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Extremal energy properties and construction of 
stable solutions of the Euler equations 
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(Received 5 September 1988) 

Certain modifications of the Euler equations of fluid motion lead to systems in which 
the energy decays or grows monotonically, yet which preserve other dynamically 
important characteristics of the field. In  particular, all topological invariants 
associated with the vorticity field are preserved. In cases where isolated energy 
extrema exist, a stable steady flow can be found. In  two dimensions, highly 
constrained by vorticity invariants, it is shown that the modified dynamics will lead 
to a t  least one non-trivial stationary, generally stable, solution of the equations of 
motion from any initial conditions. Numerical implementation of the altered 
dynamics is straightforward, and thus provides a practical method for finding stable 
flows. The method is sufficiently general to be of use in other dynamical systems. 

Insofar as three-dimensional turbulence is characterized by a cascade of energy, 
but not topological invariants, from large to small scales, the procedure has direct 
physical significance. It may be useful as a parameterization of the effects of small 
unresolved scales on those explicitly resolved in a calculation of turbulent flow. 

1. Introduction 
Much of what is understood of fluid flows can be traced to the conservation, or 

sometimes the lack of conservation, of various quantities. For example, an important 
difference between two- and three-dimensional flow is that in the former case 
singularities cannot form in finite time, because enstrophy is conserved in two 
dimensions but not in three. In  both two and three dimensions the conservation of 
energy and the fact that vortex lines are frozen to material curves has led to 
important stability results (Arnol’d 1965a, b) .  These theorems have had particular 
impact for two-dimensional flows, not because the conditions of stability differ 
essentially from those for three dimensions, but because solutions can more easily be 
found in two dimensions. 

Following Arnol’d, suppose that the Euler equations describe a flow in an infinite- 
dimensional phase space, X .  This space consists of ‘ isovortical sheets ’ such that the 
vorticity configurations on each sheet can be mapped one to the other by a smooth 
transformation that conserves the circulation around every material contour. The 
sheets themselves are infinite-dimensional subspaces of X .  Because the equations of 
motion conserve circulation, the subsequent evolution of an initial condition is 
confined to the sheet it starts on. In  fact, the equations of motion also conserve 
energy and this further confines the evolution to surfaces of constant energy on a 
given sheet. These surfaces are also multi-dimensional, in that a specification of the 
energy on the isovortical sheet does not uniquely specify a trajectory of the flow. A 
useful idealization, if something of an over simplification, of the space X is shown 
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134 G. K .  Val&, G. F .  Carnevale and W. R.  Young 

FIGURE 1.  Schema of sheets in the fluid phase-space (after Arnol’d 1965b). Each sheet is isovortical, 
meaning that evolution on it conserves circulation. The lines are representations of energy surfaces, 
of lower dimension, embedded in the isovortical surfaces. Since the evolution of an Euler fluid is 
confined to a particular energy surface on a given sheet, extremum points (e.g. point A) are 
stable. 

in figure 1 in which the energy surfaces are represented as simple curves on two- 
dimensional isovortical surfaces. 

As Kelvin (1887) appreciated, stationary states are points for which energy is 
stationary with respect to variations on a given sheet. This was proved by Arnol’d 
(1965a, b) .  Stability of these steady solutions requires analysis of the second 
variation of energy. It is plausible geometrically that a perturbed system will not 
necessarily stay close to its parent unless the stationary point is also an extremum 
of energy (and not a saddle point). However, if the stationary point is an extremum, 
then the flow is stable in the sense of Lyapunov. That is, the size of the perturbation 
is bounded by the size of the initial perturbation for all time. This argument, made 
rigorous by Arnol’d (1965a, b)  forms the physical basis of our procedure. 

Some of the preceding remarks need qualification. These are special circumstances 
in which an energy extremum may not be stable. Suppose, for instance, that for a 
particular sheet an energy maximum is not a point, but instead is a ring or a line, as 
in figure 2, or even a plateau. Then any perturbation of the system around the 
maximum can cause it to move away, and the distance it can move (along an energy 
contour) is not bounded by the size of the initial perturbation. The ridge may be the 
only maximum energy value in a given sheet. Thus, even if the energy on the sheet 
is bounded (from above and below) and the extremum states are in all senses non- 
trivial, there seems no absolute guarantee that a stable state exists. Mathematically, 
the second variation of the energy at  these extrema is a singular quadratic form, 
since the variation of energy along the ridge is zero. We shall refer to these cases as 
singular extrema, and use the unqualified noun for the more generic non-singular, 
isolated, ex trema. 

In two-dimensional incompressible flow, these arguments can be used to give 
simple practical stability criteria because for steady solutions the stream function $ 
is functionally related to the vorticity 6 = V2$ by $ = q(C), where g is any integrable 
function. Both 6 and q(5) are conserved following material particles. Thus we may 
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Stable solutions of the Euler equations 135 

FIQURE 2. (a, b )  Idealized three-dimensional plots of energy on a sheet. In both cases energy 
maxima exist that are not stable. (c) Contour plot of case (a). The growth of a perturbation P off 
the energy maximum contour C is not bounded by its initial size. 
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take the variation of the conserved functional d = E + S f ( [ )  dA, where f’ = g and E 
is the energy. As Kelvin noted, the first variation vanishes. The second variation is 

where the integral is over the two-dimensional domain. If i t  can be shown that this 
is of definite sign, stability ensues, because we have shown that the system is a t  an 
extremal energy state with respect to  other states on the same sheet. Although the 
form above is unique to two-dimensions, the principle is the same in any number of 
dimensions, namely that a state is stable if it is an extremal energy state with respect 
to neighbouring isovortical flows. If the energy extrema are only local, then clearly 
a large enough perturbation may move the system away from this point and the 
subsequent growth of the perturbation may not be bounded by its initial size. 

