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A theory of the wind-driven circulation II. 
Gyres with western boundary layers 

by William R. Y oung1• 2 and Peter B. Rhines1 

ABSTRACT 
The quasigeostrophic, wind-driven circulation theory given by Rhines and Young (1982b) is 

extended in two directions. 
First, we consider forcing patterns which are not contrived so as to close without a western 

boundary layer. The resulting barotropic circulation pattern (see Fig. 1) has the well known 
east-west asymmetry produced by the /3-effect. Our goal is to present a thorough description of 
the associated density field and baroclinic currents as predicted by the theory of Rhines and 
Young (1982b). 

Secondly, we consider the problem of closing the circulation by appending western boundary 
layers. We argue that in the southern region, where fluid enters the boundary layer from the 
Sverdrup interior, an inertial boundary layer forms. In the northern region, where fluid leaves 
the boundary layer, there is a damped, stationary, baroclinic Rossby wave which provides the 
dissipation required to balance the forcing. This wave is neutrally stable according to the 
Charney-Stern criterion for baroclinic instability and the flo w is suggestive of finite amplitude 
baroclinic instability in which the disturbance has equilibrated by reducing the supercriticality 
of the mean flow. 

Estimates of the depth to which the wind gyre penetrates (of order UI N)(U I J3)1 where f is 
Coriolis frequency, N buoyancy frequency, U the mean velocity and f3 the northward gradient 
off) are improved using variable N, and accord reasonably well with observations, including the 
apparently greater depth penetration of the gyre in the Pacific , as compared with the Atlantic. 

1. Introduction 

Recently Rhines and Young (1982a,b) (RYa and RYb hereafter) have developed 
an analytic theory of the wind-driven circulation in which the key ingredients are: 

(i) the production of closed geostrophic contours in subsurface density layers if 
the external forcing (i.e., the Ekman pumping) is sufficiently strong. 

(ii) the nonuniqueness of the fl.ow in these closed regions of dissipation is en-
tirely neglected. 

1. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, U.S.A. 
2. Present address: Marine Physical Laboratory A005, Scripps Institution of Oceanography, San 

Diego, California, 92152 
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Figure 1. The barotropic streamfunction given by (2.6a). The western boundary layer is shown 
schematically. 

(iii) the selection of a unique solution by weak dissipation and the calculation of 
the flow by an extension of the Batchelor-Prandtl theorem. 

(iv) the homogenization of potential vorticity in subsurface density layers if the 
dominant dissipative mechanism is lateral diffusivity of potential vorticity, 
due to say mesoscale eddies. 

This last theoretical prediction is supported by both ocean observations (Coats, 
1981; McDowell et al., 1982) and numerical experiments (Holland, 1982; McWil-
liams and Chow, 1981; and Bleck and Boudra, 1981). In RYb simple circulation 
patterns were calculated using the ideas above. Attention was restricted to "mid-
ocean" gyres in which it was assumed that the Ekman pumping wE satisfied the 
condition: 

s:"' wliJ(x',y)dx' = 0 . (1.1) 

The above ensures that the barotropic streamlines calculated from the Sverdrup 
relation: 

HI/JB = - fo~-ls: wE(x' ,y)dx' ( 1.2)3 

close naturally so that it is not necessary to consider western boundary layer dy-
namics. 

In this note the theory given by RY a and b will be extended in two directions. 
First, we will consider models of WE which do not satisfy (1. 1). This naturally leads 
to the second extension: the closure of the circulation by appending a western 

3. In (1.2) l/Jn is the bartropic streamfuncti on. In a quasigeostrophic l ayered model, if ~11 and H, are 
the streamfuncti on and layer at thickness of the i'th layer then Ht/Jo = I, H , l/1 , and H = IH, . f3 is 
the north-south gradient of the verti cal component of the Coriolis vector : f = fo + /3Y on a {3-plane. 
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boundary layer. This is of course the same problem which arises in homogeneous 
circulation theory. In the baroclinic theories discussed here all the familiar diffi-
culties of the homogeneous theory re-emerge, compounded by the addition of an 
extra spatial dimension. 

In sections 2 and 3 we begin by calculating the circulation in the Sverdrup 
interior, away from the western boundary layer. In subsurface density layers the 
fluid is either motionless or has uniform potential vorticity. This is used to calculate 
both the extent of the homogenized region and the three dimensional structure of 
the wind-driven flow within it. The flow satisfies the Sverdrup constraint on the 
vertically integrated transport and exhibits many realistic features such as the pole-
ward migration of gyre centers with depth. 

The quasigeostrophic approximation is used throughout this note and the calcula-
tion of the flow in the Sverdrup interior is similar to that in RYb. In section 2 the 
density structure is approximated by a "2 1/2-layer" model (two active layers over 
a deep, quiescent layer) while in section 3 we increase the vertical resolution by 
using a continuously stratified model. 

In section 4 boundary layer dynamics are considered for the first time. One of 
the most unsatisfactory aspects of homogeneous circulation theory is the param-
eterization of dissipation in the western boundary layer. This is unavoidable since 
it is necessary to include some form of dissipation (i.e. an eddy viscosity) to remove 
the vorticity put into the fluid by the wind stress. Perhaps the most sophisticated 
analytic example of this is Moore's (1963) damped stationary Rossby wave which 
is confined to the northwest corner of the basin and acts as a set of baffles to give 
the vorticity sufficient time to diffuse out of the basin (Pedlosky, 1979, section 5.10). 
Thus although this model, and the simpler ones due to Stommel (1948) and Munk 
(1950), are internally consistent, they are open to criticism because the structure of 
the western boundary layer depends strongly on how the smaller scale processes are 
parameterized. Fortunately the principal conclusion, viz. the boundary layer is on 
the west, requires only that the eddy viscosities be positive! 

