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The dynamics of a one-dimensional granular medium has a finite time singularity if the 
number of particles in the medium is greater than a certain critical value. The singularity 
(“inelastic collapse”) occurs when a group of particles collides infinitely often in a 
finite time so that the separations and relative velocities vanish. To avoid the finite time 
singularity, a double limit in which the coefficient of restitution r approaches 1 and the number 
of particles N becomes large, but is always below the critical number needed to trigger 
collapse, is considered. Specifically, Y+ 1 with N- ( 1 -r) - ‘. This procedure is called the 
“quasielastic” limit. Using a combination of direct simulation and kinetic theory, it is 
shown that a bimodal velocity distribution develops from random initial conditions. The 
bimodal distribution is the basis for a “two-stream” continuum model in which each 
stream represents one of the velocity modes. This two-stream model qualitatively explains 
some of the unusual phenomena seen in the simulations, such as the growth of large- 
scale instabilities in a medium that is excited with statistically homogeneous initial conditions. 
These instabilities can be either direct or oscillatory, depending on the domain size, and 
their finite-amplitude development results in the formation of clusters of particles. 

I. INTRODUCTION 

The one-dimensional granular medium has been stud- 
ied recently by us’ and by others.’ The model is an ensem- 
ble of inelastic point particles, all with the same mass, 
moving on a line. In this model, the collisions conserve 
momentum but dissipate kinetic energy. Thus the velocities 
after a collision, u; and ui, are related to the velocities 
before collision, u1 and u2, by 

ui=$(l+r)ui+f(l-r)uz. (1) 

Here, O<r<l is the coefficient of restitution, i.e., u; - ui 
= --Y( ui - uZ). If Y= 1, the collisions are perfectly elastic 
and the system is the classical, one-dimensional perfect gas. 
If r=O, the collisions are perfectly inelastic and the system 
studied in Ref. 3 is recovered. In between these two ex- 
tremes, the system is a simple model of a one-dimensional 
“granular medium.” 

With this idealized one-dimensional model, we can isp- 
late and understand some of the physics peculiar to gran- 
ular Sows. For example, studies of two-dimensional gran- 
ular chute flows4 and shear flows5 have found a tendency 
for particles to form clusters surrounded by low-density 
regions. The simulations show that this clumping is more 
severe for more inelastic particles. In Ref. 5 these clumps 
and voids are referred to as “inelastic microstructure.” 
Now, in one-dimensional granular mechanics, particles can 
collide infinitely often in finite timelP2 so that both the rel- 
ative velocities and separations of the particles vanish. This 
finite time singularity, referred to in Ref. 1 as “inelastic 
collapse,” results in the formation of one-dimensional 
clumps and voids. It is a plausible speculation that the 
formation of inelastic microstructure in two-dimensional 
simulations is related to one-dimensional inelastic collapse. 
But the connection is not conclusive because it has not 

been demonstrated that two-dimensional inelastic particles 
can collide infinitely often in finite time. The advantage of 
the one-dimensional case is that analytic results are avail- 
able [e.g., Eqs. (2) and (3) below] and that theoretical 
assumptions and approximations can be examined with 
simple simulations. 

Hydrodynamic models of granular flow&’ offer an an- 
alytic avenue into the issue of microstructure formation. 
Reference 8 uses linear hydrodynamic stabilty theory to 
explain clustering as an instabilty of a granular flow with 
uniform density.” One very significant result* is that the 
instability is confined to long wavelengths. Consequently, 
numerical simulations in small periodic domains will be 
stable because the quantization condition on the long un- 
stable waves cannot be satisfied. If the particle density is 
fixed, this condition on the domain size is equivalent to 
saying that instability requires a minimum number of par- 
ticles in the domain. Stated in these terms, the criterion for 
instability in Ref. 8 is similar to the condition for inelastic 
collapse in Refs. 1 and 2. There, it is shown that, for a 
given value of the coefficient of restitution r, there is a 
minimum number of particles N,in( P) required for inelas- 
tic collapse. 

The “independent collision wave” ( ICW) approxi- 
mation, estimates this relation between Nmin and r as 

r=tan2[(?r/4)(1-l/Nmi,)]. (2) 

The numerical results of Ref. 1 showed that Eq. (2) is an 
accurate estimate of N,i,(r) for ~~0.8 (and the ICW ap- 
proximation is exact as r-0). An estimate of N,i,( r) in 
the complementary limit r+ 1 leads to’ 

1nWq) 
Nmin = ~ 

2q ’ 

where we have used the notation 

(3) 
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qE:( l--r). (4) 

Equation (3) is accurate for r>0.8. The two results agree 
approximately at Y= 0.8 where numerical simulation shows 
coin= 16. [The results in Eqs. (2) and (3) give the mini- 
mum number of particles required for collapse against an 
inelastic wall. By symmetry, the minimum number in the 
middle of the inelastic gas is twice the values in Eqs. (2) 
and (3).] 

Difficulties arise in the kinetic theory of a one- 
dimensional granular material because of inelastic collapse. 
Specifically, neighboring particle velocities become corre- 
lated and density fluctuations render the continuum as- 
sumption invalid. (For the same reasons, kinetic theory 
fails in higher dimensions once inelastic microstructure de- 
velops.) In this paper, we postpone the inevitable forma- 
tion of particle clusters by investigating the one- 
dimensional granular medium in the “quasielastic limit.” 
We assume that Y-+ 1 (q-0) and N-+ CO, but require that 
this double limit satisfies N<N,i,(r) so that inelastic 
collapse does not occur. [For instance, we could take 
N- l/( 1 -r) as Y+ 1.1 The number of particles is large and 
clusters form slowly, so it is possible to use continuum 
models’ for a time. 

The focus of this work is the cooling of a one- 
dimensional granular medium in the quasielastic limit. 
Simulations are used to suggest theoretical approaches. In 
our simulations, the gas is randomly excited by picking the 
velocities using a random number generator following 
which there is no input of energy. As was predicted 
theoretically,7 the mean kinetic energy of a particle (also 
called the granular temperature) then decreases like f-“. 
In Sec. II, we use numerical simulation to show that the 
velocity distribution during this f-z cooling process is bi- 
modal; roughly, there is a stream of left-moving particles 
and a separate stream of right-moving particles. The ki- 
netic theory developed in Sets. III and IV explains this 
unusual distribution of velocities. 

