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Propagation of near-inertial oscillations 
through a geostrophic flow 

by W. R. Young’ and Mahdi Ben Jelloul’ 

ABSTRACT 
The method of multiple time scales is used to obtain an approximate description of the linear 

propagation of near-inertial oscillations (NIOs) through a three-dimensional geostrophic flow. This 
‘NIO equation’ uses a complex field, M(x, y, z, t). related to the demodulated horizontal velocity by 
M, = exp (ifot)(u + iv), wherefa is the inertial frequency. The three processes of wave dispersion, 
advection by geostrophic velocity and refraction (geostrophic vorticity slightly shifts the local 
inertial frequency) are all included in the formulation. The NIO equation has an energy conservation 
law, so that there is no transfer of energy between NIOs and the geostrophic flow in the 
approximation scheme. 

As an application, the NIO equation is used to examine propagation of waves through a field of 
smaller scale, geostrophic eddies. The spatially local 512 frequency shift, identified by earlier WKB 
calculations (5 is the vertical vorticity of the geostrophic eddies), is not expressed directly in the wave 
field: the large-scale NIO samples regions of both positive and negative 5 so that there is cancellation. 
Instead, the 5/2 frequency shift is rectified to produce an average dispersive effect. The calculation 
predicts that an NIO with infinite horizontal scale has a frequency shift -Kfom2/N2 where K is 
average kinetic energy density of the geostrophic eddies, m the vertical wavenumber of the NIO,fe 
the inertial frequency and N the buoyancy frequency. Because of the dependence of the frequency 
shift on m2, there is an effective vertical dispersion, whose strength is proportional to the eddy kinetic 
energy. This process greatly increases the vertical propagation rate of synoptic scale NIOs. 

1. Introduction 

Near-inertial oscillations (NIOs) are excited by the large scale wind-stress exerted on the 
ocean by the atmosphere. This ringing is one of the most easily observed oscillations in the 
ocean: the inertial peak of the internal wave spectrum contains about half the total kinetic 
energy of the ocean, and an even larger fraction of the mean square vertical shear. 
Vertically propagating NIOs escape from the base of the mixed layer into regions where the 
buoyancy frequency is weaker. Thus, the NIO shear might reduce the Richardson number 
below ‘/4 and trigger mixing events. It is a widely received opinion that this is a significant 
mechanism for mixing the upper ocean. 

A problem with the scenario described above is that that NIOs with small horizontal 
wavenumbers propagate extremely slowly. Gill (1984) estimated that an NIO with a 
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horizontal scale of 1000 km (typical of the atmospheric forcing mechanism) will radiate 
out of the mixed layer on time scales of one year or longer. For instance, an NIO with a 
horizontal wavelength of 500 km, a vertical wavelength of 100 m, propagating in a fluid 
with N = 10e2 s-l and f = 10d4 s-l, has a vertical group velocity of about 5 cm/day. This 
prediction is at odds with observations that, after a storm, NIO activity in the mixed layer 
returns to background levels in about 20 days (D’Asaro et al., 1995). The concurrent 
observation of a vertically radiating “beam” of NIOs suggests that wave propagation is 
responsible for this decay. The implied propagation rate is about 10 meters per day-a 
factor of 200 times faster than the estimate above. 

It is possible that this disparity is related to an earlier puzzle: the 10 km horizontal 
coherence scale of NIOs is much smaller than the 1000 km scale of atmosperic forcing. A 
plausible hypothesis is that, although inertial oscillations are initially forced with a large 
horizontal scale, advective distortion by mesoscale eddies decreases the NIO coherence 
scale (Weller, 1982). 

These observations provide an incentive to better understand neat-inertial dynamics, 
with an emphasis on the role of the mesoscale eddy field. This paper develops an 
approximation isolating the near-inertial part of internal wave dynamics. The approxima- 
tion has three advantages over alternative strategies, such as WKR and numerical 
integration (e.g., Klein and Treguier, 1995; Kunze, 1985; Rubenstein and Roberts, 1986; 
Wang, 199 I), which have been used in the past: 

(i) The approximation avoids the vertical normal mode representation. 
(ii) The approximation “filters” the exp (-ifot) oscillation and leaves the subinertial 

changes. 
(iii) The approximation does not make spatial scale separation assumptions. 
As far as point (i) is concerned, it is obvious that vertical normal modes, used by Pollard 

(1970) and Gill (1984), are an inefficient means of representing a spatially compact inertial 
disturbance in the upper ocean (see, for example, the remarks on Poisson summation in 
Kloosterziel and Miiller, 1995). Further, modeling a realistic environment requires the 
inclusion of vertically sheared geostrophic currents and their associated “thermal-wind” 
density structure. In this case, the linearized equations of motion are no longer separable 
and the projection onto vertical normal modes is problematic. 

Turning to point (ii), numerical studies of NIOs using the full equations of motion have a 
time step limitation imposed by the necessity of resolving inertial cycles. Yet the 
interesting evolution takes place on longer time scales. A filtering approximation, isolating 
the slow subinertial evolution of NIOs, and relieving the computer from the responsibility 
of tracking predictible oscillations, is desirable. Then computational resources can be 
focussed on the interesting part of the problem. 

Concluding with point (iii): because NIOs are generated by atmospheric forcing on 
scales of 1000 km one must be concerned with the case in which the length scale of the 
NIO greatly exceeds the length scale of the mesoscale eddy field (say 40 km). On the other 
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hand, validity of the WKB approximation, used, for instance, by Kunze (1985), requires 
that the wavelength of the NIOs be somewhat smaller than the horizontal length scale of 
the eddies. Thus, conclusions based on ray tracing are not compelling because the “small” 
parameter in the WKB expansion is around 25. An advantage of the approximations 
developed in this article is that they provide an analytic avenue into the class of realistic 
problems in which NIOs propagate through an “effective medium” of small scale, 
geostrophic eddies. At the same time, since there is no assumption of scale separation in 
either direction, the approximation can recover the WKB limit. 

In Section 2 we formulate the problem of linear NIOs superposed on a geostrophic flow. 
A multiple time-scale expansion is used to obtain a reduced description of NIO dynamics. 
Section 3 discusses the different processes described by this NIO equation. 

A major part of Sections 2 and 3 is concerned with a careful multiple time expansion. 
These necessary calculations are technical because of the assumption that the vertical 
length scale of the geostrophic flow is comparable to that of the NIO. One consequence of 
this approach is that the simplicity of the approximation may be obscured for some readers. 
Fortunately, in most cases of oceanographic interest, the geostrophic flow has a larger 
vertical length scale than that of the NIO. Exploiting this scale separation produces further 
simplifications; this reduction is the goal of Section 4. 

Probably the most generally useful result in this paper is an approximation developed in 
Section 4, and written in terms of a complex field, A@, y, Z, t). The demodulated velocity 
of the NIO is related to A by 

u + iv = ep’f”‘[(f,/N)2Az]z. (1.1) 

One can visualize the complex scalar A as a two-dimensional vector at each point in space. 
Eq. ( 1.1) can be used to compute the demodulated NIO velocity by differentiating A. The 
other NIO fields, such as the pressure and buoyancy, are obtained from A by differentiating 
with respect to the horizontal coordinates. 

Defining LA = [(fdN)2A,],, and using other standard notation, introduced systemati- 
cally below, the evolution equation from Section 4 is 

(1.2) 

The second, third and fourth terms in (1.2) are, respectively, advection, dispersion and 
refraction of the near-inertial waves. Both the NIO equation from Section 2, and the 
simplified version in (1.2), have an energy conservation law; to leading order there is no 
transfer of energy between the NIO and the geostrophic flow. 