Now, in the upper layer of a multilayer model the considerations in the previous 
paragraph are directly relevant. There is strong vorticity source of one sign, wE, and 
so dissipation must be important on every streamline. 

The boundary layer closure we adopt is a two-layer version of Moore's (1963) 
calculation in which this dissipation is provided by a damped stationary baroclinic 
Rossby wave in the northwest corner of the basin. The novelty is that in the lower 
layer this wave exists on a mean flow which has uniform potential vorticity. Thus 
the wave is neutrally stable according to the Charney-Stern criterion for baroclinic 
instability. Consequently there are no potential vorticity perturbations associated 
with the wave in the lower layer. The entire configuration is reminiscent of a wave 
generated by baroclinic instability which equilibrates by erasing the supercriticality 
of the mean flow (e.g., Pedlosky, 1970, 1971 and 1972). 
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2. The Sverdrup interior: the two and a haH layer model 

a. The three layer quasigeostrophic equations. Throughout this article we use the 
quasigeostrophic equations in which the thickness of an isopycnal layer is linearized 
about its mean value. Consider then a three layer model in which the thickness of 
the lowest layer is much greater than that of the other two: 

Ha>> H,,H2. 

This ensures that the displacement of the lowest interface cannot produce fractional 
depth changes comparable to the ft-effect in the lowest layer. Thus away from 
inertial boundary layers the lower layer potential vorticity, qa, is dominated by the 
ft-effect: 

and so all the geostrophic contours in the lowest layer are blocked by coastal bound-
aries. This implies that the flow in the lowest layer is weak, since weak vertical 
stresses produce only weak flow across blocked contours (Rhines and Holland, 
1979). According to this reasoning then, a negligible fraction of the Sverdrup trans-
port is in the lowest layer and 

(2.1) 

The assumption that the lower layer is motionless reduces the three layer model to 
an equivalent two layer model. The boundary layer analysis in this article is also 
based on this two layer model. It is important to realize that the two layers represent 
the upper thermocline waters rather than the complete column. 

The three layer quasigeostrophic equations, with tf!a = 0, are then 

( dissipation) 

where the potential vorticities are 

(2.2a) 

(2.2b) 

q, = f + '12 tf,, + (fo2/g'H,) (tf,2 - tf,,) (2.3a) 

q2 = f + '12 tf,2 + (f//g'H2) (tf,, - tf,2) + (/02/g''H2) (-tf,2) (2.3b) 

and 

f = fo + fty 

is the Coriolis frequency. The reduced gravities are: 

g' = g ( P2 P, ) and g" = g ( Pa~ P2 ) 

Simple scale estimates show that in the Sverdrup interior of a wind-driven gyre 
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the relative vorticity is negligible in (2.3). Suppose for instance that the horizontal 
length scale is L =" 108 cm and a typical horizontal velocity is U =" 1 cm s-1• Then 

_k_ =" f3U =" 1 oa 
V 21f, u 

so that the relative vorticity may be neglected in the interior. On the other hand if 
the geostrophic contours are to close, the vortex stretching terms in (2.3) must be 
comparable in magnitude to the /3-effect. This observation is used in the next section 
to obtain simple estimates of the vertical length scale and the horizontal velocity 
scale of the wind-driven flow in terms of external variables such as /3 and WE. 

For simplicity we will assume 

g' = g'' and H1 = H2 
and define: 

F = fo2/g'H1 = {Rossby radius of deformation}-2 • 

b. The Sverdrup constraint. The Sverdrup constraint is obtained by forming the 
sum H 1 (2.2a) + H 1 (2.2b) and neglecting the dissipation. Note how the large 
nonlinear vortex stretching terms vanish leaving 

{3HI/JB,, = f oWs 
where 

(2.4) 

The barotropic streamfunction in the interior is now obtained by integrating (2.4) 
from x to the eastern boundary, x = a, where 1/JB = 0. One obtains 

{3HI/JB = - !of: Ws dx' 

= - fo(a - x) wE(y) (2.5) 

if Ws is independent of x. In this article we shall use two different functional forms 

for WE: 

(2.6a) 

and 

Ws = -w0 ( 1 - I~ I) (2.6b) 

where y = b(- b) is the northern (southern) boundary of the gyre. Note that in a 
subtropical gyre Ws is negative so w0 in (2.6) is positive. The introduction of two 
different functional forms for Ws is purely for convenience; (2.6a) and (2.6b) pro-
duce qualitatively similar flow patterns. Although the streamlines produced by 

(2.6b) have "kinks" at y = 0, where d;/ is discontinuous, it is usually easier to 
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visualize the flow produced by this forcing pattern. WE in (2.6a) on the other hand 
has been used frequently in previous studies (e.g., Stammel, 1948; Holland, 1982). 
The barotropic streamfunction calculated from (2.5) will be written as 

o/B = '¥ ( 1 - : ) f,.(y) (2.7) 

where 

'¥ = f owoa 
{3H 

(2.8a) 

f 1(Y) = sin ( ;; ) (2.8b) 

f iY) = ( 1 - I t I) (2.8c) 

The familiar pattern in Figure 1 is the barotropic streamfunction produced by (2.6a). 
The calculation of the barotropic mode is as far as classical circulation theory 

goes. The theory presented by RYa and b is now used to determine the vertical 
distribution of o/B· We begin by focusing on the middle layer (i.e., the lower of the 
two active layers). 

c. The geostrophic contours in the middle layer. Since the two active layers have 
equal thicknesses, and the density jumps are also equal, the middle layer potential 
vorticity is essentially: 

or from the definition of o/B: 

(2.9) 

P=HF/H1. 

