sumes that the inverse cascade rate of the barotropic
mode,

�� 	 �� |�� |2�, �12�

is nearly equal to the total cascade rate � defined in (3).
This assumption is used to construct (10) and is moti-
vated by the results of Smith et al. (2002). These au-
thors conducted a series of barotropic simulations with
random small-scale forcing and dissipation via linear
bottom drag. Smith et al. showed that in the �-domi-
nated regime of barotropic turbulence, the meridional
eddy diffusivity is proportional to �3/5


 ��4/5, where �
 is
the energy supplied by the random small-scale forcing.

A logical application of the results of Smith et al. to
the baroclinic problem begins by writing the barotropic
mode Eq. (A6) in the form

�t � J��, �� � ��x � f� � �� � 	8�, �13�

where � 	 2
, and the forcing of the barotropic mode
by the baroclinic mode is

f� 	�2�2� � U2�x � J��, 2��. �14�

The barotropic energy equation is formed by multiply-
ing (13) by 
 and averaging. We then find that the
energy supplied to the barotropic inverse cascade is
�
f
� and that the dissipation of barotropic energy is �

in (12) (neglecting hyperviscous contributions). The as-
sumption is that the theory and simulations of Smith et
al. (2002) identify a universal scaling regime of baro-
tropic turbulence in which almost all important physical
quantities are determined by dimensional analysis
based on only � and the cascade rate �
 � �
f
�.

2 In
other words, all other details of the barotropic forcing
are irrelevant. Thus, in consistently applying the results
of Smith et al. (2002) to the baroclinic problem one
should use �
 rather then � in scaling relations such as
(10); consequently (11) cannot be correct unless

� � �� . �15�

Figure 6 shows that (15) is not true in general and
that the ratio �
 /� is a function of both �* and �*. It is

1 LH03 used c � 1.25 to fit their numerical results at �
*
� 0.16.

We use a larger value c � 1.65 to match our more weakly damped
simulations with �

*
� 0.08. 2 For discussion of “almost” see section 3d.

FIG. 6. Ratio of the dissipation by the barotropic mode �
 defined in (12) to the total
dissipation � defined in (3).
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striking that throughout much of the parameter space
�
 /� in Fig. 6 is significantly larger than one. This is
expected because bottom drag retards the lower-layer
flow so that estimates of the dissipation using the baro-
tropic velocity are too large (Arbic and Flierl 2004).
The sensitivity of �
/� is notable, and one can further
explain this by expanding � in (3) as

� � �� � ���2�2��� · ��� � 2� |�� |2��. �16�

The second term on the right-hand side of (16) is nega-
tive because there is a strong anticorrelation between �
and � 	 2
:

�2�2��� · ��� � 2�2���� � 0 �17�

(see Fig. 7). This anticorrelation means that � can be
significantly less than the barotropic cascade rate �
.

c. Conditions for validity of LH03

Because of the approximation (15), the theory of
LH03 cannot apply across the entire parameter space
shown in Fig. 3; in most of the parameter space the flow
is significantly baroclinic in the sense that �
/� � 2. To
isolate a corner of parameter space in which the param-
eterization (11) might apply, we limit attention to 15
runs with

0.02 � �* � 0.08 and 0.25 � �* � 0.5. �18�

The open symbols in Fig. 8 show that, at �* � 0.02, the
approximation (15) is satisfied at the 10% to 20% level.
Figure 9 shows some details of the run with �* � 0.25
and �* � 0.04; the zonal mean velocity in Fig. 9a is

FIG. 8. Open symbols show �
/� for the 15 runs that come close
to satisfying �
/� � 1. The closed symbols show �J /�, where �J �
�u2

J is the dissipation in the zonal mean flow.

FIG. 7. Negative correlation �����/���2���2� between the barotropic vorticity � and the
temperature � for both zonally averaged (solid symbols) and eddy (open symbols) components
of the flow.
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strikingly barotropic. Comparing Fig. 9c with the Hov-
möller diagrams in Figs. 1c,e shows that the zonal mean
is more variable; for example, in Fig. 9c the zonal jets
meander across a considerable fraction of the domain.