In Section 5 we use the NIO equation to study the propagation of large horizontal scale 
NIOs through a field of small horizontal scale eddies. This calculation identifies a 
mechanism that might be responsible for the rapid decay of near-inertial shear and energy 
in the mixed layer. Section 6 is the conclusion and discussion. 
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2. Derivation of a reduced equation 

a. Formulation. Consider an NIO propagating through a geostrophic flow. The geostro- 
phic fields can be derived from a stream function, *(x, y, Z, t). Thus, the geostrophic 
velocity and buoyancy fields are 

(U, v, w B) = (-yry, qx, 0, .h*,). (2.1) 

The NIO propagates through the geostrophic background flow in (2.1). The total density 
field is decomposed as 

N2(z’) dz’ - g-‘fo’PZ - g-lb 1 , (2.2) 

where b(x, y, z, t) is the buoyancy perturbation associated with the NIO. We assume that 
the interaction of the NIO with the geostrophic flow is described by the linearized and 
hydrostatic equations of motion 

DU 

Dv 
--&+uv,+uv,+wv,+fu=-py, 

0 = -pZ + b, 

u, + vy + w, = 0, 

Db 
6 + UB, + VB, + w (N2 + B,) = 0, 

where the linearized convective derivative is 

D 
- = a, + ua, + q’ 
Dt 

(2.3f) 

(2.3a-e) 

In (2.3) f = f0 + py and N(z) is the buoyancy frequency (or resting stratification) of a 
motionless fluid. 

6. The scaling assumptions. Our goal is to obtain a reductive approximation of (2.3) using 
the assumption that the internal waves are nearly inertial. Thus, if XH is the horizontal 
wavelength, and XV is the vertical wavelength of the NIO, then we assume that the 
nondimensional parameter 

(2.4) 
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is small. The constant No in (2.4) is a scale factor for the buoyancy profile N(z). A cautious 
definition is that No is the maximum value of N(z). From the internal wave dispersion 

relation, o - f0 = O(e*&). This means that the departures from perfect inertial oscillations 
become appreciable when t - l/e*& and we anticipate that 

t* = E2f$, (2.5) 

is the appropriate “slow time scale.” 
Nondimensional coordinates, denoted with _, are 

z = A& ? = fat. (2.6a, b, c) 

The independent variables are 

(4 v) = foM& a w =f&lc, b = N;X& p = ~2f$&?. (2.7a-d) 

The most important choice made in defining the dimensionless variables in (2.6) and (2.7) 

is the e2 in the definition of @. This ensures that the pressure gradient does not appear at 
leading order in the expansion. 

The nondimensional p parameter is 

(2.8) 

The inertial frequency is f = fO(l + ~~69) and the variation off over one horizontal 
wavelength is comparable to the dispersive correction of the NIO frequency, o - f0 = 

ot?m 
We must also nondimensionalize the geostrophic fields in (2.3). We suppose that the 

function 9 has the form 

qqx, y, z, t) = &@I;@ . 

The scaling in (2.9) implies that the scale of the geostrophic velocity is U, = l 2fohH. Thus, 
the Rossby number, Ro = ud/&fa, is equal to e*. The timescale of evolution in (2.9) is the 
slow time in (2.5) and this is consistent with the usual quasi-geostrophic time scale, Ro&. 
The Doppler shift of the NIO frequency, of order UG/kH, is also O(~*fo). Thus the NIO 
dispersive time scale, the quasigeostrophic time scale and the Doppler advection time scale 

are all of the same order. 
For the scale of vertical variation of 9 in (2.9) we have used h&q. The variable 

exponent, q, will be used to investigate the consequences of different assumptions 
concerning the strength of the geostrophic, vertical shear. The choice q = 0 makes the 
vertical scale of the geostrophic flow identical to that of the NIO. In this case the 



740 Journal of Marine Research [55,4 

geostrophic buoyancy, fOq’,, is very strong: usually the vertical scale of geostrophic 
currents is greater than the vertical wavelength of NIOS.~ 

To weaken the geostrophic shear, one takes 4 2 1. For instance, the choice 9 = 1 makes 
the ‘vortex stretching’ contribution to the quasi-geostrophic potential vorticity, 
(f$Y2qz),, comparable to the ‘relative vorticity’, qX + TYY. This is the usual quasigeos- 
trophic scaling. 

The Richardson number of the geostrophic flow in (2.9) is Ri = N2PPtz - ep2qm2. 
Because we are limiting attention to q ~0 the Richardson number of the background flow 

is well above the Miles-Howard threshold for stratified shear flow instability. 
With the definitions above, the nondimensional, geostrophic velocity and buoyancy 

fields are 

(fi, c, i) = (-fi$, +2, G-g. (2.10) 

We now lighten the notation by dropping all the hats. The nondimensional version of (2.3) 
is then 

DU 
z + &dlJ, + E2VUy + E2’qwUz - (1 + Gpy)v = 4px, 

Dv 
E + &v, + E2VVy + c2+qwvz + (1 + Gpy)u = -e2py, 

0 = -pz + b, 

u, + vy + w, = 0, 

Db 

(2.11a-e) 

z + &LB, + l vB, + w(N2 + E’~B,) = 0. 

The nondimensional convective derivative in (2.11) is 

D 
- = a, + E2[c3,* + ua, + Vd,], 
Dt 

(2.12) 

where the slow time in (2.5) has been used to split the convective derivative into fast and 
slow components. 

Notice how the parameter q appears in (2.11): all of the z derivatives that act on 
geostrophic fields are of order eq. For instance, in (2.11e), the term B, = !lJz is multiplied 
by l 2q. 

2. The parameter e2 is the Burger number. Taking 4 = 0 means that the NIO and the geostrophic flow share the 
same, small Burger number. Geostrophic flows often have Burger numbers of order unity: this is the usual 
quasi-geostrophic assumption. But there are observations, particularly in the upper ocean, of geostrophic flows 
with small vertical scales and, presumably, small Burger number. Thus it is useful to first consider the case 4 = 0, 
and then retreat to easier scalings, such as 4 2 1. 
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The algebra is simplified if one uses the complex variables 

2% = u + iv, 

and 

c = x + iy. (2.13b) 

The spatial derivatives can be expressed in terms of 5 and .$* using 

as = %[d, - ia,], de* = %[a, + ia,], 

and the horizontal Laplacian and Jacobian are 

v2 = 4lQQ, 
a(& c* > ~ = -2i. 
a(% Y> 

Using this notation, the horizontal momentum equations (2.1 la, b) are 

tit + i% = -c2R, 

741 

(2.13a) 

(2.14a, b) 

(2.14c, d) 

(2.15a) 

R = YL,12 + 
ap, ?A) 
a, Y> 

f3y + k (V= + qYY) 1 9% + 2i?,,,,%* + 2iw@B,,. 

(2.15b) 

c. The choice q = 0. We now make the assumption that q = 0. With this choice, only even 
powers of E appear in (2.11) and an approximate solution can be obtained by expanding in 
powers of e2 e.g., %Z = PZO + e2$G2 + * f * . In Section 4 we return and discuss the 
consequences of alternative scaling assumptions such as q = 1 and q = 2. 

d. Terms of order EO. The leading order terms in (2.11) and (2.15) are 

6%oot f i9Z0 = 0, 

0 = -poz + bo, 

uox + voy + woz = 0, 

b,, + u& + v& + wo(N2 + B,) = 0. 

It is convenient to write the solution of (2.16a) as 

(2.16a-d) 

a0 = M,e-“, (2.17) 

where M(x, y, Z, t2) is a complex function. 
The form in (2.17) makes it easy to solve (2.16) for w. and bo. Integrating the mass 
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conservation equation (2.16~) gives 

w. = -MEemit + c.c. (2.18) 

where “c.c.” denotes complex conjugate. Because the vertical velocity is zero at the top 
(Z = 0) and bottom (Z = -H) of the ocean, M satisfies the boundary conditions 

Mtx, Y, 0, G) = Mtx, y, -H, h> = 0. (2.19) 

Eq. (2.19) also implies that the horizontal velocities in (2.17) have zero vertical average so 
that the barotropic mode of the NIO has been filtered. 