FIG. 1. Cooling of a one-dimensional granular media with L=2 (r 
~0.998 75, IV= 1600). Each dot marks the location of a particle in (x,u) 
space. As the gas cools, the velocity scales contract. Each panel is a 
“snapshot” of the cooling at a particular value of T,E~LNJN', given in 
the lower right-hand corner of each panel. The first panel, marked with a 
0 is the initial condition. The particles are uniformly distributed between 
u=*\/3 to give lJ’rz1 [U2 is defined in Eq. (S)]. Each unit of rc is 
6.4~ lo5 collisions. 

The Maxwellian velocity distribution of an ideal gas is 
not expected in the one-dimensional granular medium, be- 
cause it requires at least two dimensions to arise. In two or 
three dimensions, a collision between two perfectly elastic 
particles can have many different outcomes which conserve 
both energy and momentum. Thus, the velocity distribu- 
tion of the gas can change with time because the particles 
can scatter each other into a number of different directions. 
However, if perfectly elastic particles are constrained to 
move in one dimension, then collisions simply exchange 
velocities, so the velocity distribution never changes. The 
one-dimensional, bimodal velocity distribution arises solely 
because the collisions are slightly inelastic. In two- and 
three-dimensional granular flows, these effects compete 
with the multidimensionality of the space. 

cools in the quasielastic limit. The kinetic theory developed 
of Sets. III and IV is directed toward the initial develop- 
ment of velocity and position correlations, but begins to 
fail once these correlations become strong. The theory ap- 
pears to be equally valid for the quasielastic limit and for 
the initial stages of inelastic collapse, provided Nmin) 1. 

Finally, we emphasize that the focus of this article is 
confined to an unforced medium in which the kinetic en- 
ergy present in the initial condition is dissipated without 
replenishment. Other simulations and experiments con- 
sider forced flows in which kinetic energy is continually 
supplied by either shearing the boundaries of the medium5 
or by the release of gravitational potential energy.4’10 

II. NUMERICAL SIMULATIONS 

The simulations also show that clumping of particles 
occurs even when N < N,i”( r) . This clumping is not as 
severe as that associated with inelastic collapse. For in- 
stance, the collision count remains finite and the interpar- 
title spacing is nonzero (but very unevenly distributed). 
But position and velocity correlations do develop as the gas 

. 

Figures l-3 show the phase space of simulations of the 
cooling, one-dimensional granular medium. Figures 1 and 
2 show the same simulation at different stages in its evo- 
lution while Fig. 3 shows a second simulation with a 
smaller coefficient of restitution. The initial conditions for 
both simulations are the same and are shown in the first 
panel of Fig. 1. The positions of 1600 particles are uni- 
formly distributed between the two inelastic walls at x=0 
and 1. The velocities are uniformly distributed in the in- 
terval -VT < u <VT. As the simulation evolves, the parti- 
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FIG. 2. The same experiment as in Fig. 1, except at a later stage in its 
development. The numbers give the value of TV for each panel. At r,= 14, 
the large clump in the lower left-hand corner is about to collide with the 
wall at x=0. After rC= 17, the clump travels across the domain to the 
wall at x=0, and bounces off that wall. At 7,=22, most of the particles 
are concentrated in the crescent-shaped clump near x=0.1. The top of the 
crescent is moving faster than the bottom, so the crescent is soon 
stretched out into a diagonal line. 

cles dissipate kinetic energy through collisions and no fur- 
ther energy is added. Thus the velocities decrease with 
time, and the velocities scales on each panel of the figure 
are different. Our discussion of these figures will anticipate 
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FIG. 3. Cooling of a one-dimensional granular media with L=8 (r 
=0.995, N=1600). Each dot marks the location of a particle in (x,u) 
space. The numbers give the value of rC for each panel. (Each unit of ?; 
is 1.6 X lo5 collisions.) 
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some results from the kinetic theory of Sets. III and IV. 
Specifically, we characterize each simulation with the 
quantity 

L=ZqN, (5) 

where q is a measure the coefficient of restitution, defined 
in Eq. (4), and N is the number of particles in the simu- 
lation. 

We measure time with a “collision time” defined to be 

rc=2L(NJN2), (6) 

where NC is the cumulative number of collisions since the 
beginning of the simulation. Each collision corresponds to 
a “tick” of the collision clock; as the medium cools, colli- 
sions occur less frequently, and the clock runs more slowly. 
The quantity rC measures the amount of time that has 
elapsed on the clock. Both L and rC will reappear in the 
theory presented in the later sections. 

All three figures show the emergence and persistence 
of a bimodal velocity distribution. As the gas cools, the 
particles cluster into two “streams” at the outer edges of 
the distribution. Particles do not migrate from the center of 
the distribution toward the edge; rather the distribution is 
continuously contracting, with particles at the edges mov- 
ing more quickly toward the center than those near the 
middle. Thus the two modes at the edges form as addi- 
tional particles are “scooped” up by the contracting bands. 
In Sec. III, we develop a theory that explains this velocity 
distribution. 

Figure 1 shows a simulation with L= 2 and N= 1600. 
Equations (4) and (5) show that these values of N and ‘L 
require r=0.998 75; i.e., almost perfectly elastic particles. 
[The simulation does not contain enough particles to cause 
inelastic collapse; Eq. (3) predicts 6457 particles would be 
required.] Once the bimodal velocity distribution emerges, 
the streams arch up and then down together. The later 
panels of Fig. 1 show a coherent vibration of particle den- 
sity. The amplitude of the vibrations, relative to the width 
of the band, increases with time. This unstable vibration is 
subject to nonlinear steepening. When the band arcs up- 
ward in phase space, as at r,= 12, the particles at the top of 
the arch are moving in the positive direction (to the right), 
causing the arch to steepen toward the right. Also, density 
inhomogenities develop spontaneously. The initial condi- 
tion has uniform density, but in the last panel, there is a 
large, growing concentration of particles in the lower right- 
hand corner. This cluster of particles plays a dominant role 
in the future evolution of this simulation. 