Figure 10 shows some further details of these 15 runs.
Figure 10a shows the diffusivity D�* and, as suggested
by LH03, D�* is insensitive to �*; this is particularly
evident for the two most weakly damped runs with
�* � 0.02 and 0.04. Figures 10b–d show the barotropic
eddy velocity

V 	����2
x �, �19�

the mixing length

lmix 	 U�1����2�, �20�

and the correlation between 
�x and ��

c� 	
D�

lmixV
. �21�

These three statistics have a greater individual sensitiv-
ity to �* than does their product D�. This is not in
accord with LH03, which suggests that all three quan-
tities should be independent of �*. The main puzzle
here is that the � dependence of the correlation c� is
opposite to that of the lmixV. As �* is reduced, both V

and lmix increase while c� decreases so that D� is rela-
tively constant. This behavior is suggestive of a large-
scale baroclinic wave whose amplitude increases as �
decreases. We discuss this further in section 4b.

d. The zonal mean flow

As explained above, a main assumption of LH03 is
that forced–dissipative barotropic turbulence identifies
a universal scaling regime in which almost all important
statistical quantities, such as D, V, c�, and lmix, are de-
termined by dimensional analysis based on only � and
the cascade rate �
 � �
f
�. However, since � appears
on the right-hand side of the approximate energy bal-
ance3

U2

�2 D� � �� |�� |2�, �22�

there must be some component of the barotropic ve-
locity varying as ��1/2 in order to balance the �-inde-
pendent energy generation on the left-hand side. In the

3 We are making the LH03 approximation � � �
 throughout
this subsection so that (22) follows from (9).

FIG. 9. The run with �* � 0.04 and � � 0.25: (a) Upper (solid) and lower (dashed) zonal mean velocities; the zonal mean
flow is almost barotropic and much faster than the basic state velocity jump 2U, which is indicated by the dotted lines. (b)
The zonal mean PV gradients upper (solid) and lower (dashed) layers. (c) A Hovmöller plot showing the meandering of
the zonal jets. (d) A snapshot of the barotropic eddy streamfunction 
�.
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view of Smith et al. (2002) and LH03 this dissipation is
provided by

uJ 	���y
2
�, �23�

where 
(y, t) is the zonally averaged zonal velocity.
Thus, assuming rough isotropy of the barotropic eddy
components, the barotropic dissipation on the right-
hand side of (22) can be estimated as �� |�
 |2� � �u2

J �
2�V2. But, since V is independent of � in the LH03
limit, the energy balance (22) collapses to

U2

�2 D� � �uJ
2. �24�

The closed symbols in Fig. 8 show that (24) is valid at
the 10%–20% level for the runs with �* � 0.02.

The other important quantity associated with the
zonal jets is distance between the eastward maxima,

which we write as 2�lJ. If nJ is the number of jets (e.g.,
nJ � 5 in Fig. 1a and nJ � 2 in Fig. 9a), then

lJ �
L

nJ
. �25�

Following Smith et al. (2002), lJ is related to the other
variables by arguing that the curvature uyy is of order �:

uJ � �J�l J
2, �26�

where �J is a dimensionless constant of order unity.
Eliminating uJ between (24) and (26) one has

lJ �� U

�J���D�

� �1�4

� �*
�1/4. �27�

Thus these scaling arguments predict asymptotic decou-
pling between lmix and lJ as �* → 0: lmix is independent
of �* while lJ � ��1/4

* so that lJ k lmix.
The considerations above lead to an uncomfortable

FIG. 10. (a) An expanded view of the eddy diffusivity for the 15 runs defined by (18). The dashed curve
is the LH03 parameterization (11) and the dotted curve is the empirical fit 0.12��4

* . (b)–(d) The open
symbols show the statistics defined in (19)–(21). The filled symbols in (c) show the Rhines scale lR as
defined in (33).
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conclusion: according to (26) and (27) the shear in the
zonal jets is on the order of

uJ

lJ
� �J�lJ � �*

�1/4, as �* → 0. �28�

Thus the zonal shear uy is asymptotically faster than the
turnover rate of the eddies.4 According to this scale
analysis, the barotropic eddy component is strongly
sheared by the zonal flow and cannot be regarded as
isotropic, and this is inconsistent with the initial as-
sumptions of the theory.