The leading order buoyancy field, obtained from (2.16d), is 

wo) 
~ e-If + c c b0 = i att, z) . ., bE 

s ‘N’(z’) dz’+ B. 
0 

(2.20a, b) 

The variable &x, y, z, t) is the total (resting plus geostrophic) buoyancy. 
In principle, p. is obtained by integrating the hydrostatic relation in (2.16b). Writing 

p. = Pepif + C.C. (2.21) 

one has 

(2.22) 

Technical details of this integration, associated with the constant of integration in (2.22), 

are discussed in Appendix A. The point is that all of the leading order field can be obtained 
from the single complex function M. 

e. Temzs oforder e2. At order e2, the horizontal momentum equations in (2.15) are 

9%‘2r + i& = -Ro, (2.23) 

where R. is obtained by inserting the leading order fields into (2.15b). R. contains resonant 
terms, proportional to exp (-it), and nonresonant terms, proportional to exp (it). Eliminat- 
ing the resonant terms gives the evolution equation for M. To perform this elimination it is 
convenient to first take the z-derivative of (2.23) and require that all the terms proportional 

to e-j’ in Roz cancel. This prescription produces 

Mm* + 
WV M,,) 

KG Y) 
+i[~y+fV2~)M,+~(N2+1,)V2M-4i~z~zt~=0. (2.24) 

Eq. (2.24) ensures that the z-derivative of (2.23) has no secularity. We must also separately 
consider the vertical average of (2.23) and ensure that there are no secular terms in this 
equation: details are in Appendix A. 
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We conclude this section by recording the solution of (2.23): 

(2.25) 

Notice that %a in (2.17) and & in (2.25) are proportional to exp (-it) and exp (it) 
respectively. The combination %a + e*%& produces the slightly elliptical hodograph 
characteristic of NIOs. 

3. Discussion of the NIO approximation 

We begin by summarizing the results of Section 2 in dimensional variables. The leading 
order fields of the NIO are obtained from the complex function M by: 

u. + iv0 = Mze-‘fo , 

w. = -M e-‘fot + c.c 5 -7 

i a(M, B) 

bo =.ixTe 
-cfot + C.C., 

(3.1a-d) 

p. = Pe-‘for + c.c. 

where i = 6 N* dz + few’, is the total buoyancy (resting stratification plus geostrophic 
disturbance). 

The dimensional version of Eq. (2.24) can be written in terms of conventional vector 
operators as 