Figure 2 shows the same simulation as Fig. 1, except at 
later times. In the last panel of Fig. 1, there is an increased 
concentration of particles in the lower right-hand corner. 
As the simulation evolves, this clump becomes tighter, and 
draws in more particles. This clump is not the result of 
inelastic collapse; it bounces back and forth between the 
walls indefinitely. Between r,= 14 and T,= 15 the clump 
has bounced off the wall at x=0. At rC= 17, it is bouncing 
off the wall at x= 1, and at 7,=22 it is on its way toward 
another bounce at x= 1. The theory developed later in the 
paper does not explain the behavior of the particle 
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clumps in Fig. 2 because strong velocity and position cor- 
relations invalidate the statistical approach. But the theory 
does qualitatively explain the initial development of the 
inhomogeneities in Fig. 1. 

All simulations with L=2 resulted in large particle 
clusters similar to the one illustrated in Fig. 2. These clus- 
ters form in one of two alternative ways. First, there is the 
large-scale collective particle motion illustrated in Fig. 1. 
Alternatively, weak, smaller-scale disturbances form 
throughout the medium, and grow through merger, but 
this also leads to situations resembling the later panels of 
Fig. 2. The difference between the two routes depends on 
initial conditions (we used a random number generator) 
which we have not been able to adequately characterize. 

Figure 3 shows a less elastic simulation with L=8, 
N= 1600 (i.e., ;=0.995). As with the previous simulation, 
the bimodal velocity distribution emerges and the band of 
particles begins to bend. The band does not oscillate; rather 
it grows and nonlinearly steepens. This compresses the par- 
ticles against the wall at x=0. In this case, inelastic col- 
lapse will occur; Eq. (3) shows that only 1337 particles are 
required for inelastic collapse against a wall. Most of the 
particles at r,=8 have u <O and so they are traveling to- 
ward the dense particle clump near x=0. There are some 
particles with u > 0. However, those near x=0 are trapped 
under a larger number of particles heading for the wall. 
Those near x= 1 will soon bounce off that wall and begin 
their journey toward the singularity at x=0. Indeed, fur- 
ther simulation suggests that the collision count becomes 
infinite in a finite time and that the clump near x=0 con- 
tracts indefinitely. 

s 
9 
t. 
P 0.0 0.6 1.0 

(W X 

FIG. 4. Two simulations with large L, showing the appearance of shorter 
length scales relative to the domain size as L increases. Note that the 
velocity scales are different in the two panels. (a) L=16 (N=16OO, 
r=0.99). (b) L=32 (N= 1600, r=0.98). In both figures the sinuousity 
5, defined in Eq. (S), is 0.4. 

At L=8, the emergence of a growing, stationary wave 
with a wavelength of twice the domain size occurs in most 
simulations. (An alternate behavior, exhibited by only one 
simulation, is shown in Fig. 11, and will be discussed later 
in this paper.) The wave arches either up or down. This 
symmetry breaking is caused by differences in the initial 
conditions. As L is increased (Y is decreased), higher har- 
monics occur. This is illustrated in Fig. 4, where two ad- 
ditional simulations with large L are shown. The relative 
strengths of these higher wave numbers vary from simula- 
tion to simulation. 

Figure 5 shows the sinuousity as a function of time for 
five different simulations, including those shown in Figs. 
l-4. All simulations have 1600 particles. The growing and 
oscillating wave of Fig. 1 appears in Fig. 5 as an oscillation 
in E,, superimposed on a steady growth. The stationary, 

In Fig. 1, 3, and 4, particles are found in a sharply 
defined band in phase space, with a nearly constant width. 
We define the “sinuousity” g to be the ratio between the 
excursions of the band’s center to its width. The sinuousity 
is calculated by dividing the interval 0 <x < 1 into ten bins 
of length Ax= l/10. Within each bin, the particles with the 
maximum and minimum (most negative) velocities are lo- 
cated. The difference between these two velocities is taken 
to be the width of the band, AU, where i= 1,2 ,..., 10 is the 
bin number. The average of these two velocities defines the 
midpoint of the band UP The amplitude of the band’s ex- 
cursions is defined as the difference between the largest and 
smallest UP The width of the band is defined by averaging 
all the AU, Thus the sinuousity 5, which is the ratio of 
these two numbers, is 

FIG. 5. The sinuousity as a function of time for five simulations. All 
simulations have 1600 particles. Time is measured by rP as it is in Figs. 
l-4. The curves with L= 16 and L=32 are the simulations of Fig. 4. The 
L=8 curve is the simulation in Fig. 3. Figures 1 and 2 show the L=2 
simulation. ~=[max(~,)-min(~i)]/mean(AUi). (7) 
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FIG. 6. The granular temperature Uz versus time for the five simulations 
of Fig. 5. A line of slope -2 is shown to demonstrate the r-* cooling law. 
The simulations were stopped when the sinuousity 5 reached 0.5. The 
“scallops” toward the end of the L=2 curve are a result of a large 
number of particles traveling together in a clump. When a clump hits the 
wall, the rate of cooling is increased, as the particles in the clump collide 
with one another. When the clump is traveling in the middle of the 
domain, the rate of cooling is slower, since there are mainly collisions 
between the particles in the clump and the sparse background. In all 
cases, the theoretical result in Eq. (34) is indistinguishable from the 
simulations until the final stages when the simulations have fluctuations 
such as the scallops in the L=2 curve. 

growing wave of Fig. 3 appears as a roughly monotonic 
increase in g. The kinetic theory presented later in this 
paper predicts growing, traveling disturbances for L < 27r, 
and stationary growing disturbances for L > 2~. 

The “granular temperature,” U2, is shown in Fig. 6 as 
a function of time for the five simulations of Fig. 5. The 
granular temperature is defined here as 

u2s; ,i UT, 
r-1 (8) 

where Uj is the velocity of the ith ball relative to the walls 
at x=0 and x= 1. The granular temperature is propor- 
tional to the average kinetic energy per particle. Despite all 
the drama in Figs. 1-4, the temperature is simply related to 
t. After a short transient region, the temperature decays at 
tB2, as predicted by theory in Ref. 7. In Sec. IV, we use a 
simple model that not only predicts tu2 cooling, but can 
also predict the transient region. 