To rescue the theory from this inconsistency one can
abandon (26) and (27) and instead use the assumption
that the zonal shear scales with the eddy turnover rate:

uJ

lJ
� �J���2�1�5. �29�

The physical assumption is that there is a balance be-
tween the rate at which the zonal shear flow creates
anisotropy and the eddy–eddy interactions that restore
isotropy. Because of this dynamic balance the zonal
flow cannot be regarded as a totally passive reservoir
for excess kinetic energy. Eliminating uJ between (29)
and (24) one obtains

lJ �
1

�J�
2�5��

�U2

�2 D��3�10

� �*
�1/2. �30�

Comparing (30) with (27) we see that lJ now decouples
even more strongly from lmix as �* → 0.

e. Summary

We end this section by summarizing our conclusions
regarding the LH03 parameterization (11) and the
physical arguments underlying it. We have located a
parameter range in which the flow is almost barotropic
and strongly zonal in the sense that (24) is roughly sat-
isfied at �* � 0.02. In this regime with �* K 1, D� is
insensitive to variations of �* and, with adjustment of
the constant c, (11) is close to the D� data. These results
are consistent with LH03 but are not totally persuasive.
In addition to D�, the LH03 theory predicts that V, lmix,
and c� also depend weakly on �*. The simulations show
an uncomfortable variation of these three quantities as
�* is reduced: it is striking that the small changes in
D� � c�lmixV result from systematic changes in c� that
cancel those in V lmix.5

The theory also makes the prediction that uJ and lJ
both increase as �* decreases. The variation of lJ with
�* is given by either (27) or (30), depending on whether
one prefers (26) or (29). But in either case the predic-
tion is that lJ should be much larger than lmix. We dis-
cuss this point in section 4 where a main conclusion is
that, in fact, lJ � lmix. Because of these inconsistencies
we conclude that the hypothetical regime underlying
the parameterization (11) is not realized in the portion
of parameter space surveyed in Fig. 3. Further pursuit
of this regime requires smaller �* and larger domains.

4. Length scales and eddy-mean interactions

a. Five length scales

The �–� dimensional analysis of LH03 identifies

lLH 	 �1�5��3�5 �31�

as the length scale of the large energetic barotropic
eddies (see also Vallis and Maltrud 1993). This energy-
containing length can be independently diagnosed as

l0 	� ���2�

� |��� |2�
. �32�

The length scales lLH, l0, and lmix (20) should be equiva-
lent, differing only by dimensionless factors of order
unity. These three lengths should coincide with the
halting scale of the inverse cascade.

Panetta (1993) suggests that lJ in (25) can be related
to the Rhines length lR, diagnosed as

lR 	�V ��, �33�

where V is the square root of the total eddy kinetic
energy,6

V 	�� |��� |2� � � |��� |2�. �34�

Panetta (1993) argues that the jet spacing lJ is well pre-
dicted by (33), and we confirm this with our larger and
higher resolution dataset (see Thompson 2006 for de-
tails).

Figure 11 shows the five length scales lmix, 2 lLH, l0, lR,
and lJ /�2 plotted against �* for four different values
of �*.7 In Figs. 11a and 11b, with �* K 1, all 5 length

4 Using dimensional analysis the eddy turnover rate is (��2)1/5,
independent of �*.

5 These variations in c� are characteristic of the whole param-
eter space, not just the corner shown in Fig. 10.

6 In the part of parameter space where LH03 might apply, the
flow is almost barotropic and roughly isotropic so V � �2V.

7 To estimate lJ 	 L/nJ, the jet number nJ is determined by
counting the number of jets in the equilibrated state. In the case
where the system appears to be transitioning between a state with
n and n � 1 jets, we follow Panetta (1993) and take nJ � n � 1⁄2;
no other fractional values are permitted.
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scales are roughly equal, especially at smaller values of
�*. In Fig. 11d, with large bottom drag, the dependence
of l0 on �* deviates from that of the other length scales.
This reflects the baroclinicity associated with strong
bottom drag. There is good agreement between lmix and
lR throughout parameter space except for small �* and
large �*. In this regime the two scales deviate because
� is too weak and friction is too strong for stable jets to
form, and thus lR has little meaning.

The results in Fig. 11 pose a problem for LH03 since
(30) implies that lJ and lR should be significantly greater
than the other three lengths, and this disparity should
increase as �* is reduced. Figure 11 suggests a simpler
result: all 5 lengths are equivalent when �* K 1. A
comparison of lmix and lR for the 15 runs in the LH03
regime is shown in Fig. 10c.

b. Jet-scale eddies

We turn now to a more detailed analysis of the eddy
length scales in a few particular runs. Embedded within
the eastward-flowing zonal jets are a series of large
eddies, similar to atmospheric storms in a storm track
(Figs. 1d and 1f). These eddies are isotropic and have
diameter roughly � lJ. The strong eastward flow is ob-
served to meander around these eddies.