Since the dissipation is weak in the lower layer the general solution of (2.2b) is 

(2.10) 

where Q is some as yet undetermined function of -J12 • A little thought shows that 
(2.9) and (2.10) imply that -f!2 and q2 are functions of the known quantity: 

({ 2 = {3y + ft' o/B • 

Thus the geostrophic contours in the lower layer (i.e., the free flow paths) are deter-
mined once and for all. The function q2 corresponding to (2.6a) is contoured for 

various values of 'I' PI /3 in Figure 2. The contours are closed in the northwest of the 
basin; the extent of this region increases as 'l'F I {3 increases. If the forcing is weak 
then all of the geostrophic may be blocked. For instance using (2.6b) it is easy to 
show that closed q2 contours exist only if: 
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la)'l'Fl/3' 114 lb)'l'Fl/3' 1
12 

(c) 'l' F / /3 , I (d) 'l' F / /3 , 2 

Figure 2. The function q = y + ('ltF I /3) (a - x)cos ( ; ) for various values of 'l'F / {3 . The 

outermost closed contour is dashed. As the strength of the forcing increases the closed con-
tour region expands southward and eastward. 

P'l' 
'Y = {3b > 1 

In the regions threaded by blocked geostrophic contours we must have tf,2 ="" 0 
since there can be no flow through the eastern boundary. In the shielded region of 
closed contours there can be substantial lower layer flows which pass through the 
western boundary layer. As emphasized in RYb, in the absence of dissipation one is 
free to choose an arbitrary functional relationship between q2 and q2• Hence we 
have an infinite number of possible solutions. This difficulty is overcome using the 
generalized Batchelor-Prandtl theorem given by RYa which shows that if the dom-
inant dissipative process is lateral diffusion of q2, then the potential vorticity is 
homogeneous in the closed region. 

d. Determination of tf,2 in the closed region. As in R Ya,b we argue that substantial 
lower layer flows are confined to the region where the q2 contours close and the 
streamfunction in this region is determined by requiring that the potential vorticity 
be uniform. Thus from (2.9): 

o/2 = 3~ [CJ2 - q2] 

o/2 = 0 

inside closed q2 contours 

elsewhere . 

(2.lla) 

(2.llb) 



856 Journal of Marine Research 

X 

y 0 

-1 [_ _____________ __, 

(al 

y 0 

' I 
I 

- 1 L-------------~ 
(bl 

[40, 3 

o=3 

o=3 

Figure 3. The streamline pattern corresponding to (2.11). The dashed curve is the outermost 
closed q, contour inside of which the potential vorticity is uniform in the lower layer. 
Outside this region, ,J,, = 0. 

The constant value of Q 2 in (2.lla) is chosen to make lf, 2 continuous on the outer-
most closed q2 contour. Since 1/JB is zero on y = b it follows that fJ2 = {3b is the 
outermost closed q2 contour. Thus q2 = {3b is constant value of q2 in the region of 
closed fJ2 contours. 

Now that 1/12 is known, (2.11), lf,1 is calculated from (2.4). The streamline pattern 
calculated from (2.11), (2.4) and (2.6b) is sketched in Figure 3 for the special case 

I f3 = 1, a = 3, b = 1. This figure summarizes the results of this section; note 
the north-south asymmetry of the flow and the poleward shift of the gyre center 
with depth. These realistic features will reappear in the continuously stratified 
model of section 3. 

For future reference we record the explicit expressions for lf, 2 when 1/JB is given 
by (2.7) and (2.8c): 
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{
~(1-P!.___ - ~)(1-L) 
3H1 p,q, a b 

t/12 = H'lt (1 + {3b - ~)(1 + L) - 2_ {3b 
3H1 P'\Jf a b 3 F 

if y > 0 

if y < 0 

(2.12a) 

(2.12b) 

3. The Sverdrup interior: a continuously stratified model 

This section is a digression into the continuously stratified theory. Readers more 
interested in the discussion of the western boundary layer can go directly to section 4 
without loss of continuity. 

a. The continuously stratified quasigeostrophic equations. In this section we will 
extend the results of section 2 to a continuously stratified model. We are especially 
interested in how the extent of the region of subsurface fl.ow changes as the vertical 
resolution is increased. 

With continuous stratification the Boussinesq potential vorticity equation (Ped-
losky, 1979) is: 

J(tf,, q) = (dissipation) 

( 
fa2 ) q = o/xx + 'Pvv + N2 t/JZ Z + /3Y 

(3.1 a) 

(3.1 b) 

where tJ, is the streamfunction and q is the potential vorticity. The vertical velocity 
is given by 

W = - f o N- 2 l(t/J, t/Jz) 

so that the boundary condition at the base of the mixed layer, z = 0, is 

WE = - f o N- 2 J(tf,, t/Jz) I z=O • 

The total density field is 

P = Po { 1 - g-i f z N2dz' - fog-1t/Jz } 

(3.2) 

(3.3) 

(3.4) 

where g is gravitational acceleration, p0 is the average density, N the buoyancy 
frequency and t/Jz the perturbation due to the wind-driven fl.ow. 