Ill. PHASE-SPACE DESCRlPTlON 

In this section, we develop a continuum approximation 
for the one-dimensional granular medium. Our goal is to 
understand the phenomenology described in Sec. II. We 
introduce the phase-space density function f(u,x,t), defin- 
ing f( ~,x,t)dx du to be the number of particles located 
between x and x+dx with velocities between u and u+du 
at time t. In our model, the two particles involved in a 
collision are destroyed; instantaneously, two new particles 
with different velocities are created. The governing equa- 
tion for f is a one-dimensional Boltzmann equation:” 

fr+ufx=c(wJ) --A(w,t), (9) 

where C(u,x,t> is the rate of creation of particles with 
velocity u at position x at time t; A(u,x,t) is their rate of 
annihilation. Here, A(u,x,t) is the collision rate for a par- 
ticle of velocity u times the density of particles at that 
velocity: 

A(u,x,t)=f(u,x,t) /u’-ulf(u’,x,t)du’. 
s 

(10) 

The creation rate is the collision rate between particles of 
speeds U’ and u”, constrained by Eqs. ( 1) so that a particle 
of speed u is created: 

C( u,x,t) = 
ss 

1 d-24” If(u’,x,t>f(u”,x,t> 

Xa[u-qu’-(1-q)u”]du’du”, (11) 

where q is defined in Eq. (4). In deriving expressions for 
A(u) and C(u), we assume that the probability of a colli- 
sion between two particles with velocities u and u’ involves 
only the product f(u)f(u’>, i.e., the velocities of the two 
particles are both independent realizations of the same un- 
derlying probability distribution. This is the “molecular 
chaos assumption.” 

Without the quasielastic limit, the molecular chaos as- 
sumption must be invalid because of the strong velocity 
correlations associated with inelastic collapse. It is ironic 
that Boltzmann’s introduction of this assumption was crit- 
icized because of the underlying reversibility of perfectly 
elastic dynamics. In the present case, it is when the under- 
lying dynamics is most irreversible that the molecular 
chaos assumption seems most dubious. 

A. SlMPLlFlCATlON OF THE BOLTZMANN EQUATION 
IN THE ELASTIC LIMIT 

We now approximate the S function in the creation 
rate, Eq. ( 111, with a Taylor series, using q as our small 
parameter: 

S[u-qu’-(l-q)u”]=S[u-u”+q(u”-uu’)] 

d(u-u”) +q(u”-u’)S’(u-u”) 
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where the primes on the 6’s indicate differentiation. Put- 
ting this into our expression for the creation rate, and in- 
tegrating over u”, we have 

C(u,x,t)=f(u,x,t) I#‘-u,f(u’,x,t)du’ s 
+a.(Pf(u,x,i) j” Id-u, (u-ul) 
xf(u’,x,t)du’ +a2 ) .(f~f(u,x,t) j Iu’--uI 

x (U-u’)2f(U’,X,t)dU’ +0(d). 
) 

Defining an acceleration 

a(u,x,t) ‘q 
s 

and a diffusivity 

(13) 

I#‘-u, (U’-u)f(u’,x,t)du’, (14) 

2 I#‘-u, (U’-U)2ff(U’,X,t)dU’, I- 
- J 

(15) 

we can write the creation rate as 

C(u,x,t) =A(u42) - (af >,+ (Of >,, 9 (16) 

where terms of order q3 have been neglected. The Boltz- 
mann equation then takes the form 

ft+ufx+ bf >,= (Of ),,+aq3). (17) 

B. The test-particle equation 

Retaining terms in Bq. ( 17) up to O(q) only, we arrive 
at the “test-particle equation,” 

ft+ (uf I,+ (af >,=o, (18) 

where a(x,u,t) is given in Eq. ( 14). This is the most brutal 
truncation of the expansion in Eqs. (12) and ( 13) that still 
retains the effects of inelasticity. Because the remainder of 
this paper uses Eq. ( 18), a less formal and more physical 
derivation of it is instructive. 

We begin by considering Bq. ( 18) as a continuity 
equation in phase space, expressing conservation of parti- 
cles. Since u is a coordinate, all that remains is to calculate 
the acceleration, a(x,u,~) =ti. In the limit of Y+ 1, it can be 
seen from the collision rule, Eq. ( 1 ), that two particles 
colliding very nearly exchange velocities. Thus the accel- 
erations are large; the particles continually rattle back and 
forth between their neighbors. However, (af ) ,, is propor- 
tional to q, and should vanish as Y-S 1. This paradox is 
resolved by exchanging the identities of the particles dur- 
ing collisions. Particles then pass through each other per- 
turbing each other’s velocity by an amount of order qU. 

We assume that the acceleration a particle experiences 
depends only on its velocity u and position x. We imagine 
one particle, called the “test particle,” moving at velocity u 
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through the swarm of nearly elastic particles. We suppose 
that the mean acceleration of this test particIe character- 
izes the acceleration of all of the particles with velocity u.12 
Each collision modifies the test particle’s velocity slightly. 
We can define an acceleration at a point x which is the 
integrated effect of many, finite, discrete collisions within a 
neighborhood dx of x. Calculating this acceleration, we 
consider a collision between our test particle and another 
particle moving at velocity u’. The collision modifies the 
test-particle velocity by the amount 

Au/collision=q(u’-u). (19) 

The test particle encounters particles with speeds between 
u’ and u’ +du’ at the rate of 

collisions/At= Iu’--uIf(u’)du’. (20) 

The acceleration due to these particles is 

da=Au/Af=q(u’-u) Iu’-uI~(u’)cLIu’. (21) 

Integrating over u’ gives Eq. ( 14) for the acceleration of 
the test particle. 

If the test particle has a velocity much larger than any 
neighboring particles, the acceleration is a= -qp2, qua- 
dratic in u. One factor of u arises because the collision rate 
is proportional to u; the other occurs because each collision 
perturbs the velocity by an amount proportional to u. In 
the other limit, u-+0, if f is symmetric about u =O, a is 
proportional to u: a = -2quJ 1 u’ 1 f( u’)cZu’. 