In Fig. 12 we show that the dominant contribution to
the eddy heat flux comes from the jet-scale eddies. Be-
ginning with 300 snapshots of 
�(x, y) and ��(x, y), high-
pass filtered fields, 
̃(x, y) and �̃(x, y), are formed by
setting the Fourier coefficients for all wavenumbers
within a wavenumber circle of radius R to zero. The

truncated heat flux U�1�
̃x�̃� 	 D̃� is calculated by in-
tegrating 
̃x�̃ over the domain and averaging over the
300 snapshots. By varying the radius R one can assess
how different spatial scales contribute to the total heat
flux.

The heat flux U�1�
̃x�̃� is plotted in Fig. 12 as a func-
tion of R for three simulations. For wavenumbers less
than8 kJ�, indicated by the dotted lines, D̃� � D� (i.e.,
eddies larger than lJ do not contribute to the heat flux).
As R increases from kJ to 2kJ, D̃� drops quickly to
roughly 30% of D�. This demonstrates that jet-scale
eddies, with a scale comparable to lJ, are responsible for
nearly 70% of the heat flux in the equilibrated flow.

To summarize, the large-scale eddies evident in Figs.
1d,f, 9d are responsible for a large fraction of the equili-
brated meridional eddy heat flux. This confirms that
there is no separation between lmix and lJ.

c. Eddy–zonal mean interactions

The jet-scale eddies also have a baroclinic compo-
nent. Figure 13a, a snapshot of the eddy baroclinic
streamfunction �� � � � �, indicates that baroclinic
eddies show more anisotropy than those in the baro-
tropic field (Fig. 1d). This anisotropy reflects eddy tilt-
ing by the zonal mean meridional shear and suggests
that Reynold stress correlations are an important
mechanism for forcing the zonal flow. Figure 13b shows
a snapshot of the upper-layer Reynolds stresses u�1 �1,
which are also strongly tilted.

8 The jet wavenumber is kJ 	 l�1
J , where lJ is defined in (25).

FIG. 11. Eddy length scales lmix (20), 2lLH (31), l0 (32), lR (33), and lJ /�2 (25) as a function of ��2/U at four
different values of ��/U. We use 2 lLH to give good agreement with the other length scales. (a),(b) The five lengths
converge to a common value as �* and �* decrease.
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Since zonal jets spontaneously form in both the baro-
clinic and barotropic problem, it is tempting to think
that the zonal mean dynamics of the baroclinic problem
are dominated by the barotropic mode. To asses this
hypothesis we analyze the zonal energy balance, in
layer form, by multiplying the upper- and lower-layer
PV equations (46) and (47) by 
1 and 
2, respectively,
and averaging over both space and time. This yields

Zt � �u1y�u�1��1� � u2y�u�2��2� �
1
2
�u2 � u1����1��2x��

�
�

2 ����2 � 1��1y � ��2 � 1��2y�
2�, �35�

where Z is the zonal energy

Z 	
1
2 ��1y

2
� �2y

2
�

1
2

��2��1 � �2�
2�. �36�

The first three terms on the rhs of (35) are exchanges of
energy between zonal and eddy components. The first
two are sources of zonal energy due to nonzero Reyn-
olds stress correlations caused by eddy tilting on the
jet flanks. This process results in an upgradient flux of

momentum that has been described as negative viscos-
ity (McIntyre 1970; Manfroi and Young 1999; Dritschel
and McIntyre 2007) responsible for the remarkable per-
sistence and stability of zonal jets. The third term is a
sink of zonal-mean energy representing extraction of
potential energy stored in the mean temperature gra-
dient through baroclinic instability. The final terms are
dissipation of Z by bottom friction.

Figures 13c,d shows the upper- and lower-layer en-
ergy transfer terms for two simulations, one with many
steady jets, �* � 0.75 and �* � 0.08, and a second that
conforms to the LH03 regime, �* � 0.25 and �* � 0.04.
Figure 13 illustrates the motivation for writing (35) in
terms of layers rather than modes: nearly all energy
transfer from the eddies into the zonal-mean flow oc-
curs in the upper layer. This is true even when the zonal
flow is almost completely barotropic, as in Fig. 13d (cf.
Fig. 9a). Figure 13 confirms that the regions where up-
per-layer energy transfer is largest are located on both
flanks of the eastward jets where the meridional shear
is strongest. Figure 13 shows that the energy transfer
into the zonal-mean flow occurs mainly in the upper
layer, even though the zonal flow is dominantly baro-
tropic. Thus the equilibrated system depends crucially
on the underlying baroclinicity of the jet-scale eddies.