We now nondimensionalize (3 .1 )-(3 .4) using the following scalings (. denotes a 

nondimensional quantity): 
(x,y) = b(x.,y.) (3.4a) 

tf, = Vb t/1• (3.4b) 

q = {3b q. (3.4c) 

z = lz. (3.4d) 

w= Ww. (3.4e) 
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where W is a measure of the amplitude of the externally imposed We and, as in 
section 2, b is a north-south length scale. l is the vertical length scale of the wind-
driven flow and U is horizontal velocity scale of the flow. The internal variables 
l and U are expressed in terms of external variables using two physical arguments: 

(i) the planetary scale vorticity balances applies: f3v = fwz so f3Ul ~ fW 
(ii) vortex stretching balances the f3 effect so that the geostrophic contours close: 

f3y ~ ( r o/zz so /3bl2 ~ ( '/;
0 
r Ub where NO is a typical value of the 

buoyancy frequency in the wind-driven part of the water column. 
Solving the scaling relations above gives: 

U = (NoW)2/s 13-1/ a 

l = fo(No/3)-2/3 Wl / 3. 

The nondimensional potential vorticity is (dropping the .'s): 

where 

E2 = Uf3/ b2
• 

(3.Sa) 

(3.5b) 

(3.6) 

(3.7a) 

(3.7b) 

As in section 2 E2 < < 1 so the relative vorticity is negligible in the Sverdrnp interior. 
The density field in terms of nondimensional variables is 

p=p0 [l-N / g-1 {f z F- 1dz'+ (j~) 'Pz }] . (3.8) 

This last relation shows that the quasigeostrophic approximation is valid to the ex-

tent that ( j~ ) is small. 

b. The depth of the wind-driven gyre. Now suppose that the wind-driven circulation 
lies between z = 0 and z = -D(x,y); the surface z = -D(x,y) is a "bowl" which 
vertically bounds the wind-driven flow. Outside the region z > -D the fluid is 
motionless. Thus z = -D is a "level of no motion." The goal of this section is to 
calculate Din terms of the forcing wE(x,y) and the basin geometry. We will assume 
that the buoyancy frequency is constant; this assumption is not essential. Because 
of (3.7a) we can take F = 1. 

In accord with the assumption that the dissipation in (3.la) is weak: 

q = Q(lf,,z) (if O > z > -D) 

and then using the homogenization arguments given by RYa and b : 

aQ =O 
a!fl (if O > z > -D(x,y)) 
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so that: 
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q = Y + o/zz = Yo(z) (if O > z > -D(x,y)) 

where Yo(z) is the value of the potential vorticity at level z. 

859 

(3.9) 

Outside the bowl O > z > -D(x,y) the wind-driven flow vanishes so that in the 
absence of deep thermohaline forcing or flow imposed by distant sources of fluid 
(e.g., deep water formation): 

1/J=O (if z < -D(x,y)) . (3.10) 

Now as in section 2 (see the discussion after (2.11)) the function y 0(z) in (3.9) is 
determined from the matching condition at the outermost closed geostrophic con-
tour. Anticipating that these contours will resemble those of the layered model 
shown in Figure 2, we see that they are contiguous with the northern boundary of 
the gyre where q = y = 1 in our nondimensional units. This suggests that 

Yo(Z) = 1 . (3.11) 

Since the comparison with the layered model in section 2 may not be entirely con-
vincing we will assume that Yo is a constant (rather than a function of z) and 
examine the consequences of the alternatives to (3.11). We hope this will further 
motivate the choice Yo = 1. 

c. Solution of (3.9). The solution of (3.9) which satisfies: 

1/J = o/z = 0 on z = -D(x,y) 
is: 

1 If! = 2 (z + D)2 <Yo - y) if-D < z < 0 (3.12a) 

If!= 0 if z < -D . (3.12b) 

D(x,y) is determined by requiring that (3.12a) satisfy the upper boundary condition 
(3.3). The vertical velocity from (3.2) is 

1 ( aD) w = 2 (z + D) 2 <Yo - y) ax 
so that (3.12b) implies 

or 

a 
- (D3) = 6(yo - y) - 1 W E ax 

D3 = 6(yo - y) - l I/In 
where 

I/In = (x - a) WE 

= barotropic streamfunction 

a = position of eastern boundary 

(3.13) 

(3.14) 

(3.15a) 

(3.15b) 
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Yo= 1/2_ Yo= 2 

Figure 4. The shape of the bowl bounding the wind-driven circulation. This figure illustrates 
the consequences of varying. the constant Y•· In the text it is argued that Y• = 1 is the 
correct choice. 

d. A model of the Ekman pumping: wB = - [l - I y I ]. The streamline pattern 
corresponding to (3.12) and (3.14) is surprisingly difficult to visualize. It is helpful 
to consider the simple forcing function 

(3.16) 

since in this case the streamlines are simple algebraic curves. This is only for con-
venience, all plausible models of the Ekman pumping in a subtropical gyre, such as 
(2.6a), produce qualitatively similar patterns. 

With wB given by (3.16), D[6(a - x)]- 1/ s is plotted against yin Figure 4. Clearly 
the choice Yo < 1 leads to unphysical results and can be excluded. The choice Yo > 1 
leads to superficially reasonable results. There are analogous patterns in the 2 1/2 
layer model of section 2; they correspond to picking one of the inner closed con-
tours in Figure 2b to bound the circulation in the middle layer. Such a configuration 
cannot persist since the upper layer flow exerts a stress around the available closed 
contours at the rim of the bowl and eventually accelerates a flow around them. This 
process deepens the bowl until all the closed contours have a mean flow around 
them. The limiting situation, in which the bowl is as large as possible and abuts the 
northern boundary, corresponds to Yo = 1. Although the above discussion has been 
couched in terms of the layer model, similar considerations must apply in a con-
tinuously stratified model; note how the bowl deepens and moves up against the 
northern boundary as Yo decreases to 1 in Figure 4. 