[I+, Ml = V. &JM) - (V+, . VM), - V . (V+$&) + (V*.\zrM&, 

where V = (a,, a,) is the two-dimensional gradient and 

~~~py’+f~(z-z’)N*(z’) dz’+‘4!. 
0 

(3.2a,b) 

The function q in (3.3) is defined so that V*lk = 2py + V*q and $, = f i’N2 + qZZ. 
The bracket product in (3.2) has a useful symmetry: taking the first two terms on the 

right-hand side of (3.2b) and exchanging the differential operators a, and V produces the 
second two terms. There are also several alternative forms of the bracket which are 
sometimes useful: 

[I’@, Ml = $J2M - 2Vl?r,. VM, + V2%MTZ, 

= V*(+, M,) - 2V . @VM,), + (.‘Z’V2M)Zz 

= V*(M+,,) - 2V . (MV+J, + (MV*+),,. 

(3.4a, b, c) 
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The expressions in (3.4) show that [[q, M] = [M, @]-a fact which is not immediately 
apparent from the definition in (3.2b). The main advantage of the form in (3.2b) is that it 
makes the closest contact between I[*, Ml and the structure one has in a self-adjoint 
differential operator acting on M. This proves to be useful in the manipulations which arise 
in the course of proving that (3.2a) conserves energy. 

a. Energy conservation equation. The NIO-equation, (3.2a), has an energy conservation 
law which is obtained by forming the combination M* (3.2a) + M (3.2a)*. Following this 
prescription one eventually arrives at 

W> E) 
E, + ~ 

a, Y> 
+V.F+G,=O, (3.5) 

where the energy density is 

E = ‘/2MM;. (3.6) 

The flux in (3.5) is 

F = i V*z(M*Mz - MM:) - i $jZ,(M*VM - MvM*), 

G = i V@, . (M*VM - MVM*) - $ P@(M*M, - MM:) (3.7a, b) 

1 
-- 

2 

where $ is defined in (3.3). 
According to Bretherton and Garrett (1968) the action, (energy density)/(intrinsic 

frequency), is conserved. But for NIOs, the intrinsic frequency is, to leading order&. Thus, 
the action density is proportional to the energy density in (3.6). Consequently, with the 
scaling of this paper, (3.5) is both energy and action conservation.3 The conservation law 
(3.5) shows that, at the order of (3.2), there is no transfer of energy between NIOs and 
geostrophic flow. 

b. Special case: a barotropic current. We can develop some confidence in the NIO 
equation (3.2) by considering special cases and discussing the physical significance of the 
various terms. Begin by considering a barotropic flow i.e., 9, = 0. With this simplification, 
(3.2) collapses to 

a(*, M,,) i N2 
Mu, + 

&? Y> 
+~gV2M+i[~y+~V2~]Mzz=0. (3.8) 

3. For NIOs the potential energy is negligible at leading order. Thus the energy in (3.6) is only kinetic. 
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The second, third and fourth terms on the left-hand side of (3.8) represent advection, 
dispersion and refraction respectively. 

The advective term, I!)(*, M,,)ld(x, y), is familiar from many studies of passive scalar 
dispersion in quasi-geostrophic flows: in the present context the scalar is the complex 
field M,,. 

The role of the dispersive term, iN2V2M/2f0, is isolated by taking p = q = N, = 0. Then 
plane wave solutions of (3.8), with M 0~ exp (ikx + imz - iwt), have the dispersion relation 

N2k2 
rn=2fom2. (3.9) 

If the frequency in (3.9) is added to the ‘carrier frequency,’ f0 in (3.la), the result is the 
usual two term expansion of the internal wave dispersion relation around fo. 

The refractive term, i[ py + ( I/2)V2?]MZ, is a spatially dependant correction of the local 
inertial frequency. The physics can be isolated by Kunze’s (1985) WKB calculation which 
identifies the combination f. + py + (i/z)V2q as an ‘effective inertial frequency.’ Because 
(3.8) is obtained without spatial scale separation assumptions, Kunze’s result is more 
general than its WKB derivation suggests. 

c. Special case: a vertically sheared current. Now suppose that q = V(z)x so that 
geostrophic velocity, V = qX, is vertically sheared and independent of the horizontal 
coordinates. For simplicity, also take p = 0. After these simplifications we are considering 
the propagation of NIOs through strongly sheared, unidirectional, geostrophic currents 
(e.g., Mooers, 1975a,b). One issue which turns out to be rather subtle here is the role of the 
vertical buoyancy gradient associated with the geostrophic flow. Notice that with q = 0 

(the scaling used to obtain (3.2)) the term B, in (2.11e) appears at leading order, along with 
the resting stratification, N2. However, Mooers dropped this term from the outset. While 
this approximation is widely accepted, there is no justification for it if one takes q = 0 in 
the systematic expansion used in Section 2. We return to this issue below. 

After the simplifications described above, (3.2a) reduces to 

Mm + (VM,,), + ; [V. (&‘N2 + V,x)VM - (V,M,), - (V,M,),I = 0, 
(3.10a, b) 

M,,, + (VM,,), + i (&IN2 + VZ~)V2M - iV,M, = 0. 

The form in (3.1 Oa) is obtained using the definition of the bracket in (3.2b). The equivalent 
form in (3.10b) is obtained using the alternative expression for the bracket in (3.4a). It is 
also easy to ‘expand the differential operators’ and verify directly that (3.10a) simplifies to 
(3. lob). 

We emphasize the equivalence of (3.10a) and (3.10b) because a subtlety arises if one 
now makes an approximation by neglecting the vertical buoyancy gradient associated with 
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the geostrophic flow, fOVZZx, relative to the ‘resting stratification’, N2. Dropping the term 
VZZx in (3.10a), and then expanding the differential operators, produces 

M,,, + (VM,), + $~N~PM - iV,M,, - ; V,,M, = 0. (3.11) 

Because of the term V,, M, the approximation (3.11) differs from the result of dropping the 
term V?,x in (3.10b). In other words, the order in which one performs the operations of 
approximation and expansion matters: the difference boils down to the final term (il 
2)V,,M, in (3.11). The answer in (3.11) is preferred because this approximation, in common 
with its exact ancestors in (3.10), conserves the energy, M,M$. (And, if one discards the 
term VZZx in (3. lob) then the resulting equation does not have an energy equation law.) 

Comparing (3.10) with (3.8) we see that vertical shear results in two processes that do 
not appear in the barotropic case, (3.8). First, there is modification of the vertical buoyancy 
gradient by the geostrophic flow. It is clear physically that there must be such an effect, 
though we hope it will be unimportant, and the approximation in (3.11) can be used to 
enforce this prejudice. 

The second new process in (3.10) and (3.11) is the ‘cross-differentiated’ term, iV,M,,. 
This term produces a qualitative change in the dispersion relation. The new process can be 
quickly isolated by limiting attention to shear flows with V, = 0 and NIOs with My = 0. 
Plane wave solutions, with M m exp [ikx + imz - iot], then have the dispersion relation 

N2 k2 k 
“=---Vz-. 

2f,m2 m 
(3.12) 

Kunze ( 1996) noted that the modified NIO dispersion relation (3.12) implies that there is a 
frequency minimum 

(3.13) 

at k/m =f0V,/N2. The physical interpretation of this result, given by Mooers (1975a,b) and 
Kunze (1996), is that NIOs with k/m = f0VJN2 move particles in the plane of the sloping 
isopycnals. 

4. Further simplifications contingent upon weaker vertical variation of the 
geostrophic background 

To obtain the NIO equation (3.2) we assumed that the geostrophic flow had the same 
vertical scale as the NIOs: this was the choice q = 0 made in Section 2c. This scaling 
implies that the geostrophic background is strongly inhomogeneous in the z-direction. The 
strong vertical inhomogeneity leads to the complicated differential operators in (3.2). The 
different special cases considered in Section 3 show that this complexity is the price one 
pays for an approximation capturing all of the processes which occur as NIOs propagate 
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through a three-dimensional geostrophic flow. However, typical oceanic currents have 
vertical shears which are weaker than those implied by the q = 0 scaling. We now 
investigate the simplifications which follow by taking q = 2 in (2.1 1).4 

With q = 2, the vertical scale of q in (3.1) is Xv/E* and all of the “geostrophic 
z-derivatives” in (2.11) are weakened by a factor of E* relative to their former strength in 
Section 2d and e. As a result, many terms which previously appeared at leading order are 
now relegated to higher order. Thus, the resulting approximation contains fewer terms than 
the earlier expansion in Section 2. The reader might wonder why it is necessary to return to 
the primitive equations in (2.1 l)? Why not simplify (3.2) directly? Because the z-dependence 
of q is weak, it is not obvious a priori how to pass the z-derivatives through coefficient 
functions involving q in (3.2). For instance, the simplest approximation of (3.2) drops 
O(G) terms, such as V$,, and also pulls all z derivatives through the brackets so that only 
A4 is differentiated with respect to z. Thus, for example, one would use the following 
simplification: 

i[(Py + 1/zV2Yr)MZ], = i(fSy + 1/,V2*)MZ, + O(e*). (4.1) 

This approximation of (3.2) amounts to treating the z dependence of 9 as parametric so 