FIG. 12. (a) The truncated eddy heat flux D̃� /U� as a function of the radius of the excluded
wavenumber circle R for three simulations. Truncated fields 
̃ and �̃ are formed by setting
Fourier coefficients for wavenumbers less than R equal to zero. The time and spatial average
�
̃x�̃� is UD̃�; for the open circles, D̃� is divided by a factor of 6. The jet wavenumber kJ� for
each simulation is given by the dotted lines. (b) The same data as in (a) shown on log–log axes.
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5. Domain size, resolution, and hyperviscosity

To this point we have suppressed any reference to
the nondimensional parameter L/�. However, a diffu-
sive parameterization is well founded only if D� is in-
dependent of domain size and of the hyperviscosity and
resolution (Haidvogel and Held 1980). Thus before
trusting the data in Fig. 3, one must show that large
changes in the domain size L make only small changes
in D�.

Some results of this sensitivity study are summarized
in Fig. 14, which shows the barotropic jet velocity
uJ(y) 	 �
y and D� for six simulations at �* � 0.5 and
�* � 0.02. In each case the time averaging was com-
pleted for at least 1000�/U. The length of the uJ profile
indicates the size of the domain, which varies between
2� (12.5�) and 2� (50�). The curves have been trans-
lated so that the dotted lines mark the zero crossings of
uJ(y). Run XI, which is the simulation in Fig. 3, has five
stable jets. The other five uJ profiles show some indi-
cation of vacillation in nJ. Since run XI is stable with
five jets, it is perhaps not surprising that runs XII and
XIII, which halve the domain size, have between two
and three jets. Still, the magnitude of the zonal flow is
similar in each simulation and the indicated values of
D�* in Fig. 14 are within 10% of the DXI

� � 2.217U�.

FIG. 13. (a) Snapshot of the eddy temperature field (baroclinic streamfunction) � � � � � � for the simulation
�* � 0.5 and �* � 0.02. The baroclinic field is less isotropic than its barotropic counterpart in Fig. 1d. (b) Snapshot
of the upper-layer Reynolds stresses u�1 �1 for the same simulation. (c) Zonal and time averages of the energy
transfer terms in upper (solid line) and lower (dashed line) layers for the simulation �* � 0.75 and �* � 0.08. The
barotropic zonal velocity divided by a factor of 2 is given by the dotted line. (d) As in (c) but for the simulation
�* � 0.25 and �* � 0.02. These curves are noisier because the jets are less steady (Fig. 9). Note upper layer eddy
shearing on the jet flanks plays an important role in energizing the zonal mean flow.

FIG. 14. Zonal and time-averaged barotropic velocities uJ(y) 	
�
y for sensitivity studies (VIII–XIII) listed in Table 1 with �* �
0.5. For clarity the curves have been translated horizontally; in-
tersections with the dotted lines indicate zero crossings uJ. The
five runs correspond to varying domain sizes and resolutions.
Most runs suffer from quantization problems that may be related
to differences in the hyperviscosity parameter. Run XI is stable
and has an odd number of jets; therefore a quantization problem
may be expected when halving the domain size (runs XII and
XIII). The domain-averaged heat flux is indicated for each simu-
lation; domain-averaged statistics are within �10% for all runs
with �* � 0.25 (see Table 1).
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Motivated by these results, we have adopted the policy
of trusting a data point in Fig. 3 if the variation in D�

resulting from halving and doubling the domain size is
�10%. Thus, according to this criterion run XI is trust-
worthy.

Runs with the smallest values of bottom friction in
Fig. 3, namely �* � 0.02 and 0.04, fail the �10% crite-
rion if � is also sufficiently small. Thus in Fig. 3 we have
not extended our survey of D� t! �* � 0.25 and �* �

0.04. Indeed, with � � 0.04 and � � 0 we are firmly in
the global mixing regime described by Thompson and
Young (2006). In this regime there are only a few vor-
tices in the domain and statistical descriptions based on
an eddy diffusivity are meaningless because there is no
scale separation between L and the mixing length. The
data points in Fig. 3a that extend to values of �* � 0.25
all have largish values of �* so that these simulations
are within Thompson and Young’s local mixing regime,
even at �* � 0.