To summarize, the streamfunction is 

= { (z + D)' (I - y) - D < z < 0 

z< -D 

(3.17a) 

(3.17b) 
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X 
2 3 

D=Dm ax 

y 0 D= 

D= .50Dmax 

O= .25Dmax 

·_1 bc==============:::__Q_D~= o~ 

Figure 5. The depth of the wind-driven circulation as a function of position from (3.14) and 
(3.16). The bowl is deepest at the line segment x = 0, 0 < y < 1. The circulation becomes 
shallower as one moves south and east. 

where 
D = [6(1 - y)- 1 (x - a) wB(y)]113 . (3.18) 

The surface z = -D(x,y) bounds the region containing the wind-driven circulation 
from which the potential vorticity gradients have been expelled. The region is 
deepest in the northwest corner of the basin and shoals as one moves south and east, 
see Figure 5. The streamlines corresponding to (3 .17) are sketched in Figure 6. This 
sequence clearly shows how the wind-driven flow is compressed into the northwest 
comer of the basin as one moves downward. In Figure 7 we show meridional 

density sections through the gyre at x = 0, x = + a and x = ; a. At the eastern 

boundary, x = a, D = 0 and the isopycnals are undisturbed. Note how the spacing 
between isopycnals increases as one moves poleward; as explained in RYb this en-

-1 -1 -1 ~--~----~ 

(a) !f01 Z=o · (b) 'fOIZ= - 3"Dmo• (c)'fOIZ =-fDmo, 
, - 87 • -1 75 

Figure 6. The streamlines from (3.17a) at various depths in the wind-driven gyre. This is no 
motion in the stippled regions outside the surface z + D = 0. The flow is confined to the 
region of uniform potential vorticity. 
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(c ) X = 2/ 30: 2 

Figure 7. Three meridional density sections showing z + T 1/1, with Ws = - [1 - I Y I]. The 

heavy curve is z = - D while the light curves are isopycnals. Note how the isopycnal spacing 
increases as one moves poleward so that the potential vorticity is uniform. 

sures that the potential vorticity is unilorm within the gyre. In Figure 8 zonal 

density sections through the gyre at y = , y = 0, and y = - are shown. At 

y = -1, D = 0 and the isopycnals are undisturbed. In Figures 8 and 9 we are 

plotting z + ( j~ ) 1/Jz-From (3.8) this is essentially the density field. 

e. _ Structure of the circulation near the eastern boundary. It is worth noting that 
(3.12) is weakly singular at the eastern boundary. In fact since 

v = i/1111 
a: (x - a)-2/a 

the north-south velocity becomes infinite as x a. This singularity occurs because 
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( c ) y= - 2/J 

1 
Figure 8. Three zonal density sections showing z + 3 1/J, with w,, = - [1 - I y I]. The heavy 

curve is z = -D(x,y) while the light curves are isopycnals. 

the depth of the circulation, D (x,y), vanishes at the eastern boundary. Thus all 
of the Sverdrup transport along the eastern boundary is compressed into a "jet." 

f. How deep is the "level of no motion"? This section would be incomplete without 
some numerical estimates of the depth of the gyre. It is apparent from Figure 5 that 
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the surface z = -D(x,y) (which corresponds to the classical notion of a "level of no 
motion") is deepest in the northwest corner of the gyre and shoals as one moves 
to the south and east. We will estimate the maximum depth of the circulation. 
From (3.18): 

Dma:r. = [ 6a d:;;,B J /a (3.19) 

where d:;;,B is evaluated at the northern boundary. This depth is measured in units 

of l defined in (3.5b). At 30° latitude one has: 

f = 7.3 X 10-5 s-1 

f3 = 2.0 x 10-13 cm-1 s-1 

and typically: 
N 5 X 10-s s-1 

W 20 x 10-5 cm s-1 

so that l see 430 m. Now from (3.19), with d;B = 1 and a= 2 (i .e., a square basin) 

it follows that 

Dmax = 2.29 

or in dimensional units Dmax see 980 m. Dmax increases as the aspect ratio of the gyre 
increases. For instance if a= 6 (so the east-west extent is three times the north-west 
extent) then Dmax = 1400 m. 

The depth of the circulation is also sensitive to the form assumed for the buoy-
ancy frequency. For instance if 

in dimensional units then 

q = (eazl/lz)z + Y 

a= 2bl 

(3.20) 

(3.21a) 

(3.21b) 

in the nondimensional units defined in (3.4) and (3.5). The preceding calculation 
can be repeated and one finds 

If, = (1 - y)[ea.z{ a-1(D + z) - a-2} + e-aDa-2] 

where D(x,y) is obtained by solving the transcendental equation: 

(3.22) 

[(a - x)wE(y)/(1 -y)] = ¼ D 3[l + e-Y6y-2(l + 2y-1) + {6y- 2(1 - 2y-1)- 1}] 

(3.23a) 

y = aD . (3.23b) 
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(Note how (3.23a) reduces to (3.14) if 0.) The most important qualitative effect 
of the slightly more realistic stratification in (3 .20) is to deepen the circulation. 
Suppose for instance I""' 430 m and b = (1300 m)-1 so that a ""' .66. Numerically 
solving (3.23a) for Dmax gives 

Dma:s: = 1,340 m 

if a = 2 and d;; = 1 at y = 1. The previous estimate of Dmax (which corresponds 

to a= y = 0 in (3.23a)) was 980 m. This tendency for the gyre to deepen is even 
more noticeable if the aspect ratio is increased. For instance if a = 6 one finds that 
Dmax""' 2,300 m (recall that with a= 0 and a= 6 we had Dmax ""' 1,400 m). These 
remarks may help to explain the apparently greater depth of the subtropical gyres 
in the North and South Pacific, as compared with the Atlantic. 