that the result is identical to the barotropic special case in (3.8). However, if ‘PZ # 0, then 
(3.8) does not conserve energy. We now show that a systematic expansion, starting with 
q = 2 in (2.1 l), results in a simplified version of (3.2) that does have an energy 
conservation law. 

a. An expansion with weaker vertical variation of the geostrophic Jlow. We now summa- 
rize the results of applying the e2 expansion to (2.11). In terms of dimensional variables, the 
leading order fields are 

(4.2a-c) 

The expressions above are the dimensional analogs of those in (2.17), (2.18) and (2.20), 
except that b0 is now simplified. 

The leading order pressure can be calculated explicitly if one introduces a complex field 
A(x, y, z, t) defined by 

(f;/ N*)A, = M. (4.3) 

4. We jump from q = 0 to q = 2 because the choice q = 1 produces both odd and even powers of E in (2.11): 
this forces an expansion in all powers of E. Following this route, at O(E*), one obtains the result (4.5), otherwise 
obtained by taking q = 2 and expanding only in powers of e*. Thus, mainly for ease of exposition, we prefer to 
take q = 2 so that only even powers of E appear in (2.11). 
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In terms of A, the pressure is 

p. = ifA,eP’fO’ + C.C. (4.4) 

We defer determination of the constant of integration in (4.4) to the discussion surrounding 
Eqs. (4.8) and (4.9). 

The evolution equation is obtained by setting all terms involving exp (-if&) in RO equal 
to zero. At this point, there is a difference between the present expansion and the earlier 
procedure in Section 2: there we did not have a convenient expression for p. and so instead 
we eliminated the resonant terms in Roz. Now, with (4.4), we can avoid this detour and 
perform the elimination directly in Ro. The result is most naturally written as an equation 
forA: 

(4.5) 

where L is the differential operator defined by 

LA = (f $-2A,),. (4.6) 

The M-equation in (3.2) is obtained by noting that Zr4, = LA, and then taking the 
z-derivative of (4.5). The result is 

Eq. (4.7) is a simplified version of (3.2): various “cross terms” involving V*\Ir, are gone, 
and (N2/fo) + Yzz has been replaced by N2/fo. Eq. (4.7) conserves the NIO energy, M,M T/2. 

Eqs. (4.5) and (4.7) are equivalent and, in applications, it might be better to work with 
(4.5) because the advective term is more intuitive, and because the leading order pressure 
in (4.4) is directly related to A. The formulation in terms of A also has the advantage that 
the first term in (4.5) has an immediate physical interpretation viz., since u. + iv0 = 
@@LA, LA, is the rate of change of the demodulated velocity. 

van Meurs (1997) has recently obtained an approximation equivalent to (4.5). van Meurs 
writes his equation using an integral operator denoted by I. The connection between (4.5) 
and the formulation of van Meurs is made by noting that Z is the inverse of the differential 
operator L. 

We now turn to the issue of determining the constant of integration in the definition, 
(4.4), of A. First, observe that the boundary conditions on A are 

A& Y, 0, L> = A&, Y, -Z t> = 0. (4.8) 

The conditions above ensure that w. in (4.2b) is zero at the top and bottom of the ocean, and 
that the barotropic mode is eliminated. Vertically integrating (4.5) over the depth of the 
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ocean. one obtains 

;fo,, s-;A dz = 0. (4.9) 

The “consistency condition” in (4.9) is satisfied by choosing the constant of integration in 
(4.4) so that the vertical integral of A is zero. This choice ensures that the vertically 
integrated NIO pressure is also zero: once again, this is the elimination of the barotropic 

mode. 
To summarize, with weak geostrophic stratification, 4 = 2, there are two equivalent 

formulations: the A-equation in (4.5) and its derivative, the M-equation in (4.7). In the 
strong stratification limit, q = 0, we have only the M-equation in (3.2). In this case, there is 
no equivalent A-equation because terms such as V . (V@ZMZ) prevent one from integrating 
(3.2) in Z. 

b. A comparison of the approximations with the exact system. To develop more confidence 
in the various NIO approximations it is useful to make comparisons between solutions of 

the approximate equations and those of the full equations of motion. A relatively simple, 
but nontrivial, case is obtained by considering a vertically sheared, steady geostrophic flow 
given by 

9 = -syz. (4.10) 

The geostrophic velocity is (U, V, W) = (SZ, 0,O) and the geostrophic buoyancy is B = 
-s&y. Let us compare the predictions of our two approximations, (3.2) and (4.7), with an 

exact solution of (2.3). To isolate the effects of the vertical shear we take p = 0. 
We begin with the exact solution: define a tilting wavenumber 

m(t) = m. - kst, 

so that the instantaneous intrinsic wave frequency is 

(4.11) 

J k2 + l2 
G(t) = f,’ + N’m”. (4.12) 

If mo, k and s are all positive then m(t) in (4.11) is decreasing. In this case, the steady 
geostrophic shear flow, U = sz, is systematically increasing the frequency of a plane wave. 
Thus, a wave which is an NIO at t = 0 is being shifted away from the near inertial part of 
the spectrum. Consequently, the approximations of Sections 2 and 3 must ultimately fail: 
this breakdown is certainly before the finite time at which m = 0. In the following 
discussion we assess the limits of validity of the approximations by studying this secular 
failure. 
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Figure 1. Energy and action obtained by numerically integrating (4.14) with k = 1 = 2d20 km,& = 
10e4 s-l, s = 2f0 and N = 100fO. With both m. = 2~/50 m and m. = 2&25 m the action is more 
nearly constant than the energy. 

Using m(t), one can write a plane wave solution of (2.3) as 

[u, v, w,p, b] = [ii(t), C(t), G(t),@(t), i(t)]eikr+ily+imz. (4.13) 

Putting (4.13) into (2.3), and eliminating p and 19, leads to the system 

ia skim f0 + (slim) -klm fi 
d 
- P = -f. 0 
dt 

-Urn 0 . (4.14) 

$1 N2klm sfO + (N21/m) 0 & 

A numerical integration of (4.14) is summarized in Figure 1 by showing the energy and 
action densities as a function of time. The energy density of the internal wave 

I? = 1/2[ci2 + O2 + Np2h2], (4.15) 

is not conserved. However, the action density 

(4.16) 
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n 
exhibits much smaller changes than E (Bretherton and Garrett, 1968). In Figure 1, the wave 
which has an initial vertical wavelength of 25 m remains nearly inertial; this wave has 
negligible changes in both action and energy. However, the second wave, with an initial 
vertical wavelength of 50 m, is shifted out of the near-inertial part of the spectrum. This 
second wave exhibits a significant increase in its energy density. 

The two approximations, (3.2) and (4.7), can be solved analytically by writing 

Putting (4.17) into (3.2) and (4.7) gives 

dP, k 
-= 
dt 

-i P,-s-P3, 
m 

dp, -= 
dt 

(4.17) 

(4.18a, b) 

where P3 is the result from (3.2) and P4 that of (4.7). 
From (4.18) it follows that 

(4.19) 

(n = 3 and 4) is constant: both approximations predict that the energy density is constant. 
The first comparison we can make is between (4.19) and the results in Figure 1. Clearly, 
after 20 inertial periods, the approximation has failed for the wave which began with a 
vertical wavelength of 50 m. However, the calculation in Figure 1 uses a choice of 
parameters that is hostile to the assumptions of the approximation. For instance, the 
vertical shear is s = 2 X 10m4 SK*, which is equivalent to a velocity difference of 20 cm s-i 
over 100 m. The ratio N/f0 is 100. Reducing either of these numbers will prolong the near 
inertial stage of the wave evolution and result in smaller changes in energy over 20 inertial 
periods. 

The conservation law in (4.19) suggests the introduction a phase variable, 4,(t), defined 

by 

P, = m@e+n. (4.20) 

Using (4.20) in (4.18) one has 

d+3 N2 k2 + l2 1 
-= 
dt 

----s- 
%O m2 m’ 

d+4 N2 k2 -t l2 -=--- 
dt 2f0 m2 . 

(4.21a, b) 
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Figure 2. The phase of the demodulated velocity, exp (ifot)(u + iv), as a function of time. The 
parameters are k = I = 2a/20 km,fO = 10m4 s-i, s = 2f0 and N = lOO& In the top panel m. = 
2n/50 m, while in the bottom panel m. = 27r125 m. The phase jumps discontinuously between a/2 
and -n/2 because of the definition of arctangent we employ. 

Performing the quadratures in (4.21) we obtain 

N2k2 •t l2 
$4 = NO) + 2f --_- 

0 sk 1 1 m. 1 1 ’ m 

(4.22a, b) 

These results show that the two approximations differ only in their handling of the phase 
evolution of the NIOs: the more complicated approximation (3.2) introduces the logarith- 
mic correction in (4.22a). 

Figure 2 compares (4.22) with the results of a numerical integration of (4.14). The top 
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panel shows the phase of the demodulated velocity [i.e., the phase of exp ($&)(a + iv)] as 
a function of time when m0 = 21~150 m and the bottom panel show the case in which m. = 
21~/25 m. The comparison is interesting because in the top panel +4 is more accurate than 