The singular, possibly pathological, cases aside, extremum energy states are stable 
and therefore of great int’erest. Is it possible to find such states, and indeed do they 
exist? In three dimensions it seems unlikely that stable solutions of non-trivial 
topology exist, because the energy on a given isovortical sheet may not be bounded 
from above or from below (except by zero). On the other hand, in two dimensions 
many classes of stable stationary states can be generated numerically. (When 
referring to stability of two-dimensional flow we implicitly mean stability with 
respect to two-dimensional perturbations only.) Circular vortex patches are an 
example of a stable flow of relatively simple topology. We show in $6 that in two 
dimensions on the closure of any given sheet extremal energy states exist. Further, 
we show it is possible to monotonically move towards such states by systematically 
moving across energy contours while staying on the same isovortical sheet. We do 
this by advecting the vorticity configuration with an artificial velocity field obtained 
from a set of ‘modified dynamics’. Since the process is still an advection, the 
mapping will be isovortical and the system stays on the same sheet. The modified 
dynamics is constructed so that the energy change is guaranteed monotonic, and its 
steady solutions art: the same as those of the real equations of motion. Thus the 
system must evolve to  a stable solution (or to a singular extremum). Surprisingly, it 
is possible to construct a modified dynamics in both two and three dimensions in a 
number of ways. 

The above philosophy is similar to that of Moffatt (1985), although it differs in a 
number of important respects. For instance, our procedure preserves vortex 
topology, whereas Moffatt’s preserves streamline topology. Moffatt’s procedure finds 
both stable and unstable solutions, whereas ours will generally ignore saddle points. 
Because unstable solutions are also of interest, this can be an advantage of Moffatt’s 
method. Similarly, in two dimensions Moffatt’s procedure only finds steady solutions 
(which must of course be of the form + = g(<))  of certain streamline topology. In 
contrast our procedure offers a means of finding the steady stable flows which 
preserve all the vortical invariants of the initial conditions. 

In addition to their use as a tool to locate steady flows, the modified dynamics have 
direct physical significance. I n  three-dimensional turbulence there is some evidence, 
and much speculation, that  energy, but not the ‘topological invariants ’, is cascaded 
away from the large scales leaving behind a residual flow now of lower energy. 
Modified dynamics has a similar effect, suggesting their use as a parameterization of 
turbulent effects in large-eddy calculations. Because the energy is minimized while 
helicity and other topological or ‘ vortical ’ invariants are conserved, the resulting 
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Stable solutions of the Euler equations 137 

flow is a generalized 'Beltrami' flow. (A pure Beltrami flow has velocity parallel to 
vorticity, and arises from minimizing energy while conserving global helicity.) 

In  the following sections we present a number of recipes for modified dynamics 
which differ in detail, if not in essence. The first is a general form appropriate for the 
Euler equations in two or three dimensions, both for incompressible and compressible 
flow. We examine the conservation properties of the set. Next we specialize to two 
dimensions. Finally, we present a rather different version appropriate for stratified 
flow. In  this version the modified dynamics may have some physical justification as 
a parameterization of the radiative effects of gravity waves, in carrying energy away 
from an isolated region of vorticity. After this we discuss modified magneto- 
hydrodynamics, the existence of r,m-trivial solutions, and the implications for 
turbulence. 

2. Modified dynamics 
We require a set of altered dynamics such that energy is monotonically dissipated 

or generated. However, the simple use of a viscosity is inappropriate, since we require 
that the system remains on the same equivortical sheet. This can be done if the 
system is evolved by some sort of advective process, suggesting we should modify the 
advecting velocity field. Since we require that the method be isovortical, this 
modification should be the only change to the vorticity equation. 

2.1. The general form for incompressible flow 
To emphasize the simplicity of the form we shall present the altered dynamics for 
incompressible flow of constant (unit) density. The generalization to more arbitrary 
fluids will be given in $ 3 .  With an eye to the form of the vorticity equation we write 

(2.1 a)  
the Euler equations as 

with V * U = O ,  O = V X U ,  b = p + + ' .  (2.1 b) 

(The form of b in terms of p (the pressure) and u is actually irrelevant here.) We 
assume the equations to be valid in a domain 9 which may be finite or infinite, but 
in which there is in any case no contribution to any of the integrals in the following 
manipulations from the boundaries or from infinity. 