4. The western boundary layer 

The interior circulation patterns discussed in the previous two sections, and 
shown in Figures 3 and 6, must be closed by appending western boundary layers. 

The calculation here is motivated by Moore's (1963) boundary layer model. In 
the southern part of the basin we will construct inertial boundary layers (e.g., 
Charney, 1955). In the northern part there is a damped stationary Rossby wave 
which provides the dissipation required to balance the forcing in the upper layer. 
The lower layer has uniform potential vorticity throughout, even in the damped 
stationary Rossby wave. 

In homogeneous circulation theory (and in the top layer of the two layer model 
considered here) the fluid loses potential vorticity in the Sverdrup interior due to 
Ekman pumping and so must regain it by frictional flux. The frictional mechanism 
we adopt here is lateral diffusion of potential vorticity: 

J(l/11,q1) = K \;72q1 + CJowE/H1) 

l(l/J2,q2) = K \l 2q2 • 

(4.la) 

(4.lb) 

This is consistent with the philosophy of RYa,b and Rhines and Holland (1979) 
where it was argued that the dominant effect of mesoscale eddies on the mean flow 
is lateral diffusion of potential vorticity. In an inertial boundary layer the right-hand 
side of (4.1) is negligible and there is a functional relationship between o/n and qn, 

The analysis in this section is done using WE in (2.6b) and o/B in (2.7) and (2.8c): 

Hl/JB = H1(o/1 + o/2) 

= H'V ( 1 - = ) ( 1 -41) 
This particular choice is convenient because it allows one to obtain explicit solu-
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Figure 9. The outer streamfunctions v,,, vi, and V,a as functions of y at x = 0. The Ekman 
pumping is given by (2.6b) and {3b / F'l! = 1/ 3. 

tions. It is expected that other forcing patterns such as (2.6a) lead to qualitatively 
similar flow fields. 

a. Formation of the boundary layer problem. We use the "equivalent two layer" 
equations of section 2. The interior solutions found in that section will be denoted 
by ~ in this section, thus 

+ (4.2) 

[total streamfunction] = [interior solution] + [boundary layer correction] 

In Figure 9 we plot tP1 and tf2 as functions of y at the western boundary layer. 
y , denotes the position at which the curve tf 2 = 0 cuts x = 0 if it is extrapolated 
through the boundary layer. The value lfl,(0,y,) will be denoted by l/J1,. Since the 
Ekman pumping is given by (2.6b) the streamfunctions are simply straight line 
segments. It is easy to see that 
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y./ b = (1 -y)/ (1 + y) 

o/1• = (HW / H1) (2-y)/(1 + y) 

867 

(4.3a) 

(4.3b) 

(4.3c) 

is a measure of the strength of the forcing. For the geostrophic contours to close y 
must be greater than 1. Note how y. -b as the strength of the forcing increases. 
This corresponds to the region of uniform q2 expanding and filling the whole basin. 

Figure 9 shows that the western boundary divides naturally into three regions. 
Before becoming involved in a rather tedious analysis we will state our con-

clusions. AB one might have expected from intuition based on homogeneous theory, 
inertial boundary layers are possible in the southern half of the basin where a1 and 
a2 are negative. The length scale of these layers is F-1/ 2 (or equivalently (u1//3)112). 
In the northern half of the basin, where the fluid leaves the boundary layer, inertial 
boundary layers are not possible. Instead there is a slowly decaying, stationary 
baroclinic Rossby wave. Because the lower layer potential vorticity is uniform this 
wave is neutrally stable with respect to baroclinic instability. 

b. Region I: -b < y < y •. In region I lfa2 = 0 and u 1 < 0 so that one expects that 
the upper layer can form an inertial boundary layer while the lower layer remains 

at rest. 
It is easy to eliminate y between the outer solutions lfa1(0,y) and q1(0,y) and so 

obtain the functional relationship between -J,1 and q1: 

q1=-F y-l -J,1-f3b ifO < -J,1 < o/1•. (4.4) 
'Y 

Naturally the above only applies if O < -J,1 < o/1• since only these streamlines im-
pinge on the western boundary in region I. Since the boundary layer is inertial the 
functional relationship (4.4) is preserved inside the boundary layer and can be used 

to calculate -J,1: 

(4.5) 

where £C1 is the decay of the boundary layer in region I where q1 and -J,1 are related 
by (4.4) and -t,2 = 0. In terms of the other parameters 

=y-1. 

(4.6a) 

(4.6b) 

c. Region ll : y . < y < 0. In this region u1 and U2 are both negative and so once 

again inertial boundary layers are possible. If lfa1 • > -J, > 0 then ( 4.4) is still the 
functional relationship between q1 and -J,1 since these streamlines lead back to re-
gion I. If -t,1 > -t,1 • however the streamlines originate in the interior adjacent to 
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Figure IO. A schematic illustration of the boundary layer solution. When y < 0 the boundary 

layers are inertial. To the left of 1/,1 = 1P1• the functional relationship between 1/11 and Q1 is 
given by (4.4). To the right of 1/,1 = 1/11• it is given by (4.7). When y > 0 the flow returns to 
the interior via a stationary baroclinic Rossby wave. 