C. Some properties of the test-particle equation 

In this section, we derive continuity, momentum, and 
energy equations, and show that particles and momentum 
are conserved and that energy is dissipated. In addition, we 
show that the test-particle equation is Galilean invariant. 

The density p, macroscopic velocity U, and the granu- 
lar temperature 8 can be calculated from the phase-space 
density f: 

p= 
s 

m fdu, 
-cc 

1 m 
lJ=- 

s 
uf du, 

P -co 
(22) 

I& [” (u-v)2f du. 
,” J-cc 

1. Conservation of particles 
Integrating the test-particle equation, Eq. ( 18), over u 

gives 

pt+ (pu)x=Q (23) 

which is the conservation of particles equation. 

2. Conservation of momentum 

Multiplying the test-particle equation, Eq. ( 18)) 
and integrating, gives 

at s 
uf du+d, 

s 
u’f du=O. 
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(The term involving a is zero after integration by parts and 
symmetrization of the integrand.) Using the definitions in 
Eqs. (22), we then have 

4 s 
ufdu+J, 

s 
u2fdu=(pvjt+ (pv2+p@,=0. 

(25) 
Using Eq. (23)) this momentum equation can be written in 
a more familiar form as 

vt+vvx= --p-$28), . (26) 

The quantity p8 is the analog of the pressure: Its gradient 
causes accelerations. It is proportional to the product of 
the temperature and the density, as it is in an ideal gas. 

3. Dissipation of energy 
The energy of the system is not conserved, but is con- 

tinually dissipated by collisions. Multiplying the test- 
particle equation by u2 and integrating, gives 

a, 
s 

u2f du+a, u3f du+2 uaf du. 
s s (27) 

Symmetrizing the integral on the right-hand side, we can 
show that the rate of energy dissipation L9 is negative: - 

.$9=2 J uaf du 

z-q 
ss 

(u’-uj’Iu’-ulf(u)f(u’)dudu’ 

GO. (28) 

Thus the energy of the system decreases with time. Using 
the momentum and continuity equations, and assuming 
that f is symmetric about u=v, we can write Eq. (27) as 

e,+vex= -2evx+p-1~. (29) 
The term -28v, on the right-hand side of this equation 
represents the heating or cooling by compression or expan- 
sion. 

4. Galilean invariance 

Galilean invariance of the test-particle model can be 
checked by showing that, if J’(x,u,t) is a solution of Eq. 
(18), then g(x,u,t) =f (x+ct,u+c,t) is also a solution. 
This can be verified by substitution. 

IV. SOLUTIONS OF THE TEST-PARTICLE EQUATION 

We now discuss solutions of the test-particle equation, 
all of which are delta functions in velocity space. The effect 
of the diffusion term (Df j,, in Eq. ( 17), which is ne- 
glected in the test-particle equation, would be to smear 
these delta functions out. Since the test-particle equation 
neglects this diffusive term, it has delta function solutions. 

A. Spatially uniform solutions 

To understand the grouping of particles along the 
edges of the distribution in phase space we seek solutions of 
Eq. (18) with the form 

f(u,t) =p i a$[#-Ui(t)]. (30) 
i=l 

Here, p is the density of particles, defined in Eq. (22), 
which requires Bpi= 1. Each term in the sum represents 
one “stream” of particles. A “stream” is defined to be a 
group of particles moving at the same velocity. The entire 
velocity distribution is made up of n streams. Substituting 
Eq. (30) into the test-particle equation, Eq. ( 18), gives 

i: CXjCi,S’(U-Ui)= L$, Cr$Z(UjjS’(U--Uj). 
i=l 

(31) 

The S’( u - Vi) are independent, and setting the coefficients 
of each independent term equal gives 

cii,=a( Vi) Eqp i CLjl Uj- Uil (Uj-uil- 
j=l 

(32) 

The tp2 cooling law can be recovered with just two 
streams of equal density and of equal and opposite veloci- 
ties. Setting n=2, U= U1 = - U2, and al =a2=& Eq. (32) 
gives 

iJ= - 2qp u2, (33) 

which has the solution 

u= UC/( 1+2qptU,h (34) 

where U, is the value of U at time t=O. At large times, 
with t>(2qpUo)-‘, Ua: t- i, giving U2 cc tw2. The two- 
stream model is successful at predicting the cooling rate of 
a one-dimensional granular medium. If the constant U, is 
chosen so that the equation matches the simulation exactly 
at t=O, the theory accurately reproduces the initial tran- 
sient region as well as the ultimate tB2 decay shown in Fig. 
6. 

We can also use this mode to calculate NJ t), the num- 
ber of collisions since the beginning of the simulation. Con- 
sider a system where the two streams have velocities 
f U(t) and densities p/2 at time t, The particles in each 
stream are separated on average by a distance 2/p and are 
moving at 2 U with respect to particles in the other stream. 
Thus a given particle has a collision rate n,=@(t). The 
cumulative number of collisions for the whole system can 
be calculated: 

I 
t N N2 

0 
n,(t’)dt’=-ln(l+2qpUot)=z~, 

4q 
(35) 

where r= In ( 1 + 2qp Uot) and L = 2qN. This result can be 
expressed in terms of rc in Eq. (6) as 

rp=r. (36) 

Figure 7 compares the prediction in Eq. (36) with the 
five simulations shown in Figs. l-6. The data are collapsed 
onto a straight line as predicted, but the slope is signifi- 
cantly greater than 1. (The least squares fit gives a slope 
1.142.) The “collision clock” runs faster than the “two- 
stream clock.” Perhaps this is because the two-stream 
model neglects the dispersion of the velocity distribution 
and so ignores collisions between particles within the same 
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theorv 

7 

FIG. 7. Number of collisions (measured by T~E~LNJLV’) versus time 
(measured by rmln( 1 +Zqp,,t)) for the simulations of Fig. 5 and 6. The 
solid line is the relationship predicted by Eqs. (35) and (36) 

stream. But collapsing the data in Fig. 7 onto a straight line 
is a nontrivial success for this qualitative model. We do not 
have a quantitative explanation of the slope in Fig. 7. 