Energy conservation follows easily by taking the dot product with u and 
integrating over 9. The nonlinear term vanishes, and the term u - V b  = V - (ub) 
similarly disappears provided there are no boundary contributions. Thus 

au 
at 
- - - u x o = - V b ,  

Consider, now, the following set of equations : 

where 

au * 

at 
- - i i x a = - V b ,  

ii = U f d - ,  
au 
at 

or P = u + aV x v x (u x a), 

a = V x u ,  v . i i = v . u = o .  

and 6 = p+@'. To close the set we add 

( 2 . 3 ~ )  

(2 .3b)  

(2 .4)  
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The energetics of the closed set (2.2), (2.3) and (2.4) is obtained by taking the dot 
product of (2.2) with il for (2.3a), or u for (2.3b), and integrating over 9. The 
nonlinear terms vanish and it is easily verified that 

or 
dE 
- = - a I g  [V x ( u x  w)I2dV 
dt 

(2.5a) 

(2.5b) 

Thus, the energy in the u-field monotonically decreases (or increases, depending on 
the sign of a) until a steady state is reached. Whenever there is unsteady motion, 
energy changes monotonically. If and when a steady state is reached, then the 
altered dynamics become identical to  the original dynamics for then the extra terms 
vanish. In particular, steady solutions of (2.2) satisfy 

u x 0 = -Vb,  

along with the constraints 0 = V x u, V - u = 0. Since whenever there is motion 
energy monotonically decreases (increases), the fluid must either tend towards a 
state of rest or infinite energy (but with, as will be shown below, conserved 
circulation, helicity and potential vorticity) or to a non-trivial solution of the Euler 
equations. 

Now, the modified vorticity equation is obtained by taking the curl of (2.2). This 
gives am -- V x ( i l x w ) = O ,  

at 
( 2 . 6 ~ )  

(2.6b) or 

These equations are revealing, since they have the same form as the conventional 
vorticity equation, except for the use of modified velocity. I n  other words, the 
vorticity is being evolved, not by the ‘true’ velocity, but nevertheless through the 
convective action of a velocity field. The lines of vorticity are frozen into the modified 
fluid. Thus, we expect circulation and other properties to be conserved, and this is 
explicitly verified below. Hence the mapping from initial to final state is isovortical : 
if the initial state is on a particular sheet 9’ in X ,  then even under modified dynamics 
it stays on that sheet. From the discussion in the introduction, if a non-trivial final 
state exists, i t  will be stable except for the special cases mentioned. 

ao -+ (6 - V) 0 - (0 . V )  ii = 0 .  
at 

3. Conservation properties 

The circulation around a closed material line frozen in the fluid is 

3.1. Circulation 

% =  usdr ,  

where the path of the integral follows the same fluid at all times. It is a well-known 
conserved quantity for the usual dynamics. It is conserved by the modified dynamics 
because the vorticity equation has the same form as the equation for the relative 
displacement of neighbouring material parcels 6x = x, - x,, namely 

f 

a6x -+ (ti - V )  6x- (6x * V )  ii = 0. 
at 
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Stable solutions of the Euler equations 139 

Thus, a vortex tube moves materially with the modified fluid, and in particular the 
integral of vorticity across a material surface will be invariant, 

Explicitly, by Stokes theorem the circulation is 

% =  mads.  (3- 1) I 
Considering small material elements 6s of S, moving with the fluid, the rate of 
change of circulation of each is given by 

dt 

= [wl a, zj as, - ss, a, cj 
= 0, 

where we have used (see e.g. Batchelor 1967) 

for a constant-density fluid, and defined 

Hence, circulation is conserved in the modified fluid, by which we mean that the 
integral of unmodified velocity around a material surface is constant, provided by 
material surface we mean marked parcels advected by ii. 

3.2. Helicity 
Helicity is a measure of the degree of knottedness of a vector field, such as a vorticity 
field (Moffatt 1969). It is defined by 

X =  u - o d V ,  (3.3) I 
where the integral is over a volume V enclosing and moving with the fluid. It is fairly 
straightforward to show that it is conserved by the Euler equations with certain 
restrictions on the domain. We now show this is also true when the velocity and 
vorticity fields are being evolved by the modified velocity, namely (2.2) and (2.3). 

To obtain an equation for the helicity, take the dot product of (2.2) with w and 
take the dot product of (2.6) with u to give 

Now, 

= /s .V(u.B-b)dV 

= J (u-B-b)w-dS 

using the divergence theorem. Thus, dX/dt  = 0 and helicity is conserved under the 
altered dynamics, provided that the volume V over which the integral is taken moves 
with the modified velocity and the component of vorticity is zero normal to the 
bounding surface, or the domain is infinite and the vorticity falls away sufficiently 
quickly. 
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3.3. Potential vorticity 
At this point it is convenient to generalize our formalism to consider compressible 
flows. For a general Euler fluid, we write the modified dynamics as 

where 

au * 1 
u x w = --vp--;v?P, 

at P 

BP - + p v  * ii = 0 ,  
Dt 

B a  
- = -+a. v,  
Dt at 

_- (3.4) 

(3.5) 

The equations may be closed by the addition of an equation of state and (if the fluid 
is not barotropic) an internal energy equation. The essential point about these 
equations is that with the exception of velocity all quantities, including density and 
passive vector and scalar tracers, are simply advected by the modified velocity field 
ii which is related to u by (2.3). (The exception to this rule is (3.4), which (because 
o is not passive) is not simply a velocity equation with the advection terms using the 
modified velocity. If such a scheme were used other conservation quantities would be 
lost.) Note that the energy of the system will still be obtained by multiplying (3.4) 
by D or u and integrating over 9. From (3.4) the extra, negative (or positive) definite 
term in the energy equation $ au,2 d V ,  or J a[V x u x 012 d V ,  arises. However, all other 
terms vanish since they have a one-to-one correspondence with similar terms in the 
unmodified Euler equations, obtained by G+u. In  short, for any fluid with any 
equation of state the energy-conserving Euler equations may be converted to an 
energy-dissipating or generating system by the replacement u + 8, where ii is given 
by (2.3), in the nonlinear terms of the momentum equation written in the form (3.4) 
and in the conservation equations for mass and energy. 