To further probe sensitivity to domain size, resolu-
tion, and hyperviscosity we conducted the suite of 24
simulations summarized in Table 1; the main simula-
tions appearing in Fig. 3 are shown in Table 1 in bold-
face. In 22 of these simulations we take �* � 0.02 and
obtain at least five runs each at �* � 0.25, 0.5, 0.75, and
1. This study tests different combinations of domain
size L, numerical resolution, and hyperviscosity �. For

example, at �* � 0.5, runs VIII, XI, and XIII have the
same resolution, whereas runs IX, X, and XII have
double resolution.

Table 1 lists domain-averaged statistics for a number
of key quantities. With the exception of the run at �* �
0.25 and �* � 0.02, domain-averaged statistics are con-
stant to within roughly �10% and for simulations with
�* 
 0.5, all quantities are constant to within �5%.
Deviation between the different simulations is most
likely related to differences in the hyperviscous contri-
bution to the dissipation, which is listed in the final
column of Table 1. Naturally the higher resolution runs
have a smaller ratio of hyperviscous dissipation to total
dissipation (although the coefficient � is adjusted for
domain size). It is satisfying that, if the domain size is
fixed and � is varied by an order of magnitude, eddy
statistics change only a little.

The exceptional run in Table 1 is at �* � 0.25 and
�* � 0.02. In this case doubling L increases D� by 20%.
This is the most sensitive data point in Fig. 3a and,
accordingly, we have flagged this data point in Fig. 3b
with a question mark.9 To confirm that a well-defined

9 The fact that D� /U� is larger in the large-domain simulation
(run I in Table 1) suggests that the leveling off of the slope at
�* � 0.02 in the �* � 0.25 series of Fig. 3b is the first indication
of domain dependence.

TABLE 1. Eddy statistics for sensitivity study simulations. All runs have ��/U � 0.02 except for two runs in italics that have ��/U �
0.04. The bold entries indicate the main simulations shown in Fig. 3.

��2/U L/� �/UL7 Grid points D� /U� V/U uJ /U �� /�tot

I 1/4 50 10�17 5122 39.48 19.42 35.38 0.0493
II 1/4 25 10�15 5122 36.50 20.53 33.13 0.0443
III 1/4 25 10�15 2562 34.43 18.89 33.20 0.0575
IV 1/4 12.5 10�13 2562 34.72 20.75 34.28 0.0285
V 1/4 12.5 10�13 1282 31.39 18.26 31.32 0.109
VI 1/4 50 10�17 5122 35.68 17.35 18.65 0.0538
VII 1/4 25 10�15 2562 34.00 16.04 20.72 0.0557
VIII 1/2 50 10�17 5122 2.056 5.092 8.848 0.0562
IX 1/2 25 10�17 5122 2.276 5.478 9.398 0.0148
X 1/2 25 10�15 5122 2.085 5.170 8.911 0.0395
XI 1/2 25 10�15 2562 2.217 5.534 9.182 0.0562
XII 1/2 12.5 10�13 2562 1.933 5.143 8.540 0.0380
XIII 1/2 12.5 10�13 1282 1.990 5.176 8.635 0.0563
XIV 3/4 50 10�17 5122 0.268 2.567 3.536 0.0575
XV 3/4 25 10�15 5122 0.269 2.608 3.539 0.0480
XVI 3/4 25 10�14 2562 0.251 2.577 3.422 0.0927
XVII 3/4 25 10�15 2562 0.277 2.590 3.591 0.0601
XVIII 3/4 12.5 10�13 2562 0.287 2.825 3.593 0.0456
XIX 3/4 12.5 10�13 1282 0.274 2.610 3.600 0.0588
XX 1 50 10�17 5122 0.0659 1.756 2.202 0.0772
XXI 1 25 10�15 5122 0.0640 1.713 2.178 0.0581
XXII 1 25 10�15 2562 0.0620 1.681 2.132 0.0821
XXIII 1 12.5 10�13 2562 0.0671 1.884 2.192 0.0673
XXIV 1 12.5 10�13 1282 0.0622 1.668 2.167 0.1121
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eddy diffusivity exists at �* � 0.25, we tested the data
point with �* � 0.04 by doubling the domain size (see
the two italic rows in Table 1). This results in a 5%
increase in D� and supports the view that the run at
�* � 0.25 and �* � 0.04 is trustworthy.