Studying the system described by Eq. (32) with the 
n = 5 case gives insight into the emergence of the bimodal 
velocity distribution from more general initial conditions. 
We choose a distribution of five streams symmetric about 
u=O. Set the streams at u= U2,U1,0,- U1,- U, with 
strengths rz2, al, %I, al, a29 respectively. Choose U2 > U,. 
Then Eq. (32) reduces to 

(l/qp)~1=-4azU~U2-((ao+4a*)U:, 

(l/qp)ti2=-(ao+2aI+4a2)U$-2aIUf. (37) 

Define 

up u+cJ2 (38) 

which is a measure of the shape of the velocity distribution. 
For U,, - 1, U2=:U1, and there are two streams at each 
edge of the velocity distribution. If U,zO, there are three 
streams at the center of the velocity distribution. Here, 
lJz> U1 requires O<U,<l. Using Eq. (37), we find that 

~~=qp[(~,u2-u1~2)/u~] 

=qpU2[aoU,(1-U.J+2a,U,(1-Uu*)2]>0. 

(39) 
ThusU.+=OforU,=OorlbutU.+>OforO<U,<l.Any 
stream between u=O and u= U, will migrate toward the 
edge of the velocity distribution, i.e., toward 27,. This be- 
havior is consistent with Fig. 1. 

The tendency for the streams to move toward the edges 
of the velocity distribution can be demonstrated at larger n. 
Fig. 8 shows the time evolution of 21 streams of equal 

0.0 1.0 2.0 3.0 

t 

4.0 

FIG. 8. A solution of the test-particle equation composed of 21 streams of 
equal strength. Initially, the streams are spaced evenly between U= 1 and 
U= - 1. The streams approach 0 as the gas cools. The streams become 
concentrated at the edges of the velocity distribution. 

strength. Each Vi moves toward u =0 as the gas cools. The 
streams initially are equally spaced in u, but by time t=5 
the streams at the edges are much closer to each other than 
to those in the middle, i.e., the distribution becomes bimo- 
dal. 

B. Spatially varying solutions: The two stream model 

A generalization of the solutions presented in the pre- 
vious section is 

f( U,X,t) = C pi(&t)S[ u- ui(x,t> I* (40) 
i 

Substitution into the test-particle equation yields a conti- 
nuity and a momentum equation: 

Ujt+ UJJix=a ( Ui> 9 (41) 

for each i. The bimodal distribution suggests we may be 
able to understand the behavior of the system using just 
two streams. For two streams, we have 

Pit+ (UlPl)x=Q 

pzt+ (U2p2)x=Q 

~l,+~l~l.x=W2I U,-U,I (U,-U,), 
($2) 

u2,+ u2Qx=qpl I u2- u1 I (U1- u2>. 

This is the “two-stream” model. Despite its simplicity, it 
successfully predicts the type of instabilities that develop as 
a uniformly excited medium cools. 

We begin by nondimensionalizing the two-stream 
model in Eq. (42) with 
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2 
Ui=UOtii9 pi=po~i, X=~ 

t^ 
h?Po ’ 

t=- 
%Po uo ’ 

(43) 

where i= 1 or 2, U. is the initial root-mean square (rms) 
velocity and p. is the average density (with dimensions of 
particles per length). Here, p. is also used to define the 
nondimensional length. One unit of Z is the distance which, 
on average, contains 1/2q particles. If there are N particles 
in the domain 0 <x < 1, then po= l/N and the domain is 
O<x^<L=2qN. 

After the scaling in Eq. (43), q is eliminated from the 
two-stream equations: 

jj,i+ (Qd*=O, 

&f (fi2/52)2=0, 

6,;+~,6,,=prIriz-6,1(~2-~,), 
(44) 

However, it is essential to realize that 0 <2 < L so that the 
nondimensional parameter L = 2qN does remain in the for- 
mulation, and can be regarded as a nondimensional do- 
main size. This is the only combination of the coefficient of 
restitution and the number of particles in the two-stream 
model. Since the condition for inelastic collapse in Eq. (3) 
involves a different combination, the two-stream model 
cannot capture this condition, nor predict inelastic col- 
lapse. 

In dimensionless variables, the spatially uniform solu- 
tion in Eq. (34) is 

#&b2=f, 0,=-~2=f(t>=1/(1+~). (45) 

We now examine the linear stability of the time-dependent 
solution in Eq (45). For this analysis, a convenient set of 
variables is 8i and u, defined by 

~i=f+ f-‘ei, 6,=f +Ul, ~2=-f -tV2. (46) 

We also use 

7=ln( 1 +t^, 

as a time variable. 

(47) 

It was shown earlier, in Eqs. (35) and (36), that T is 
proportional to the number of collisions. Thus Q- is a more 
natural way to measure time. The rate of evolution is de- 
termined by the characteristic velocity of the particles, 
which changes as the gas cools. Much more happens dur- 
ing a unit of t^ at the beginning of the simulation than a unit 
of r^ at the end. Using r to measure time takes the cooling 
into account so that a unit of r at the beginning contains 
the same number of collisions as one at the end. 

In terms of the variables in Eqs. (46) and (47)) the 
linearized two-stream equations are 

0 
bd 

0.60 0.76 
k 

FIG. 9. Dispersion relation for waves in the two-stream model. The real 
part is shown with solid lines, dashed lines indicate the imaginary part. 
There are four values of (T for each value of k. 

Since all the coefficients of the dependent variables in Eq. 
(48) are independent of 7, we use the usual substitution, 
0,=i?i exp(ik2+sr), u,=K, exp(ikx^+sT), to obtain a dis- 
persion relation 

d(aj? s#> = (2+k2>/o, (49) 

where o=s+ 1. The dispersion relation above can be fur- 
ther simplified to 

CT+ f 1 f &Z), (50) 

where the four different combinations of + and - gener- 
ate four branches. Thus, the linearized two-stream model 
has four modes corresponding to the four time derivatives 
in Eq. (42). 

The condition for instability needs to be carefullyTom- 
puted, since the “time” r is not linearly related to t. We 
have 

v=rexp(ik?+sr) =r( 1 +t”)“exp(iti), (51) 

so that the velocity perturbation grows for s 2 0. However, 
the background velocity is decaying as ( 1 + t) -*. A stable 
perturbation must decay at a faster rate, otherwise it will 
be growing relative to the background velocity. Therefore 
the condition for instability is s > - 1 or a > 0. A similar 
result holds for density perturbations: 

p=f+f-‘e 

=f+ (l+i)gexp(ikx+sr) 

=f+Bexp(ikx)(l+tjs+‘. (52) 

From this equation, it can be seen that density perturba- 
tions grow if s+l=a>O. 