From (3.4) we form a vorticity equation: 

or 

a o  _ _  v x ( a x  0 )  = -v x (Vp lp ) ,  
at 

aw 1 
- + (a - V )  0 - (0 * V )  ii + w(V * a) = 3 (Vp  x V p ) .  
at P 

(3.7) 

Again they are in just the same form as the conventional vorticity equation, except 
that u is replaced by 2. Thus, the effects of advection are still to distort the vortex 
lines of the initial state. Lastly, a scalar 0 which obeys the unmodified equation 
DB/Dt = 0 now obeys 

De 
- = 0. 
Dt (3.9) 

Now, (3.5), (3.7) or (3.8), and (3.9) are in precisely the same form as conventional 
equations for vorticity, density and scalar fluid property 8. It is just these equations 
from which conservation of potential vorticity is derived ; hence it is expected that 
potential vorticity (or any topological invariant) will be conserved by the altered set. 
To demonstrate this explicitly we first eliminate V - ii from (3.8) using (3.5) to give 

(3.10) 
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Stable solutions of the Euler equations 141 

Now take the dot product of VB with (3.10), and add the result to the following 
relation, which is a consequence of (3.9) : 

to give 

If the fluid is barotropic (Vp x Vp = 0) or 0 is a function 

BQ - = 0, 
Dt 

(3.11) 

of p and p only, then 

(3.12) 

where Q = ( o / p )  - VB and D/Dt  is defined by (3.6). That is to say, the potential 
vorticity of a parcel is conserved as it moves with the modified velocity field. 

4. Two-dimensional and other special cases 
4.1. Two-dimensional dynamics 

Because of the generality of the prescription (2.2) and (2.3) we should expect no 
difficulty treating cases other than the three-dimensional one. In particular the two- 
dimensional case can readily be derived. In the momentum equations for a 
compressible fluid, the modified two-dimensional equations are just the same as the 
three-dimensional forms (e.g. (3.4)-(3.6)) except that all spatial derivatives are two- 
dimensional. The special case of two-dimensional incompressible flow is interesting, 
since some new results become available. The two-dimensional vorticity equation, 
from (3.8) is just 

(4.1) 
am - -+(a * V ) o  = 0. 
at 

The continuity equation is satisfied by writing the two-dimensional velocity in terms 
of a stream function in the usual way, and using o = @for two-dimensional vorticity 
we have 

z+ J ( $ , [ )  = 0, 
at 

where Y = v’$, $ = $+a$t 

and J ( a ,  b) = a, a aY b - aU a a, b. The form of the equations is DiJDt = 0, so vorticity 
is conserved on parcels, so long as the advecting velocity field is defined as ti = 
( -aY$, a,$). Thus, initial and final state enstrophies (or indeed any integral of any 
function of vorticity) are the same. If we define an energy by E = 4 s  (V$)’ and form 
the energy equation by multiplying (4.1) by -$ and integrating over the domain, 
then 

-~v2+t(++a+tl = 0, 

so “ I  dt = a  y i t ~ z ~ t ~ = - a ~ $ t - v $ t ~  

which is of definite sign. If and when the system achieves a steady state, then 
= Pt = 0 and the dynamics are conventional. 
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The above scheme again should pose no difficulty, in principle, for straightforward 
numerical implementation. However, the double appearance of a time derivative 
either necessitates an iterative approach or analytically a diagnostic relationship 
between $, $ and J($,  g ) ,  which may be hard to enforce. A poor man's alternative 
is just to use a prior value of Ct to evaluate $t in (4.2): since the set (4.2) may be 
conveniently condensed into the single equation, 

where 5 = V2$, the time derivative within the Jacobian is evaluated either a t  a 
previous time or in a subsidiary time step. 

It is evident that the above form is not unique. A more general form is 

(4.3) 

It is straightforward to show that this monotonically generates or conserves energy, 
depending on the power n and the sign of a. 

4.2. A simpler scheme 
For incompressible two-dimensional dynamics, a scheme analogous to (2.3 b)  is 
available which does not require a second time derivative. Instead of using a time 
derivative within the Jacobian term of (4.3), we may use the Jacobian of $ and 5 
itself. This is a simple and most straightforward prescription, and certainly easy to 
implement numerically. Thus, 

%+ J($ ,  5) = 0, $ = $+aVPflJ($, 5) 
at 

and as usual 5 = V2$. The set may usefully be condensed into the single equation - 
~ = ~ + J ( $ + a V B " J ( $ , g ) , g )  Dt at = 0. (4.4) 

The energy is E = Ji(V@)zdA. To obtain the energy equation, multiply (4.4) by -$ 
to obtain 

= a ~ J ( $ , C )  VznJ($ ,  5) d-4 

which is again of definite sign. It is clear that the energy is a monotonically 
decreasing or increasing function of time, unless 6 and $ are functionally related, 
which is precisely the condition that the system be in a steady state. 