region II and the functional relationship is calculated by eliminating y between 

q1(0,y) and t[,1(0,y), see Figure 10. One finds 

q, = A(y) F 1/1, + B(y)f3b 

where A and Bare uninformative functions of y: 

A( ) = -y + 5 
y 2y + 1 

and B(y) = -1 + 2y- 6ya 
2y-1 

(4.7) 

The functional relationship between q2 and 1/12 is trivial: the lower layer stream-
lines which lead into region II originate in the region of uniform potential vorticity 
so q2 is constant in region II and equal to its value in the Sverdrup interior: 

(4.8) 

Now the solution of the boundary layer equations in region II is straightforward 
but tedious because the functional relationship between q1 and 1/J, changes at the 

streamline "if11 •• Rather than reproduce all the details we will show the boundary 
layer equations have solutions with the correct asymptotic behavior as x oo. In 
the transition region between the boundary layer and the Sverdrup interior the 
relation between q1 and 1/J, is (4.7) and the boundary layer equations are 

o/1x:JJ - F(l + A)I/J, + Fl/! 2 = -f3y - Bf3b 

- 2FI/J2 = -f3y + f3b . 

(4.9a) 

(4.9b) 
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A particular solution of the above equations is just the outer solution (1/J1 ,t/J2). The 
boundary layer corrections in (4.2) then satisfy the homogeneous equations 

- 2F<f> z = 0 

which can be solved by finding the normal modes: 

One finds that a is a solution of 

a 4 
- (3 + A)a2 + (1 + 2A) = 0 

(4.10a) 

(4.10b) 

(4.11) 

If (4.11) has two positive roots then (4.10) has two decaying solutions and it is clear 
we can construct solutions which satisfy the matching conditions at x = co. It is easy 

to see that this is the case if A > - --}- . The explicit expression for A shows that A 

is greater than - --}- if y > 1. This latter condition is necessary and sufficient for 

the existence of region II in the first place. 
To summarize: in regions I and II one can construct an inertial boundary layer. 

This is to be expected since the interior velocities are directed toward the coast in 
these regions. The solutions so constructed do not satisfy the no slip condition (as 

they should because of the K '741/J,, on the right-hand side of (4.1)). Provided K is 
sufficiently small this can be remedied by inserting thin viscous sublayers within the 
inertial boundary layer (see Pedlosky, 1979, section 5.9). 

We turn now to region III where the fluid in both layers leaves the boundary 
layers. In this region it is not possible to construct an inertial boundary layer. 

d. Region Ill: 0 < y < b. It is clearly impossible for the boundary layer in region 

III to be inertial since the functional relationship between £J1(0,y) and i/11 (0,y) is: 

£J1 = f3b - C(y)Fl/J1 

- y+ 5 
C(y) - 2y + 1 

and this is inconsistent with both (4.4) and (4.7). 

(4.12a) 

(4.12b) 

Instead we shall follow Moore (1963) and analyze (4.1) in the transition region 
between the boundary layer proper and the interior flow. In this region 

i/11 > > </>1 (4.13) 

and so the nonlinear terms in ( 4.1) are insignificant and we have 

(4.14) 
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The above equation can be integrated once. The constant of integration is zero since 
oo: 

[<p1 a;a; + F(</> 2 - </>1)] + C(y)F</>1 = U1 - 1K[<p1a; a; + F(c/>2 - </>1)]., (4.15) 

where (4.12a) was used to eliminate ij_111/ i11. Now guided by the fact that the poten-
tial vorticity in the lower layer is uniform we have 

</>2.,., + F(</>1 - 2</>2) = 0 . 

We now solve (4.15) and (4.16) by looking for a solution in the form: 

(c/>1,</>2) = (</>i,</> 2)e-ct yFID • 

One finds that a satisfies the fifth order polynomial: 

(4.16) 

a 4 + [C - 3]a2 + [1 - 2C] = - ( K ::
12

) [a5 - 3a3 + a] . (4.17) 

For small values of ( K ~
112

) solutions can be found in a perturbation expansion 

( 
K p1/2 ) 

a = ao + -a-
1
- a1 + • • • 

The first order problem is a quadratic in a0 2• There are two real roots, one is 
positive, the other negative. The positive root corresponds to an exponentially 
decaying normal mode; a 1 is an unimportant correction to the decay scale. The 
negative root corresponds to a mode which has an oscillatory x-structure; i.e., a 

( 
K p1/2 ) standing Rossby wave. The small correction, -a-1- a1, is real: 

a04 - 3aa2 + 1 
a 1 = - 4a02 + 2(C - 3) 

and ensures that the wave decays slowly on a scale u/K F. Since the wavelength of 
the wave is F- 112 there are roughly u/ K p 312 oscillations before decay. 

Finally it's worth remarking that each of the solutions obtained from ( 4.17) is, 
by itself, an exact solution of the nonlinear boundary layer equations. That is the 
nonlinear terms, which were neglected to obtain (4.14), happen to vanish identically. 
Of course because the equations are nonlinear these solutions cannot be super-
imposed to form more general solutions or satisfy boundary conditions. 

5. Some speculations 

It is interesting that the stationary baroclinic Rossby wave described in the pre-
vious section is, according to Charney-Stern criterion, neutrally stable with respect 
to baroclinic instability. This is of course because the potential vorticity gradient 
vanishes in the lower layer. 
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This leads us to speculate about the way in which the final statistically steady 
circulation is established in numerical models such as those of Holland (1982) and 
McWilliams and Chow (1981). (We might optimistically hope these speculations 
apply even to the ocean.) 