Figure 9 shows the dispersion relation, Eq. (49). For 
R< l/2, there are two unstable, growing modes and two 
stable, decaying modes. The growth rate (T is purely real so 
these stationary long waves grow without propagating. For 
k> l/2, (T becomes complex, with Re (T= f l/2. Because 
the growth rate has an imaginary part, these.short waves 
are traveling disturbances. However, they also grow or de- 
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cay, depending on the sign of Re (T. This is an important 
difference between the present instability calculation and 
that of Ref. 8, where it was found that sufficiently short 
waves are stable. Here, the growth rate is smaller for short 
waves, but still indicates instability. 

la i 

C. Comparison of the two-stream model with 
simulations 

0 4 

The two-stream model provides a prediction of the 
shape of the disturbances. Once the dispersion relation is 
known, Eq. (48) can be used to find relationships between 
u1 and up For the growing modes, we have simply u1 = u2 so 
that the two streams move in phase and the mode is “sin- 
uous.” (The decaying modes are “varicose” with 
u1 = _ up) The instabilities that arise are indeed of the type 
predicted by the two-stream model. Examining Figs. l-4 
shows that the streams are always nearly parallel to each 
other. 

b 

a” 

+ 
0 

5 

I I I 

The parameter L is the nondimensional length of the 
domain. It plays a crucial role in determining the behavior 
of a simulation. As L decreases, the length of the waves 
that can fit into the domain 0 < .? < L also decreases. If L is 
too small, then stationary waves, with Im o=O, no longer 
fit in the domain. If the domain is small, only traveling 
waves will be present. This qualitative prediction is verified 
by the simulations of Sec. II. Figure 1 has L=2, and only 
traveling disturbances are seen. (The oscillation is a super- 
position of two oppositely directed traveling waves.) 

0.0 0.4 

k=FTL 

1.2 1.8 

FIG. 10. Comparison of the theoretical (solid line) and simulated (cir- 
cles) growth rate of instabilities in domains of various sizes. The five solid 
circles are the five simulations discussed in Figs. 1-6. The solid line is the 
largest Re (T from the dispersion relation (see Fig. 9). For the data points, 
the horizontal axis is r/L; for the theoretical curve the horizontal axis is 
the wave number k. The two are equal if the gravest mode (with a 
wavelength twice the domain size) is excited in the simulation. 

The theory predicts that small-scale traveling distur- 
bances can always exist, but that their growth rate is al- 
ways less than that of the large-scale stationary distur- 
bances. Thus, in the initial development of the instabilities 
where linear dynamics is valid, both stationary and travel- 
ing disturbances are superimposed but the stationary ones 
will grow faster. In Fig. 3, where L=8, the unstable mode 
does not oscillate. We claim that this is because the low 
wave-number modes in the initial conditions have ampli- 
tied faster than the high wave-number modes. The trend 
toward higher harmonics at higher values of L, shown in 
Fig. 4, is also consistent with the theory. As L increases, 
long, rapidly growing and nonpropagating disturbances 
contribute to the distortion of the phase-space density. Fig- 
ure 5 shows a difference between large and small L sug- 
gestive of a transition from stationary to traveling distur- 
bances. The sinuousity c can be used to measure the 
amplitude of the instability: 

ing stream has a velocity equal and opposite to the outgo- 
ing stream with a small difference of order gU. Thus we 
have u,= --v,[l --O(q)]. This, combined with the require- 
ment u1 = u2 for growing modes, gives the boundary condi- 
tion 

(3),/f 32/f. (53) 

In the large-L simulations, czv/f increases roughly 
monotonically, and more quickly than in the small-L sim- 
ulations. The small-L simulations show oscillations in c 
superimposed on a slower upward trend, consistent with 
disturbances that oscillate as well as grow. 

v1=0, u2=0 at x=O,L. (54) 

This quantizes the waves within the domain and explains 
why the vibration in Fig. 1 has zero amplitude at the walls. 
The longest wave that fits in the domain has a wavelength 
of 2L. Such a wave is shown in Fig. 3 (L= 8). Its wave 
number is k=?r/8, and it is a stationary, growing distur- 
bance. The next lowest wave that can exist in the box has 
k=s-/4, and it is too short to be stationary; it is a traveling 
disturbance and its growth is obscured by that of the low- 
est mode. In Fig. 4(a) (L=16), both the first and third 
modes are visible. The theory predicts a change in behavior 
at L=2n. For L < 2n; the shortest stationary ‘mode no 
longer fits in the domain and all of the quantizable modes 
are oscillatory as well as unstable with a growth rate that is 
independent of wave number [from Eq. (SO), Re (T= l/2 if 
k > l/2]. For L > 2a, stationary modes, with k < l/2, dom- 
inate the initial evolution. 

A more quantitative comparison of theory and simu- 
lation requires knowledge of the boundary conditions at 
the walls. If the wall reflected the particles elastically, then 
the velocity of the incoming stream would be equal and 
opposite to the velocity of the outgoing stream. In our 
simulations the walls are almost elastic and so the incom- 

Figure 10 compares Re (T of the fastest growing mode 
of Fig. 9 with an estimate from simulations, obtained by-- 
setting Re cr equal to the slope of In 6 plotted against 7. The 
wave number of a simulation is determined by assuming 
that the growing instability is the gravest mode and so has 
a wavelength of twice the domain length, i.e., k=v/L. (In 
the discussion below, we show this assumption is not al- 
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ways valid.) The five solid circles in Fig. 10 are the five 
simulations of Figs. l-7 with L=2, 4, 8, 16, and 32. At 
each of these values of k=r/L, we have included five 
additional estimates of (T from simulations with different 
initial conditions. We have also filled in the gaps between 
these five selected values of L with ten additional simula- 
tions. 