4.3. Quasi-geostrophic dynamics 
Quasi-geostrophic dynamics follow most easily as a simple extension of the two- 
dimensional case. The governing equations for modified quasi-geostrophic dynamics 
are 

%+ J($ ,q)  = 0, 
at (4.5) 
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Stable solutions of the Euler equations 

where, for example, either 

or 3 = $.+aV2nqt, 

and q(x, y, z )  is the potential vorticity given by 

& = $i-aV2nJ($,q), 

q = V2$(X, y, 4 +a, h2 a, $(x, y, 2). 

143 

Here, A(z )  is related to the basic stratification. 
The energetics of this set follow by multiplying by (4.5) by -$ and integrating 

over the three-dimensional domain 53. Assuming essentially conventional boundary 
conditions at the top and bottom (namely fi(a,+)/Dt = 0) then it is Straightforward 
to show that 

(4.6) 
dE 

E = 2 I9 (Vy?)'+A(z)'y?ll/,adV, - dt = --aI9(J($,q))'dJ'. 

It is clear from (4.5) that potential vorticity is still conserved on parcels. A 
consequence of this is that any function of q, say G(q), is conserved when integrated 
over the domain. Explicitly 

and in particular the enstrophy, 2 = tJ9q2, is conserved. 

4.4. Stratijed flow and the shallow-water equations 
In this subsection we present a variant particularly suited for the shallow-water 
equations. It is not as general as the above forms, since it cannot be applied to 
incompressible flow. However, we present it to demonstrate the plurality of 
possibilities, and because it may have useful applications, perhaps as a physically 
based parameterization of gravity waves in carrying energy away from a region of 
activity. 

Let us write a modified set of shallow-water equations in a rotating frame of 
reference as 

(4.8) 
Du 
Dt 
-+k x fU = -gVh-@ht, 

Dh 
Dt 
-+hV.u = 0. (4.9) 

The extra term now is the last term on the right-hand side of (4.8) ; the velocity term 
is not modified. It is straightforward to show that 

E = -  hu2+gh2dA, -- --a h:dA, 2 'I " I  dt 

so that the energy monotonically decays or grows. Since the extra term vanishes in 
the vorticity equation, the potential vorticity is still conserved. This scheme might 
have application as a parameterization of gravity wave activity, since the modified 
dynamics remove energy in a region of vortex activity. (Indeed in general circuration 
models of the atmosphere it is common to use energy-dissipating but enstrophy- 
conserving schemes.) The analogy with the geostrophic adjustment problem is 
striking - gravity waves radiate away from a vorticity anomaly, reducing the local 
energy but not the potential vorticity. 
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A continuously stratified generalization is 

E + f x f u  = -vp-avp,-gf, (4.10) 
Dt 

DP -+pv * u = 0. 
Dt 

(4.11) 

With no modification, a = 0, the energy is conserved. For the modified set, the 
energy balance is 

E = - PU2+gpZdV, -- - - a  p;dV’, 
2 7 “ I  dt 

so again energy decays until a steady solution is reached. 

4.5. A numerical example 

Here we present an example of simulation of modified dynamics that demonstrates 
the feasibility of numerical implementation of this scheme. For conceptual simplicity 
we simulate the evolution of a patch of constant vorticity in a two-dimensional flow. 
The specific algorithm employed is that given by (4.4) with n = 0 and doubly periodic 
boundary conditions. The numerical scheme is spectral and so for a = 0 energy and 
enstrophy can be conserved as accurately as desired by the choice of a sufficiently 
small time step. Our (manifestly unstable) initial condition for this example was 
created by advecting an elliptical vortex patch with a fixed randomly generated 
velocity field. At infinite resolution, the modified dynamics with energy increasing 
must take an isolated irregular patch of constant vorticity to a circular patch with 
the same vorticity and of the same area. We can see evolution towards the 
axisymmetric state occurring in the top panels of figure 3 where a contour of constant 
vorticity a t  the edge of the patch is followed in time. Of course in the simulation the 
resolution is finite (here equivalent to  a 128 x 128 grid) and consequently patches of 
constant vorticity cannot actually be realized in detail nor can the infinity of 
temporal invariants be exactly maintained during the simulation. 

In  the plot of relative vorticity vs. stream function for the initial condition we see 
that the effect of the finite resolution is to make the step function of relative vorticity 
values ‘fuzzy ’. The patch a s  numerically realized actually has many fluctuations 
about the interior and exterior constant values. As energy is added isovortically to 
the flow the fluid particles would tend to arrange themselves in concentric rings of 
constant vorticity with the highest values in the centre. The scatter plots of relative 
vorticity vs. stream function show the detailed rearrangement of vorticity values 
that eventually results in a functional relationship between 5 and y? - a monotonic 
fall off of 5 with increasing y?. (Note for the circular patch that y? increases 
monotonically with distance from the centre.) During the course of the simulation 
the energy increases by 22% while the time step used here is small enough to  keep 
the overall change in the enstrophy within 0.1 YO and most of that change occurs in 
the very earliest phase of the evolution (see figure 4). At finite resolution, ideal 
integral vorticity invariants of the form J”cP will be conserved only if p = 2. For 
p = $, $, 3, 4, 8 we found overall variations of 0.9%, 0.5%, -0.1 YO, 0.4Y0, 4.0% 
respectively. Evidently the influence of the approximate conservation of vorticity 
invariants, other than enstrophy, is sufficiently strong to prevent the flow from going 
towards the maximum energy state constrained only by the enstrophy. If enstrophy 
conservation were the only restriction, then a continual energy increase would evolve 
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t = o  

5 

5 '  . .  