To summarize, based on the results in Table 1, we
conclude that the eddy diffusivity D� is independent of
domain size to within �10% for simulations with �* �
0.25 or �* � 0.02.

6. Conclusions

In this computational study we have shown that D�

depends on both �* and �* over a broad region of
parameter space: D� has a greater sensitivity to changes
in �* than to changes in �*. While increases in �* result
in a monotonic decrease in the eddy heat flux, the bot-
tom friction dependence is more complicated with D�

increasing (decreasing) in response to increasing �* at
�* greater than (less than) �piv

* . Our simulations indi-
cate a regime in which D� depends weakly on bottom
drag, and this is consistent with the arguments under-
lying the LH03 parameterization. However, the behav-
ior of other statistics, such as the mixing length and the
eddy velocity, shows an uncomfortable dependence on
�*, which is not consistent with LH03.

In one respect the numerical simulations are simpler
than the LH03 theory: at small �*, all of the length
scales in the problem converge to a common value. For
example, the mixing length lmix is equivalent to the jet
scale lJ. This simplicity is offset by the complicated de-
pendence of the correlation c� on �* and �*. The varia-
tion in c� cancels significant variations in V and lmix so
that D� � c� lmixV has a smaller sensitivity to �*. The
upshot is that a successful theory of eddy heat fluxes
cannot treat c� as a dimensionless constant of order
unity. We believe that this correlation is a signature of
the jet-scale baroclinic waves, which are largely respon-
sible for the net heat flux.

Perhaps the most novel result presented here is the
importance of the baroclinic mode in determining the
eddy heat flux and other important descriptors of the
equilibrated flow. In simulations in which � leads to the
spontaneous generation of zonal jets, it is inappropriate
to view the baroclinic mode as simply an innocuous
deformation-scale mechanism for energizing the in-
verse cascade of the barotropic mode. This view fails in
at least two important respects:

1) total dissipation � cannot be easily related to the
barotropic dissipation �
 except in a corner of the
parameter space; and

2) the zonal mean flow is energized by upper-layer

Reynolds stresses (rather than barotropic Reynolds
stresses).

Regarding point 2), previous theories (Vallis and
Maltrud 1993; Lapeyre and Held 2003) assume that all
energy in the zonal modes results from transfers out of
the barotropic eddies at a wavenumber k� determined
by the strength of �. However, results from our simu-
lations, summarized in Fig. 13, show that upper layer
Reynolds stress correlations are responsible for almost
all of the energy transfer into the zonal mean compo-
nent. If one expresses this upper-layer transfer in terms
of modes, then it projects in a complicated fashion on
both barotropic and baroclinic modes. Thus it is mis-
leading to view the excitation of zonal-mean flows as a
purely barotropic process.

The importance of the baroclinic mode is in some
ways not too surprising since differences in PV trans-
port between upper and lower layers have been re-
ported prior to this study (Lee and Held 1993; Green-
slade and Haynes 2007). In fact, it is exactly this behav-
ior that led LH03 to apply a turbulent diffusivity to the
lower layer flow, which is more turbulent and less wave-
like, in an attempt to avoid complications arising from
the spontaneous formation of zonal jets.

However, throughout the parameter space surveyed
here, new models of baroclinic turbulence are required
to address the added complications of energy dissipa-
tion and energy transfer by the baroclinic mode. Any
complete model of �-plane baroclinic turbulence must
also account for the formation of zonal jets and the
strong meridional potential vorticity and velocity gra-
dients associated with them. The recent work of Zurita-
Gotor (2007), in which the potential vorticity curvature
induced by jet formation is included in scalings of the
eddy heat flux, is a step in this direction.
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APPENDIX

The Two-Mode Equations of Motion

The derivation of the modal equations used in our
study is based on Flierl (1978) and also includes forcing
terms that arise when there is a mean shear in the basic
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state as discussed in Hua and Haidvogel (1986). Our
equations differ from Hua and Haidvogel only in the
form of the hyperviscous term, which is used to absorb
enstrophy cascading to the highest wavenumbers. The
main difference between the modal decomposition
used here and the method used by Larichev and Held
(1995) appears in the coefficients of the bottom drag
term as shown below.