&, while in the bottom panel the reverse is the case! 

Why is the simple approximation (4.7) sometimes more accurate than the more elaborate 
approximation (3.2)? The answer is that both of these approximations are probably 
asymptotic (rather than convergent). Asymptotic expansions have the property that adding 
additional terms does not always improve accuracy. The results in Figure 2 (and others we 
have obtained) support this interpretation. Suppose that the initial parameters k, 1, N, s and 
fb are fixed and only m. varies. Then, when m. is large enough (i.e., when E cx hV CC rn,’ is 
small enough), & is a better approximation than &,. But there is also a range of moderately 
small E in which $4 is superior to & (e.g. the top panel of Fig. 2). 

5. Propagation of NIOs through a geostrophic flow with smaller horizontal scale 

a. Observational motivation. We now turn to an application of the NIO equation (3.2). In 
this section, we propose an explanation for observations made by D’Asaro et al. (1995) in 
the northeast Pacific Ocean during the Ocean Storms Experiment. These authors observed 
that a strong October storm generated NIOs in the mixed layer with a horizontal scale that 
greatly exceeded the Rossby radius of deformation. Because NIOs have both large 
horizontal scale and small vertical scale, linear theory predicts that they propagate 
extremely slowly. However, the observations show that 21 days after the storm the inertial 
energy in the mixed layer has been reduced to background levels. The formation of an 
inertial “beam” below the mixed layer strongly suggests that this reduction occurs because 
of inexplicably rapid vertical propagation of NIO energy. 

One possible explanation of the rapid radiation of NIO energy is D’ Asaro’s (1989) result 
that the B-effect can accelerate the propagation of NIOs by decreasing the horizontal scale 
of the wave field [l(t) = l(0) - Bt where l(t) is the meridional wavenumber of the NIOs]. 
This decrease in horizontal wavelength was observed by D’Asaro et al. and is sufficient to 
explain the southward propagation of the lowest vertical modes. However, the observed 
decrease in mixed layer inertial energy and shear to background levels in 21 days is still 
significantly faster than estimates based on linear NIO propagation in an ocean whose only 
inhomogeneity is the B-effect. The problem is particularly acute for the shear, which is 
contained mostly in the higher vertical modes; according to the internal wave dispersion 
relation, near inertial shear should remain in the mixed layer for months, even with the 
B-shift. 

These negative conclusions were reinforced in two subsequent papers. D’Asaro (1995a) 
simulated NIO propagation using a two-dimensional nonlinear model with realistic 
wind-forcing and stratification. The model failed to rationalize the observations because (a) 
the observed NIO energy in the mixed layer decayed much more rapidly than the model 
NIO energy (b) the observed shear at the base of the mixed layer decayed much more 
rapidly than the model shear. 
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D’Asaro (1995b) examined the effect of mesoscale currents (i.e., the geostrophic flow, 
q) on NIOs. The main theoretical result used by D’Asaro (1995b) to interpret the 
observations is Kunze’s (1985) conclusion that the geostrophic flow produces an effective 
inertial frequency 

f,ff=fo+py+Y2v=~. (5.1) 

Kunze (1985) used the WKB approximation to identify the important combination in (5.1). 
But without the WKB approximation, the same pattern, py + V2q/2, appears in (3.2) and, 
more transparently, in (4.5). The WKB interpretation of (5.1) is that the frequency of NIOs 
should be shifted by V2’P/2. However, D’Asaro (1995b) concluded that the observed 
frequency shifts were smaller by at least a factor of five than V2q/2. But, since the NIO 
fields have much larger spatial structure than the mesoscale eddies, the WKB approxima- 
tion is invalid and interpretation of (5.1) as implying a simple shift in frequency requires 
reassessment. This reassessment, together with an explanation of the rapid decay of mixed 
layer NIO shear, is the goal of this section. 

b. The scale separation assumption. Motivated by the observations summarized above, we 
will now use the NIO equation to examine the limit in which the geostrophic currents have 
much smaller horizontal scale than the NIO. The small parameter is 

length scale of geostrophic eddies 
P’ length scale of NIO’s ’ 

1 
(5.2a, b) 

The WKB approximation assumes that l.~ is large, so that the medium is locally homoge- 
neous, and ray tracing concepts, such as ‘local wavenumber’ and ‘group velocity,’ are 
sensible. Here instead, with p << 1, the NIOs propagate through a rapidly varying medium 
whose wave-scale properties result from an average over the small scale geostrophic 
turbulence. 

Because the familiar concepts of group velocity and local wavenumber are useless in 
this problem, some readers may find it instructive to consider an alternative oceanographic 

problem in which a scale separation approximation analogous to u << 1 is made. This is the 
dispersion of a passive scalar by geostophic turbulence. The passive scalar, concentration 
0(x, y, t), satisfies an advection diffusion equation 

a(*, 0) 
8,-t-= 

3-T Y> 
Kv28, (5.3) 

where q is the geostrophic stream function and K is the submesoscale diffusivity. On 
length scales larger than those of the geostrophic stream function, the spatially averaged 
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tracer concentration, S, satisfies 

ii, = K,V2G, (5.4) 

where K, is the eddy diffusivity.5 A systematic derivation of the mean field equation (5.4) 
uses the scale separation in (5.2) to justify K, as a closure of the ~‘8 ’ correlation that 
appears when one spatially averages (5.3) (e.g., Moffatt, 1983; Rhines, 1986). 

In the following section we will apply analogous averaging arguments to the NIO 
equation (4.5). One can consider A to be a passive, complex scalar, just as 0 is a passive, 
real scalar. One can define a mean field, A, just as one defines s. The issue is, how does 
averaging over small-scale geostrophic eddies effect the dynamics of the passive complex 
scalar A? What is the mean field description, analogous to (5.4) of A? 

c. Heuristic averaging arguments. Appendix B addresses the problems posed at the end of 
the previous section using a multiple length-scale expansion. However, there are relatively 
simple heuristic arguments that help one understand the result of this calculation in 
physical terms. Suppose that the small-scale geostrophic eddies are barotropic, so that we 
can use the A-equation in (4.5). We also take p = 0 and assume that the eddies are steady, 
Y’t = 0. Then integrating (4.5) over a large horizontal area we obtain 

a, j-s LA dxdy + ; ss V2?LA dxdy = 0, (5.5) 

where LA is defined in (4.6). If V*q = 0 then, from (5.5), we obtain the well-known result 
that the zero horizontal wavenumber component of an NIO does not propagate vertically. 
That is to say, the quantity ss LA dxdy (which is a function of z) remains equal to its initial 
value. 

Now suppose that the initial condition is a pure inertial oscillation, with no horizontal 
gradients. Horizontal inhomogeneities in the environment (e.g. V*q f 0) will then create 
inhomogeneities in the NIO so that the second term in (5.5) becomes nonzero. Ifsystematic 
correlations develop between A and V2q/2 then there will be secular changes in the large 
scale field. We now show there is a potent mechanism for inducing these A - V2q 
correlations. 

Begin by partitioning A according to 

A@, Y, z, t) = &z, t> + A ‘(x, Y, z, t), (5.6) 

where A(z, t) is the horizontal average of A, and A ’ is the remainder or fluctuation. Putting 
(5.6) into (5.5) we have 

LA,+pEGo. (5.7) 

5. Strictly speaking, there is an eddy diffusivity tensor, and also advection by mean flow. For expository 
purposes we confine attention to the simplest case of homogeneous, isotropic eddies with no mean flow. 



756 Journal of Marine Research [55,4 

The term V2pLA ’ is analogous to ~‘0’ in the eddy-diffusion problem: our goal is to close 
(5.7) by expressing V2qLA ’ in terms of A. 

Subtracting (5.7) from the full A-equation in (4.5) we obtain the fluctuation equation: 

LA;+ 
a(*,LA’) i 

w Y> 
+2f,V2A’+;V2WA-;~=-;V2~LA. (5.8) 

The term on the right-hand side of (5.8) is a source term for A ‘: if one considers an initial 
condition in which A’ = 0, then the right-hand side of (5.8) is the mechanism through 
which A ’ is produced by the small-scale geostrophic vorticity interacting with the mean 
field, x 

Eq. (5.8) can be viewed as a linear equation for A ‘, forced by V**Lx If we could solve 
this equation for A ’ in terms of V2’3!Lx, then the result could be substituted into (5.7) to 
obtain a closed equation for x This strategy is too ambitious because (5.8) is too difficult to 
treat exactly. However, in the limit where W is weak enough (more details are given below 
in Section 5d), there is a simple dominant balance in (5.8) between the horizontal 