. .  ..-+ ,_...' . 
. . .. c :. : .nnkkaw** 

5 

r = 0.5 

5 

5 

f = 30 

* * 
FIGURE 3. Modified dynamics of patch of constant vorticity. The upper row shows the evolution 
of the vortex patch from the initial irregular structure to the final axisymmetric maximum energy 
state (only the 5 = 0.55 contour is drawn). The scatter plots of the lower row give the detailed 
distribution of relative vorticity (resolution 128 x 128, a = 0.1). 
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FIGURE 4. Energy and enstrophy evolution for the patch simulation. The energy is shown as a 
solid curve and the enstrophy as a dashed curve. 
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the flow towards a state composed of only the largest modes in the periodic domain. 
In  non-dimensional units the maximum possible energy constrained only by the 
enstrophy is equal to the enstrophy, which for this initial condition is 2.91 times the 
initial energy. Since the energy in this simulation is levelling off at only 1.22 times 
its initial value, the effect of the other invariants is clearly demonstrated. 

The example shows that the modified dynamics certainly can be integrated, in two 
dimensions at least, to  produce a stable steady flow in finite time without the 
production of singularities. 

5. Magnetohydrodynamics and topological accessibility 
5.1. Moflatt's procedure 

An interesting procedure has been suggested by Moffatt (1985) using the well-known 
analogy between steady solutions of the Euler equations and the magnetostatic 
equations. Since there are both similarities and important differences between his 
method and ours, we shall briefly describe his. Start with the Euler equations for a 
neutral fluid of constant density, namely 

where V . u = 0 and w = V x u. Steady solutions satisfy 

u x o = V b ,  

and V * u = 0. Now, steady, zero-velocity solutions of the magnetohydrodynamic 
equations (i.e. the magnetostatic equations) satisfy 

j x B = V p  (5.2) 

u a B ,  w o j ,  b o - p .  (5.3) 

and W - B = 0.  This obvious correspondence suggests the association 

The viscous magnetohydrodynamic equations (but with zero magnetic resistivity) 
may be written 

I - Du = -p- 'Vp+jx  B+pV2u,  
Dt 

_ -  aB - V x  ( u x  B),  
at 

j = V x B ,  

V * V = O ,  V . B = O .  

These equations monotonically lose energy. Explicitly, 

(5.4) 

(5.5) 

Generally, as long as v 0 energy will decrease. A steady state will be achieved when 
v = 0 and (5.2) is satisfied. Thus, suppose we begin with some neutral flow, generally 
unsteady, characterized by the fields (coo, uo, bo). We associate the fields ( j ,  B , p ) ,  
respectively, with them and use these values as initial conditions in an integration of 
(5.4), with any choice of the field v.  The magnetohydrodynamic field evolves, 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

89
00

25
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112089002533


Stable solutions of the Euler equations 147 

dissipating energy, until (5.2) is satisfied. We now reassociate the fields (j, B,p) with 
(w,  u,  b )  to obtain a solution of the Euler equations, denoted uE. 

If ' topological accessibility ' is defined to mean accessibility through the advective 
action of a smooth field v ( x , t ) ,  then this procedure shows that there is a t  least one 
steady Euler flow that is topologically accessible from any (smooth) initial flow. 
However, this does not imply topological equivalence, since there may be 
reconnection of streamlines after infinite time. Nor does it imply dynamical 
accessibility, which would imply that the vortex lines of uo are deformable to the 
vortex lines of uE. Thus, the procedure does not guarantee that the final state will 
be stable. On the other hand, it does guarantee that non-trivial solutions can be 
found. This is because, if the topology of the initial B-field is non-trivial, then there 
is a minimum magnetic energy i J B 2  below which the system cannot fall by any 
mapping (e.g. advection) which preserves the topology of the field, since lines of 
magnetic force cannot be cut. 

5.2. Modi.ed magnetohydrodynamics 
It is straightforward to set up a set of modified dynamics for the magneto- 
hydrodynamic equations. These are 

I - - - i ixw=-Vb+jxB,  au 
at 

j = W x B ,  o = V x u ,  

V. i2=0,  V * B = 0 .  

These equations are similar to the set (5.4), except that (5.6) are 'inviscid', and the 
velocity field ii is the modified velocity (2.3). The unmodified equations conserve 
energy exactly ; the modified equations monotonically dissipate or generate energy 
according as - 

- dE = -lau:dV, or = - Ia[V x (uxw)I2dV 
dt dt 

The system must either tend towards a solution to the complete set (with non-zero 
velocity) or to a solution of the magnetostatic equations. The modified set maintains 
ail the topological invariants of the unmodified set, including magnetic and cross- 
helicity. 

6. Structure of solutions and implications for turbulence 
6.1. Two-dimensional flows 

In  the two-dimensional case we can prove that interesting solutions (i.e. flow with 
non-zero and non-infinite energy and with no generation of singularities in the 
vorticity field) exist. First consider the set where a is chosen so that energy increases. 
Nevertheless, enstrophy is still conserved. That is 
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is invariant, where 9 is our domain. Now, energy E is given by 

Although it monotonically increases until a solution is reached, its value is bounded 
from above. This follows from Poincarh’s inequality 

where C is some constant and V$ vanishes on the boundary of the integral. Because 
the left-hand side is constant the energy is bounded from above. 