Imagine a set of numerical experiments in which the strength of the forcing 
ranges from very weak to quite strong. When the forcing is weak all of the wind-
driven flow is in the top, directly forced layer. Moreover, this configuration is 
baroclinically stable since the potential vorticity field is dominated by /3 everywhere. 
As the strength of the forcing is increased the geostrophic contours in the lower 
layer are increasingly distorted (e.g., Fig. 2). Eventually closed lower layer geo-
strophic contours appear. Since this necessitates a reversal of the potential vorticity 
gradient, the appearance of closed lower layer geostrophic contours also heralds the 
onset of baroclinic instability. The baroclinically unstable region is in the northwest 
where fluid is leaving the western boundary layer and entering the interior. It is 
plausible that disturbances amplify in this region and eventually equilibrate by 
inducing a mean flow in the lower layer which removes the reversal in sign of the 
mean potential vorticity gradient (for more details of this process within the context 
of weakly nonlinear instability theory see Pedlosky, 1970, 1971 and 1972). To 
accomplish this equilibration a large fraction of the total transport must migrate 
down to the lower layer. 

Now, if the equilibration described above is to occur as economically as possible, 
the mean potential vorticity gradient will be reduced to zero. This argument suggests 
that baroclinic instability, localized in the northwest, produces a source region of 
uniform potential vorticity. The flow through this source region fills up all of the 
closed lower layer geostrophic contours with fluid which has uniform potential 
vorticity. This scenario is consistent with the assumptions of RYa,b. The boundary 
layer analysis of section 4 has, however, suggested a more detailed picture than the 
quasigeostrophic Prandtl-Batchelor theorem; we are led to expect that the down 
gradient potential vorticity flux is localized in the northwest where strong baroclinic 
instability occurs. 

There is more to be said about western boundary current dynamics in this family 
of circulation models. A linear-frictional closure analogous to the Stammel one-
layer model has been developed in collaboration with Dr. G. Ierley of M.I.T. It 
involves some intricate balances where the geostrophic contours are drawn into the 
boundary layer. The interior solution is sensitive to western boundary dynamics, in 
contrast to the purely westward propagation of influence in the one-layer model. 

These models encourage us to re-examine the mixing processes at work in actual 
boundary currents. Water-mass alteration between Cape Hatteras and the Grand 
Banks of Newfoundland, for example, would imply potential vorticity mixing, and 
should have its impact on the entire wind-gyre. 



872 Journal of Marine Research [40, 3 

Acknowledgments. Funding was provided by the National Science Foundation grant OCE-80-
23763, and by fellowships from the J. S. Guggenheim Foundation, Christs College, Cambridge, 
and the W.H.O.1. Summer Program in Geophysical Fluid Dynamics. This is contribution num-
ber 5131 of the Woods Hole Oceanographic Institution. 

REFERENCES 
Bleck, R. and D. B. Boudra. 1981. Initial testing of a numerical ocean circulation model using 

a hybrid (quasi-isopycnic) vertical coordinate. J. Phys. Oceanogr., 11, 755-770. 
Charney, J. G. 1955. The Gulf Stream as an inertial boundary layer. Proc. Nat. Acad. Sci., 

U.S.A., 41, 731-740. 
Coats, D. A. 1981. An estimate of absolute geostrophic velocity from the density field in the 

northeast Pacific Ocean. J. Geophys. Res., 86, 8031-8036. 
Holland, W. R. 1982. Regions of uniform potential vorticity in an ocean circulation model with 

mesoscale resolution, (in preparation). 
McDowell, S., P. B. Rhines and T . Keffer. 1982. Maps of north Atlantic potential vorticity, and 

its relation to the general circulation. J. Phys. Oceanogr., (in press). 
McWilliams, J. C. and J. H . S. Chow. 1981. Equilibrium geostrophic turbulence I : A reference 

solution in a ,B-plane channel. J. Phys. Oceanogr., II, 921-949. 
Moore, D. W. 1963. Rossby waves in ocean circulation. Deep-Sea Res., 10, 735-748. 
Munk, W. H. 1950. On the wind-driven ocean circulation. J. Meteorol., 7, 79-93. 
Pedlosky, J. 1970. Finite amplitude baroclinic waves. J. Atmos. Sci., 27, 15-30. 
-- 1971. Finite amplitude baroclinic waves with small dissipation. J. Atmos. Sci., 28, 587-

597. 
-- 1972. Limit cycles and unstable baroclinic waves. J. Atmos. Sci., 29, 53-63. 
-- 1979. Geophysical Fluid Dynamics. Springer Verlag, 624 pp. 
Rhines, P. B. and W. R. Holl and. 1979. A theoretical discussion of eddy driven mean flows. 

Dyn. Atmos. and Oceans, 3, 289-325. 
Rhines, P. B. and W. R. Young. 1982a. Homogenization of potential vorticity in planetary 

gyres. J. Fluid Mech., (in press). 
-- 1982b. A theory of the wind-driven circulation I. Mid-Ocean Gyres. J. Mar. Res., 40, 

(Supp.), 559-596. 
Stommel, H . 1948. The westward intensification of wind-driven ocean currents. Trans. Amer. 

Geophys. Un., 29, 202-206. 
-- 1965. The Gulf Stream: A Physical and Dynamical Description. University of California 

Press, Berkeley, and Cambridge University Press, London, 248 pp. 
Young, W. R. 1981. The vertical structure of the wind-driven circulation. Ph.D. thesis sub-

mitted to the Woods Hole Oceanographic Institution/ Massachusetts Institute of Technology 
Joint Program in Oceanography and Ocean Engineering. 

Received: 12 February, 1982; revised: 3 June, 1982. 