dispersive term, (ifd2)V*A ’ and the production term on the right-hand side. This dominant 
balance, f0V2A ’ = -V29Lx, implies that the approximate solution of (5.8) (obtained by 
‘cancelling the Laplacians’) is 

(5.9) 

Eq. (5.9) is the ‘strong dispersion approximation’: the terminology is explained below in 
Section 5d. 

Putting (5.9) into (5.7) one has 

LA, + $ PP. VWL2A = 0. 
0 

Eq. (5.10) is a vertical wave propagation equation (essentially, a Schriidinger equation) for 
the quantity Lx 

Notice that A(z, t) has no structure on the eddy scale. However, the fluctuation, A’ in 
(5.9), is directly proportional to the eddy stream function, q. The averaged eddy kinetic 
energy, W . VW, appears as a coefficient in (5.10) because of the identity qV2W = 
-VW . VT. It is an interesting prediction of this calculation that it is the eddy stream 
function q, and not the eddy vorticity, V29, which contains the small-scale structure of the 
NIO. Although it is the eddy vorticity on the right hand side of (5.8) that forces A ‘, the 
Laplacian is ‘cancelled’ when this term is balanced by NIO wave dispersion, (ifd2)V2A ‘. 

Earlier studies, using specific models for the geostrophic flow, q, have emphasized that 
NIO activity is concentrated within regions of negative V2q (Kunze, 1985; Rubenstein and 
Roberts, 1986; Klein and Treguier, 1995). At first glance, it seems difficult to reconcile 
(5.9) with these earlier conclusions. However, there is a direct connection, as one can see 
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by considering an example: 

* = *o cos (py). (5.11) 

Suppose also that N is constant, and that the mean field is the n’th vertical mode i.e., x = 
cos (rim/H). (There is no loss of generality here: linear superposition can be used to 
construct an arbitrary A.) Using (5.9), the total NIO field is: 

1 cos (nwlH), (5.12) 

where R, = NHlwrrfO is the deformation radius of the n’th vertical mode. Eq. (5.12) shows 
how the total NIO field is modulated on the eddy length-scale, p-l, and that the largest 
amplitude is in the regions in which cos py is close to 1. Since V2? = -p2q0 cos py, the 
maxima of A coincide with the negative vorticity regions. 

The argument above is not limited to the specific example in (5.11): q is negatively 
correlated with V2q, and -L is a positive definite differential operator. Thus A ’ in (5.9) 
adds constructively to x in regions of negative vorticity. 

d. Discussion of the strong dispersion approximation, (5.9). We now return to the 
approximations involved in obtaining (5.9) as the solution of (5.8). Notice A’ in (5.8) is 
linearly proportional to T. Thus, a posteriori, all of the neglected terms, such as 
a(*, A ‘)/a(~, y), are 0(q2).6 If 9 is ‘small enough’ then these 0(q2) terms will be less 
than the two O(q) terms which have been retained in (5.9). 

‘Small enough’ means that the horizontal wave dispersion, (i/2f0)V2A, is strong enough 
to prevent large distortions of the mean field i.e., x >> A ‘. In the specific example (5.12), 
this means that 

(5.13) 

should be small to ensure the validity of (5.9). The condition Y, << 1 is also obtained by 
evaluating the ratio of the neglected term, PI!L,A ‘, to the retained term foPA ' in (5.8). 
Using L - ( fdNAv)2 one has 

FPLA T& --- 
foV2A' N2X2 ' V 

(5.14) 

(Because q and A’ vary on the same horizontal length scale, V2 cancels in the estimate 
above.) Using NhvlfoR, - 1 we see that (5.14) is equivalent to (5.13). (Here Al/ is the 
vertical length scale of the n’th vertical mode.) 

6. An apparent exception is the term LA;in (5.8). But from (5.10) we see that LA, is 0(Yr2) so then, using (5.9), 
LA;is 0(V3). 
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The crucial point is that R, + 0, and Y, - 00, as n becomes large. Thus, the strong 
dispersion approximation, (5.9), is not valid for high vertical modes. Physically, higher 
vertical modes have weaker horizontal dispersion. In terms of the example in (5.12), if n is 
too large the term (*‘EdfoR:) cospy is O(1) (or large) and the NIO develops large 
modulations on the eddy scale, p-l. This signals the failure of approximation (5.9). 

Now let us evaluate the nondimensional number in (5.13) using the Ocean Storms region 
as an example. From D’ Asaro et al. (1995), the RMS eddy velocity is about 5 cm s-i and 
the eddy length scale is 40 km. Using the model in (5.11), p = 2.5 X 10m5 m-i and q,, = 
2.83 X lo3 m* s-l. The maximum vorticity gradient is p3q0 = 4.42 X 10-i’ m-i s-l, or 
roughly four times the p-effect. 

Table 1 of D’Asaro et al. provides the modal phase speeds, c, = fan, for the Ocean 
Storms region. Usingfo = 1.07 X 10m4 s-i we find Ri = 21.3 km and: 

Yl = 0.06 <l. (5.15) 

We conclude that the strong dispersion approximation is valid for the first mode. But for 
mode number 5, R5 = 4.8 km and then: 

y5 = 0.86 (5.16) 

Thus, for the Ocean Storms region, the small Y assumption starts to fail at around vertical 
mode number 5. 

e. Radiation of NIOs from the mixed layer: The heuristic arguments of the previous 
section, and the multiple scale analysis of Appendix B, result in the following mean field 
equation for NIOs with very large horizontal scale: 

LA, + iPyLA + if;)V’x + if;‘KL’x = 0. (5.17) 

In (5.17), K = Vq . V1Ir/2 is the average kinetic energy of the small-scale geostrophic 
turbulence: the term containing K results from a closure of the A’ -V*w correlation 
discussed in the previous sections. The other terms in (5.17) are well known processes, 
such as horizontal dispersion and the frequency shift due to l3: see Appendix B. 

In this subsection we discuss the effect of the new term, if,‘KL*A, on the propagation of 
an initially compact NIO disturbance. We use the vertical normal mode approach of Pollard 
(1970) and Gill (1984), and for simplicity we take l3 = 0. In Gill’s (1984) notation, the 
Sturm-Liouville problem associated with the linear operator L is 

Lfin + f ;c,21jn = 0, (5.18) 

where the eigenvalue, c,, is the speed of mode n. The solution of (5.17) can be represented 
as 

&x, y, z, t) = 2 46, Y, t>P,(z>, (5.19) 
n=l 
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where the evolution equation for mode n is 

A,, - ; R;f0V2A, - zA, = 0. 
he 

In (5.20), R, = c,& is the radius of deformation of mode 12. 
The dispersion relation is obtained by substituting A, = exp (ikx + ily - io,t) into 

(5.20). The result is 

1 K 
w, = 2 R;&(k2 + Z2) -fx, (5.21) 

As n - 00, R, - 0. Thus, if K = 0, then o, -+ 0 as n - 00. This means that the high vertical 
modes all have the same frequency,&, and remain in phase for a long time. Consequently, a 
compact initial disturbance does not disperse. However, if K # 0, then the effect of the final 
term in (5.21) is to increase the frequency difference between high vertical modes. We 
show below that the ensuing rapid loss of phase coherence is responsible for a dramatic 
change in the dispersive properties of NIOs. It is remarkable that this effect is independent 
of the horizontal scale of the NIOs i.e., the final term in (5.21) is independent of (k, I). 

In the discussion surrounding (5.15) and (5.16) we emphasized that the strong dispersion 
approximation is invalid for high vertical modes. This means that the dispersion relation 
(5.21) is not valid if n is large (and for 5 cm s-l eddy-velocities we anticipate substantial 
errors when n is only 4 or 5). An improved calculation of A ’ from (5.8), avoiding the strong 
dispersion approximation in (5.9), would be of great interest. The following results, based 
on (5.21), should be regarded as suggestive, rather than conclusive. 

Suppose that N is constant, so that the solution of (5.18) is 

NH 
en=-. 

wrr 
(5.22) 

As an initial condition, suppose that 

LA = emz2’262 cos ly. (5.23) 

Thus, at t = 0, u = cosZy exp ( -z2/2a2) and v = 0. The shear, u,, is a maximum at z = -6. 
With the initial condition in (5.23), the solution of (5.17) is that 

(5.24) 

To obtain (5.24), the integrals involved in the modal projection have been evaluated 
approximately using 6/H << 1. The calculations reported below used N = 400 in (5.24). 

Figures 3 and 4 shows the solution (5.24) using the parameter values 

1 
6 = 50m, H = 5000 m, fo = lo-‘+-‘, 

’ = 600 km . 
(5.25) 
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Figure 3. The speed, F u + v  (upper panel) and the shear F U, + v, (lower panel) calculated 
from the solution in (5.24) using the numbers in (5.25), N = 50f0 and K = 0. In this case, without a 
geostrophic flow, the vertical radiation of the NIOs is very slow. 

Suppose that we take N = 5Of, = 5 X 10m3 s-l, which is a rather small value of N for the 

upper ocean. This choice implies that 

NH1 
R,=--, 

Wi0 n 

80 km 
zz- 

II . 

(5.26a, b) 

The radius of deformation of the n = 1 mode in (5.34b) is unrealistically large. Our choice 
N = 5Of, is a compromise between having a realistically strong buoyancy frequency in the 
upper ocean, and a realistically small first deformation radius. 

In Figure 3, K = 0. Virtually nothing happens during the first 21 days. Even after about 
six years the shear is almost unchanged. The evolution is far too slow to explain the 