Now, modified dynamics rearranges the initial vorticity field, always increasing 
the energy. But because of the inequality above, this process must eventually cease. 
We are thus led to the following remarkable conclusions. For any two-dimensional 
flow, there exists at least one stationary solution of the Euler equations accessible by 
a rearrangement of the vorticity field. Excepting special cases, this state will be 
stable. Furthermore, a velocity field that will advect the vorticity field to a solution 
from any initial flow can be found. The method certainly does not enable every stable 
solution on a given isovortical sheet to be found, even if there exists more than one. 
Also, the method may take an infinite time to reach a solution, especially if the 
solution is a t  the ‘edge’ of a sheet. In  that case vorticity reconnection can occur. 

The case where the energy decreases is less clear cut. For instance it is possible 
for the energy to become arbitrarily small while all the vorticity invariants are 
conserved. This is possible if the domain contains no net vorticity, i.e. JCdA = 0. In 
this case the vorticity can be teased out into infinitely fine filaments, so that in any 
finite subdomain the net vorticity is arbitrarily small. Consequently, on a coarse scale 
there is no vorticity and therefore no flow. This configuration was anticipated by 
Kelvin (1887) and dubbed the ‘vortex sponge ’. However, this perhaps uninteresting 
flow is not necessarily the outcome in cases where the net vorticity in the domain is 
non-zero. In this instance it is possible that a vortex sponge which has uniform, non- 
zero coarse-grained vorticity will now have more energy than the initial condition. 
Consequently modified dynamics with decreasing energy must evolve to a different 
state. One unambiguous example is where the domain contains only fluid with 
positive or zero vorticity. Thinking of the mechanical analogy of a membrane 
clamped a t  its edge, in which stream function is displacement and vorticity is load, 
it is clear that the minimum-energy arrangement of the load is achieved by moving 
it as close as possible to the edge, so that the support bears its weight. It is also clear 
that the maximum-energy configuration is found by placing the load in the middle 
of the membrane, as far from the edge as possible. 

Since the final state is obtained by advecting the initial vorticity, it is both 
dynamically and topologically accessible (in the sense of Moffatt 1985) from the 
initial state. Flows which lie on the same sheet have similar topological properties of 
the vorticity field. Consider a simple two-dimensional case, in which the initial 
vorticity field is piecewise continuous, being composed of ‘vortex patches ’ of uniform 
vorticity (figure 5 ) .  Any subsequent evolution of the flow must conserve not only the 
area of all the patches, but also the structure of the linkages between them. Thus, an 
evolution in finite time to a state illustrated in figure 5 ( b )  is not allowed, even though 
the integral of all vorticity invariants may be maintained. On the other hand, 
evolution to the state of figure 5 ( c )  is allowed. However, the final state need not be 
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FIQURE 5. Schematic evolution of vortex patches. The areas of the patches remain conserved. 
(a) Initial state, (b)  forbidden (in finite time) later state, (c) allowed later state. 

topologically equivalent to the initial state, if by topological equivalence we mean 
obtainable by a homeomorphism. This is because at t = 00 the final state may not be 
continuous (even in a piecewise sense). As an illustrative example (with no dynamical 
relevance necessarily intended) consider the initial state of two vortex blobs of the 
same sign, with zero vorticity between (see figure 6). Let us suppose that the blobs 
draw closer and attempt to merge. A dynamically possible and topologically 
equivalent later state is shown in figure 6 ( b ) .  As time progresses the two patches may 
become more intertwined, but since vorticity is conserved on parcels the entire space 
remains three-valued. At infinite time, the vortex values will not merge to produce 
a single blob of vorticity o3 = +(ol+o,). Rather, the blobs become infinitely 
intertwined; any coarse-grained view of the vorticity would see only the average 
vorticity, but a finer view would reveal infinitely thin filaments (with finite total 
measure) of values ol, o2 and possibly zero, only. 

Of course in many situations (to be reported on in a subsequent paper) the 
modified dynamics will in finite time evolve to a stable state which will be as 
continuous as the initial state and strictly topologically equivalent. In all cases it is 
dynamically and topologically accessible from the initial state. 

6.2. Three-dimensional j b w  
It is a widely received opinion that in three dimensions no stable solutions of the 
Euler equations with non-trivial topology exist. Arnol’d (1965 b)  remarks that he was 
unable to find a flow u for which the second variation of the energy to isovortical 
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FIGURE 6. Schematic merger of two vortex blobs. (a) Initial configuration, t = 0, ( b )  state at 
later time 0 < t < co, (c) state at t = 00. 

perturbations is of fixed sign, which amounts to the same thing. The arguments in 
the introduction imply that a stable solution would exist if either an upper or lower 
bound to the energy can be found, while maintaining the vorticity invariants. 