There is qualitative agreement between the theoretical 
curve and the estimated growth rates. In the traveling wave 
regime (roughly k > 0.5)) the growth rate is independent of 
wave number. And in the long wave limit the growth rate 
approaches 1. Considering the crudeness of both the two- 
stream model and the method of estimating a, we think the 
agreement between the theoretical curve and the data 
points is acceptable. The transition from traveling to sta- 
tionary waves is visible as an increase in a. There are two 
main differences between the theoretical curve and the data 
points. First, the growth rate in the traveling wave regime 
is roughly half as large as the predicted value. Second, the 
boundary between the traveling wave and the stationary 
wave regimes seems to occur at k-0.7, rather than at 
k=0.5 as the theory predicts. In addition, there is signifi- 
cant scatter in the experimental points. 

We have no explanation for the difference between the- 
ory and simulation in the short wave regime except the 
simplicity of the two-stream model. The two-stream model 
ignores all of the particles between the two streams. Incor- 
porating the effects of these particles (in, for example, a 
“three-stream model”) might improve the quantitative 
agreement between theory and simulation. 

The second discrepancy, which is that the boundary 
between oscillatory and direct growth is at k-0.7, might 
be due to the difficulty of separating slow oscillations from 
steady growth. For instance, in Fig. 5, the sinuousity of the 
L =4 curve undergoes one “bounce” in six units of TV,, 
more than half the time it took for it to reach 6=0.5. If the 
bounce took longer (and it does as k+ l/2>, the sinuousity 
could cross 5=0.5 at the crest of the first bounce. This 
would lead to an overestimate of a, since the apparent 
slope of In ((7) would include the oscillatory part of c~ as 
well as the growing part. 

The point in Fig. 10 marlced with a cross near k=0.4, 
a=0.2 is anomalous. Like Fig. 3, this simulation has L=8 
and is within the stationary wave regime. Yet the estimated 
growth rate is typical of the traveling wave regime. Fur- 
ther, the sinuousity for this particular simulation oscillates 
and grows. This simulation is shown in Fig. 11, and the 
reason for its anomalous behavior is at once clear and con- 
sistent with the theory. The random initial conditions have 
strongly excited the second mode instead of the first mode. 
Thus the wave in this simulation really has a wave number 
k=2?r/8 =~/4 (greater than the critical wave number k 
= l/2) instead of k=?r/8, which is the expected wave 
number if the initial conditions excited the gravest mode. 

This points to an additional difficulty with our crude 
method of estimating (T from the simulations, viz., the ran- 
dom initial conditions excite a mix of modes. The scatter in 
the estimates of a, which is evident in Fig. 10, might result 
from averaging the growth rates of this random superpo- 
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FIG. 11. A simulation at ,518, N= 1600, identical to Fig. 3, except with 
different initial conditions produced by a random number generator. The 
numbers in the lower right-hand corner of each panel give the value of rC 
for that panel. Unlike Fig. 3, the dominant disturbance is the second 
mode. The lowest mode, dominant in Fig. 3, grows without oscillation 
and has k=?r/8 <k,= l/2, so it only grows, but does not oscillate. The 
mode here is in the traveling wave regime and has k=?r/4>k, and is 
thus in the traveling wave regime, and oscillates. 

sition. This argument rationalizes the observation that the 
scatter is greater when L is larger. In particular, when 
k> l/2 the theory predicts that all modes have Re a=0.5 
and so our estimate is not effected if several different modes 
are superimposed. But in large domains, different modes 
have different growth rates and different random superpo- 
sitions (e.g., Fig. 4) will lead to different estimates of Re u. 

V. CONCLUSlONS 

In an attempt to apply a statistical theory to the cool- 
ing of a one-dimensional granular medium, the develop- 
ment of strong interparticle correlations was deferred (but 
not avoided) by taking the double limit in which N- CO 
and 1 ---r-+0. This quasielastic limit eliminates the finite 
time singularities associated with collapse, but simulations 
show that particle clumps still form throughout the me- 
dium (e.g., Fig. 2). The implication is that kinetic theories 
that neglect interparticle correlations cannot describe the 
quasielastic system in the long time limit. Instead, the ki- 
netic theory of Sec. III qualitatively captures some of the 
interesting phenomena that are precursors of the ultimate 
condensed state (e.g., Fig. 1). These include the rapid de- 
velopment of a bimodal velocity distribution, the growth of 
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large-scale instabilities and the distinction between station- 
ary and traveling disturbances depending on the domain 
size. 

The two-stream model in Eq. (42) is different from a 
conventional hydrodynamic model that might be con- 
structed from Eqs. (23), (26), and (29). (For instance, 
the two-stream model has four linear modes, rather than 
three.) The exact connection between the two-stream 
model and conventional hydrodynamics is not clear to us. 
We emphasize that both the two-stream model and the 
hydrodynamics in Eqs. (23), (26)) and (29) are conse- 
quences of the test-particle equation in Eqs. ( 14) and ( 18). 
The two-stream model has the advantage that it is a closed 
system while the hydrodynamic model requires further 
elaboration to relate the dissipation term 9 in Eq. (29) to 
p, 8, etc. 

To summarize, the formation of clumps in an initially 
uniform one-dimensional granular medium has two stages. 
First, density inhomogenities grow according to the linear 
dynamics detailed in this paper. When particle concentra- 
tions become high enough, the “molecular chaos” assump- 
tion breaks down, and the kinetic theory fails. Second, the 
inhomogenities become singular in finite time if the thresh- 
old for inelastic collapse is exceeded. Otherwise, the 
clumps grow by merger into a single large clump that per- 
sists indefinitely (Fig. 2). 

The coefficients of restitution used in our simulations 
are too close to 1 to be realistic. A carefully polished ball 
bearing bouncing off a hard, polished metal surface at very 
low speeds has r~O.95 and a “superball” has ~~0.9, but 
we have routinely used Y> 0.99 in this paper. There are two 
reasons for this restriction. First, large numbers of particles 
are needed to verify the statistical approach. Second, we 
have shown that the clustering of particles (the formation 
of isolated regions of high density, as distinct from inelastic 
collapse) takes place even up to the highest r used in this 

paper. The theory indicates that clumping will occur as 
Y-P 1, provided that L= ( 1 --r)N is fixed. 
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