The continuous quasigeostrophic equations are writ-
ten as

�

�t
Q � J��, Q� � �	8Q. �A1�

Here J represents the Jacobian, J(a, b) 	 axby � aybx, "
is the streamfunction such that u � �"y and  � "x,
and

Q � 2� � � f�N�2�zz �A2�

is the potential vorticity. We consider dynamics on a
�-plane and take the Brunt–Väisälä frequency N to be
constant. The coefficient of hyperviscosity is given by �
and H is the depth of the ocean. The Rossby deforma-
tion radius is � � NH/�.

Using a truncated modal expansion in the vertical,
we consider the barotropic and first baroclinic modes
with a mean shear. We write this as

��x, y, z, t� � ��x, y, t�

� ��Uy � ��x, y, t���2 cos��z

H �,

�A3�

where 
 and � are the perturbation streamfunctions of
the barotropic and baroclinic modes, respectively. The
factor of �2 arises from normalization of the modes
(Flierl 1978). The corresponding potential vorticity is

Q � 2� � �2� � ��2� � U��2y��2 cos��z

H �.

�A4�

We now apply the modal decomposition of " to the
quasigeostrophic equation and project in the barotropic
and baroclinic modes. The frictional, or Ekman drag,
terms arise from the bottom boundary condition,

w�x, y, � H, t� � �E2��x, y, � H, t�, �A5�

where #E is the Ekman layer depth. In our model the
Ekman drag coefficient is defined by � � f#E/H.

The resulting modal equations are

2�t � J��, 2�� � J��, 2�� � U2�x � ��x

� ��2�� � ��� � v8�2��, �A6�

and

�2 � ��2��t � J��, �2 � ��2��� � J��, 2��

� U�2 � ��2��x � ��x � ��2�� � ���

� v8�2 � ��2��.

�A7�

The variable $ above controls the projection of the bot-
tom drag onto the layers. The modal projection in (A3)
and (A4) results in $ � �2. To limit the effect of
bottom drag to the lower layer, set $ � 1 (as in Larichev
and Held 1995).

To make a comparison with LH03, we introduce
equivalent layer variables

�1 � � � �, �2 � � � �, �A8�

and the corresponding potential vorticities

q1 � 2�1 �
1
2

��2��2 � �1� � 2� � �2� � ��2��,

q2 � 2�2 �
1
2

��2��1 � �2� � 2� � �2� � ��2��.

�A9�

The layer equations are obtained by adding and sub-
tracting (A6) and (A7):

q1t � Uq1x � G1�1x � J��1, q1� � diss1, �A10�

q2t � Uq2x � G2�2x � J��2, q2� � diss2. �A11�

Above, the PV gradients are

G2 � � � ��2U, G2 � � � ��2U, �A12�

and the dissipative terms are

diss1 	 �� � 1��2�� � 	8q1, �A13�

diss2 	 � �� � 1��2�� � 	8q2 �A14�

with

�� 	 � � �� �
� � 1

2
�2 �

� � 1
2

�1. �A15�

Notice that the velocity jump between the two layers is
2U.

The energy balance is obtained in the standard man-
ner by multiplying the barotropic and baroclinic modal
equations by 
 and �, respectively, and averaging over
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space. In a statistically steady state the energy balance
requires

U��2��x�� � �� |��� |2� � hypv, �A16�

where 
$ 	 
 � $�. The hyperviscous term in (A16) is

hypv � 	� |�4� |2� � 	� |�4� |2� � 	��2��4��2�.

�A17�

Setting $ � �2 we obtain (2).
We record some well-known identities that are easily

obtained using the layer variables. First and foremost,
the three different fluxes are all related by

��2��x�� �
1
2

��2��2x�1� � ��2q2� � ���1q1�. �A18�

The corresponding eddy diffusivities are defined by

��1q1� � �D1G1 �definition of D1�, �A19�

��2q2� � �D2G2 �definition of D2�, �A20�

��x�� � �D�U �definition of D��. �A21�

Using (4), the three diffusivities are related by

D� � �1 � �*�D1 � �1 � �*�D2, �A22�

where �* 	 ��2/U. There are some problems with these
diffusivities [e.g., when �* � 1, the instability is still
active and so the three fluxes are nonzero and related
by (A18)]. This forces the conclusion that D2 � %, not
D2 � 0. For this reason we prefer to deal exclusively
with D�.
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