However, this does not seem possible, principally because it is impossible to bound 
vorticity from above. To see this, consider the Schwartz inequality : 

Noting that the right-hand side is constant we see that a lower bound on the energy 
would follow from an upper bound on the enstrophy (and vice versa). However, just 
as in conventional hydrodynamics, an enstrophy bound is not forthcoming. If the 
energy increases, the helicity invariant makes the velocity and vorticity fields 
everywhere orthogonal. The case where energy decreases seems more hopeful, since 
the velocity field can only not be bounded if vorticity becomes infinite; i t  seems 
counter-intuitive that vorticity should go to  infinity as energy decreases. None- 
theless, this happens if material lines are stretched indefinitely as the area they 
enclose shrinks without limit. I n  this way the circulation $ u  - dr  is conserved because 
the path becomes infinite (even though u + 0). Additionally, J w dS is conserved as 
w +  00 because the area shrinks. Thus to bring the energy to zero the modified 
dynamics may continuously fold the vortex lines back on themselves, producing 
bundles in which anti-parallel filaments are juxtaposed, and the smoothing effect of 
the Biot-Savart law results in small velocities. This is a three-dimensional analogue 
of Kelvin’s vortex sponge. 
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Interestingly we note that, as the energy decreases with constant helicity, we 
would normally expect the flow to  become increasingly ‘ Beltramized ’, with u parallel 
to w .  This is because a solution of the variational problem of extremizing energy with 
helicity fixed gives Beltrami flow. Explicitly, solving SJ (u2-Au - w)dV = 0, yields 
u = h a .  Recent numerical simulations of magnetohydrodynamic flow by Dahlburg 
et al. (1987) indicate that the cascade of energy to  small scales may not be accom- 
panied by a similar cascade of magnetic helicity. (The simulations have insufficient 
resolution to  resolve an inertial range, so actually one can only say that energy 
decays more rapidly than topological invariants like helicity.) Similar phenomena 
are likely in neutral flows. Thus the large scales of a turbulent flow maintain their 
initial helicity, and are presumably organized into coherent Beltrami-like structures. 
This is an example of ‘selective decay’ (Matthaeus & Montgomery 1980). Now, 
whereas minimizing energy with fixed helicity certainly leads directly to the 
Beltrami condition, other more complicated topological invariants of the vorticity 
field presumably also remain trapped in the large scales, preventing the complete 
realization of a Beltrarni state. Incorporating these constraints directly into a 
variational problem seems hopelessly complicated. Modified dynamics with decreas- 
ing energy, on the other hand, seems an effective method of equivalently solving 
the problem. Further, in some sense i t  may be thought of as a parameterization of 
the cascade of energy to  small unresolved scales in three-dimensional neutral and 
magnetohydrodynamic turbulence. An analogous procedure, successful in two 
dimensions, is the ‘anticipated potential vorticity ’ method of Sadourny & Basdevant 
(1985). Here it is the energy that remains at large scales while the enstrophy cascades 
to small, and their parameterization models this by conserving energy while 
dissipating enstrophy . 

7. Discussion 
In  this paper we have considered possible ways of finding stable solutions of the 

Euler equations. Stability in Euler flows is assured for states that are conditional 
extrema of energy subject to an isovortical rearrangement of the fluid. Our strategy 
has been to modify the dynamics in order to  preserve the vorticity invariants while 
systematically changing the energy. 

Simple inequalities tell us that energy is bounded from above if vorticity is 
bounded. I n  fact vorticity is bounded in two-dimensional flow, but not in three. Thus 
in two dimensions energy extrema of the Euler equations exist for any configuration 
of the vorticity field. Further, we have presented a method which, while the motion 
is unsteady, smoothly and isovortically maps a flow to another of higher or lower 
energy. Thus the end state must be either a stable solution or a singular extremum 
of the equations. The dynamics therefore provide a practical method for searching 
for stable solutions of the equations of motion. 

The method appears sufficiently general that  application in other fields seems 
likely. Consider, for example, any dynamical system 

3? = f m , > ) Y  (7.1) 

where x is a multi-dimensional state vector, x = (xl, x2, . . . , xn). Suppose the system 
has a conserved quantity Ex:, which we call energy, obtained by taking the dot 
product of (7.1) with x. Then to form a modified set of dynamics for the system (7.1) 
we can replace the ith component of x, namely xi, by x,+ai., in all the right-hand 
sides of the equations. Then, in general, the energy of the system will change 
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monotonically by ax:. The trick, of course, is to choose the form of the equations and 
the variable in such a way that other invariants remain preserved, so that the 
solution may evolve to a stable steady state. 

A number of issues demand attention for future work. Perhaps the most pressing 
is to explore the numerical implementation of these dynamics in two and three 
dimensions, to see if both new and old solutions can be found. In  two dimensions we 
have implemented the procedure with many interesting results ; these will be 
reported on in a subsequent paper. Another endeavour will be to use the method as 
a tool to investigate the existence of stable solutions, particularly in three dimensions 
where i t  is believed by many that none exist. Thus, for example, i t  may be useful to 
explore, analytically and numerically, application of the method to  given, unsteady, 
initial states. How would the Taylor-Green vortex evolve under the modified 
dynamics ? Is it possible to obtain any non-trivial stable solutions ? 

We have also speculated that modified dynamics may have physical significance 
in emulating some of the transfer properties of the inertial range in three-dimensional 
turbulence. There are some indications that three-dimensional turbulence is 
characterized by a cascade of energy to  small scales, while the helicity remains a t  the 
large scales. The upshot of this would be a tendency towards ‘Beltramization’ of the 
large eddies, with a subsequently inhibited energy transfer. Because its effects are 
similar, modified dynamics could be used as a means of parameterizing the action of 
small, unresolved scales on those explicitly resolved in a turbulence calculation. Of 
course, indications as to whether such a scheme is better or worse than a more 
conventional parameterization are most likely to come, in the absence of any 
compelling theory, from numerical experimentation. 
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