observations of D’ Asaro et al. (1995). The choice of N = 50f0 is not responsible for these 
problems: increasing N by a factor of a, so that N = 160f(unrealistically large), means 
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Figure 4. The speed, F u + v  (upper panel) and the shear F U, + v, (lower panel) calculated 
from the solution in (5.24) using the numbers in (5.29, N = 50f0 and K = (1/800)m2 sm2. Notice 
that the level of maximum shear, initially at z = -50 m, now moves downwards much more 
rapidly than in Figure 3. 

that curve labelled day 210 in Figure 3 now corresponds to day 21. The evolution is still 
orders of magnitude too slow. Even increasing I in (5.25) by a factor of 10 does not help: 
the shear in the lower panel of Figure 3 remains localized at its initial level. In particular, 
the shear maximum at z = -50 m is immobile. 

Figure 4 shows the solution (5.24) with K = (1/800)m* SC* (corresponding to geostro- 
phic turbulence with 5 cm SC* RMS currents). Now the dispersion of the NIO into the 
deeper ocean is much faster. In particular, the level of maximum shear propagates 
downwards at a rate which is roughly in accord with observations. The level of maximum 
shear reaches about 400 m in 21 days. The main point here is that the final term in (5.21) 
greatly increases the vertical propagation rate of NIOs. 

6. Conclusion and discussion 

The dynamics of near-inertial oscillations propagating through a three dimensional 
geostrophic flow are concisely described by the NIO-equation, (3.2). When the geostrophic 
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flow has a vertical scale larger than the vertical scale of the NIOs then one can use the 
simpler, alternative formulation in (4.5). These approximations are based only on the 
assumption that the wave frequency is close to the inertial frequency. In (3.2) and (4.5) 
there is no requirement that the horizontal length scale of the NIOs be either large or small 
relative to that of the geostrophic eddies. 

As an application of this reduced description of NIO dynamics, we examined the 
propagation of NIOs through a field of small scale, barotropic, geostropic eddies. It is at 
this point that we find it useful to introduce an additional spatial-scale separation 
assumption. The problem is then one of averaging over eddy scales to obtain a mean field 
description. 

Because the geostrophic eddies have a smaller length scale than that of the waves, the 
spatial structure forced by the eddy vorticity is averaged by the horizontal dispersion of 
NIOs. This averaging effect is clear in the strong dispersion approximation (5.9): the 
wavefield expresses the eddy length scales through the eddy streamfunction, which is a low 
pass filtered version of the eddy vorticity. Because of this averaging, Kunze’s (1985) 
spatially local (in the WKB sense) V2W/2 frequency shift is not directly expressed in the 

wave field: positive and negative values of V2q/2 cancel because the NIO samples an area 
which is large relative to the coherence scale of the geostrophic vorticity. There is a 
rectified effect of the geostrophic eddies: this is the qualitatively new term, 
iVq . VUrL*AI2f,, which appears in the mean field equation after averaging over the eddy 
scales-see (5.17).7 

One remarkable consequence of the new term in (5.17) is that NIOs with infinite 
horizontal scale (i.e., k* + l2 = 0) now disperse vertically. We have argued that this 
mechanism moves near inertial shear from the mixed layer into the deeper ocean on a time 
scale of days. This result relies on the strong dispersion approximation and so it must be 
regarded as suggestive, rather than conclusive. It is intriguing that the strength of these 
effects is directly proportional to the spatially averaged eddy kinetic energy density. 
Further, at the level of the strong dispersion approximation, the average kinetic energy 
density is the only eddy quantity that matters. Thus, there is a link between the grossest 
aspects of mesoscale turbulence and the processes which might be responsible for mixing 
the upper ocean. 

Acknowledgments. We thank Eric D’Asaro, Paola Cessi, Eric Kunze, Peter Niiler and Dan Rudnick 
for advice and comments during the course of this research. This research was supported by the 
National Science Foundation award OCE-9616017. 

7. It is instructive to contrast (5.17) with the analogous mean field equation for passive real scalar, (5.4). The 
result of averaging over the eddy scales is the eddy diffusivity, K,. This is not a qualitatively new term in the tracer 
equation, but merely an augmented version of a term which was already present in the unaveraged advection- 
diffusion equation, (5.3). 
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APPENDIX A 

Calculation of the leading order pressure 

The leading order pressure, p. in (2.21), could be obtained from (2.22) if we knew how 
to determine the constant of integration. This question is related to the elimination of the 
secular terms in the vertical average of (2.23). We use the notation 

8 dz (Al) 

to denote a vertical average (H is depth of the ocean). Requiring that all of the terms 
proportional to eeir in R. cancel gives 

W, W - 
25, = ___ 

m Y> 
+ 2i(MB,,),. 642) 

Given M and B, the equation above can always be solved for E For instance, applying a5 
produces V2P = RHS. Thus the real and imaginary parts of p satisfy Poisson’s equation. 
Once p is obtained from (A2), Eq. (2.22) unambiguously determines the leading order 
pressure, po. 

APPENDIX B 

A multiple length-scale expansion 

We assume that * is barotropic and steady and use (4.5) as a point of departure. 
Nondimensional variables are defined as: 

(x, Y) = l(% 91, z = x,2, t = lm!o, 031) 

where 1 is the horizontal length scale of the eddies: see (5.2). If k(i) = N(z)/No is the 
nondimensional buoyancy frequency, then the nondimensional version of the differential 
operator L is L = ( fdNoA, )‘i where: 

i = a&2+ W) 

Define 

@2, 
0 

f+!!c. 
0 

With this notation, the nondimensional version of (4.5) is 

pY”’ 
[ 
itA; + 

a(@,ti) 
w, 9) 

+i(B9+~~2~)ia]+~e2a=0. 

033) 

(B4) 
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where Y = qfdN2Xt is the nondimensional parameter discussed in (5.13) and (5.14). Y = 
uY(‘), where u is the scale separation parameter in (5.2). The strong dispersion approxima- 
tion is implemented by holding Y(l) fixed as u -+ 0. We now lighten notation by dropping 
all the hats on dimensionless variables. 

The slow space and time scales are 

w, K Tj = I.‘(.% Y? t>. (B5) 

The multiple scale expansion supposes that q depends only on the fast variables, (x, y, t), 
while A depends on both the fast variables, and also the slow variables, (X, Y, T). 
Differential operators acting on A must be expanded with 

8, - a, + pax, ay - a)’ + pay, a,-&+pa, 036) 

The fast structure of? can be smoothed out with a spatial average, denoted by an overbar, 
so that 

* = 0, TV? = -PP. VP. W’a, bj 

Because q depends only on fast variables, q x = qr = 0. Finally, we set p = u2& as 
p - 0. 

Introducing the scalings above into (5.14) and organizing in powers of p we have 

; VzA = -py”‘~, - py’l’ 
a(*,ZA) i 

- p - Y(‘)V$PZA - &(A, + A,,) 
a(% Y> 2 

- p2Y(‘)LAT - p2Y(‘)[?J,Ay - ~+!,A,] - p2iY(‘)p2YLA - p2 i (A, + A,). 

In (BS), 02 = a: + dt is the Laplacian of the fast variables only. Now expand A in powers 
ofp:A=AO+pA,+... 

The leading order term in (BS) is 

; V$A,, = 0. 

The solution of (B9) is that 

A,, = A,(-% Y, z, t, Tj. 

Thus, the leading order part of A has no structure on the fast space scales. 
Collecting terms of order p from (B8) we have 

(B9) 

@lOI 

; V:A, = -Y’%A,, - ; Y(i)V:WA,. (Bllj 

- - 
Averaging (B 1 l), and using V2A, = V?$P = 0, we conclude that Y(‘)Z.&, = 0. This 
condition is satisfied by demanding that Aa in (B 10) have no dependence on the fast time t. 
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The solution of (B 1 I), obtained by cancelling the Laplacian, is then 

A, = -Y”‘WA,. 0312) 

The first dependence of A on the fast variables (x, y, t) occurs because A, in (B12) is 
proportional to *(x, y). The result in (B 12) is recapitulating our earlier heuristic arguments 
which led to (5.9). 

Collecting terms of order p2 from (B8) we have 

; V&4, = -y(‘)Z,A,, - y(l) JW,U,) i 

G, Y> 
- ~Y(')V?WLA, - i(A,, + AIyY) 

- YwAOT - Y(l) [~JA,, - ~&k~l - iY(‘)P,YLA, - i (A, + A,,). 

Averaging (B 13) 

Y(‘)LAOT + iY(‘)P,YLA, + i (A, +A,,)- 4 Y"'*W2W2A, = 0. 
2 U314) 

The final term on the left-hand side of (B 14), involving L2A0, arises because the term 

Y(')V:WLA, = -Y(')2WV$W2A, 

in (B 13) has a nonzero spatial average. 

@15) 

The simplifying assumption that wz = 0 has been used at several points in passing from 
(B13) to (B14). For instance, if qz = 0, then a(*, Z,A,)la(x,y) = 0. And LA, = 
-Y(‘WL2A0. All of these are nonessential simplifications and it is not very difficult to 
extend the calculation to capture the additional terms which arise if the geostrophic flow is 
not barotropic. Restoring the dimensions to (B14), and using (B7b), we obtain (5.17). 
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