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Asymptotics is the science which deals with such questions as the 
asymptotic evaluation of integrals, of solutions of differential equations, 
etc . , in various limiting cases. Elements of this science may be learned 
from the works of VAN DER CORPUT [2], ERDËLYI [3] and DE BRUIJN [4] 
and advanced aspects from the numerous references in FRIEDRICHS's ar -
ticle [1]. By asymptotology I mean something much broader than asymp-
totics, but including it; pending further elaboration, I would briefly define 
asymptotology as the art of dealing with applied mathematical systems in 
limiting cases . 

The first point to note here is that asymptotology is an art, at best a 
quasi-science, but not a science. Indeed, this explains much of my d i f f i -
culty both in expounding my material and in finding an appropriate occasion 
to do so. It explains, too, why I am unable to support the corpus of my 
dissertation with the hard bones of theorems but must be content with a car -
tilage of principles, into seven of which I have distilled whatever of 
asymptotology I have been able to formulate appropriately and sufficiently 
succinctly. 

The aspect of the definition of asymptotology just given which is most in 
need of explanation is the concept of applied mathematical system. An 
applied mathematical system is merely the mathematical description of a 
physical (or occasionally biological or other) system in which the variables 
expressing the state of the system are complete. The importance of f o r -
mulating problems in terms of complete state variables constitutes a pre -
liminary principle, not particularly of asymptotology but of applied mathe-
matics in general, the Principle of Classification (or, perhaps better, of 
Determinism). It is illustrated by the overpowering tendency, in treating 
classical mechanical problems, to enlarge the configuration space to a phase 
space, since the phase (configuration together with its rate of change), 
but not the configuration alone, constitutes a complete description of a classi-
cal mechanical system. Consider also the tendency, intreatingjirobabilistic 
mechanical problems, to switch over from this original description, which 
is incomplete because, for instance, the mechanical "state" at one time does 
not determine the "state" at another time, to a new description in terms of 
a probability distribution function of the old "states", which function evolves 
"deterministically" in time and is therefore preferable as a state description. 
This Principle is obviously closely related to the notion of a well posed prob-
lem emphasized by Hadamard. Its particular relevance to asymptotology 
comes about because only after one has singled out ("determined") anindi-
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vidual solution (or completely "classif ied" the family of solutions) can one 
reasonably inquire into its asymptotic behaviour. 

Asymptotology is important because the examination of limiting cases 
seems to be the only satisfactory effective method of proceeding with the 
analysis of complicated problems (systems) when exact mathematical methods 
are of no (further) avail (and is often preferable even when they are). It is 
of value both for obtaining qualitative information (insight) about the behaviour 
of a system and its solutions and for obtaining detailed quantitative (numerical) 
results. Thus it is hardly surprising that examples, from trivial ones to 
the most profound, are found everywhere throughout the fields to which ana-
lysis (in the technical sense as a branch of mathematics) is applied. 

An excellent example of asymptotology is the familiar HILBERT [5] 
or CHAPMAN-ENSKOG [6] ("HCE" from now on) theory of a gas described 
by the Boltzmann equation 

in the limit of high density (f-^oo) or equivalently of frequent collisions (X-«oo). 
Another example is the CHEW-GOLDBERGER-LOW [7] theory of the s o -
called VLASOV [8] system of equations governing an ideal collisionless 
plasma and its electromagnetic field in what is often called the strong mag-
netic field (or small gyration radius) limit but is formally best treated [9] 
as the limit of large particle charges. In the general theory of relativity 
there is the fundamental EINSTEIN-INFELD-HOFFMAN [10] derivation 
of the equation of motion of a "test particle" (one not influencing the space-
time metric, i . e . , one of negligible mass) by treating it (its world-line, 
rather) as an appropriate singularity in the metric and letting the strength 
of the singularity approach zero. Hydrodynamics is rich in asymptotology 
(theory of shocks as arising in the limit of small viscosity and heat conduc-
tivity, theories of strong shocks and of weak shocks, shallow water theory, 
and so on) and so is elasticity. Kirchoff 's laws for electrical circuits can 
be properly derived from Maxwell's equations only by going to the limit of 
infinitely thin conductors (wires). Simple examples also abound and are 
encountered daily by the practising applied mathematician and theoretical 
physicist. Naturally it is not practical to discuss deep examples in detail 
here, so I shall have to confiné myself to brief remarks about them, relying 
for illustration mainly on simple and often trivial instances. 

It should now be apparent, I hope, that whatever features such i m -
portant, wide-spread, and diverse examples may have in common, and 
whatever lessons for future application may be gleaned from studying them, 
are well worth formulating and eventually standardizing. Even the many 
(most? far from all, as I know from my acquaintance) applied mathe-
maticians (etc.) who have become familiar by experience with asymptoto-
logical principles — at least in the sense of knowing how to apply them in 
practice — must inevitably benefit from the introduction of a standard t e r -
minology and of the clarity of expression it permits. Implicit knowledge, 
no matter how widely distributed, deserves explicit formulation, but I am 

(1) 
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aware of no efforts in this direction which attempt to go anything like so far 
as I am doing here, though there are some related suggestions in 
Friedrichs 's article. 

The final possible obscurity in our previous tentative definition of 
asymptotology is what it means to deal with a system. To clarify this we 
might alternatively define asymptotology as the art of describing the b e -
haviour of a specified solution (or family of solutions) of a system in a limit-
ing case. And the answer quite generally has the form of a new system (well 
posed problem) for the solution to satisfy, although this is sometimes obs -
cured because the new system is so easily solved that one is led directly 
to the solution without noticing the intermediate step.. 

To illustrate first by a trivial example: suppose it is desired to follow 
the (algebraically) largest root x of the simple polynomial equation 

  2   +  2 - e x - 4 =0 (2) 

in the limit e-»0. There is one root of order e - 2 obtained by treating the 
first two terms as dominant, x<*< e~2, for which indeed the other two terms 
are relatively negligible (even though one of them is absolutely large, of 
the order e"1 ), but which is negative. The other two roots are finite, o b -
tained by neglecting the terms with e factors, x ~ ± 2, the one sought having 
the plus sign. If we desire it to higher order, incidentally, we may put (2) 
for this root in the "recursion" form 

••2(1 - J e V + l e x J , (3) 

expand out the right side in powers of e , and generate better and better ap-
proximations for x by continually substituting the previously best approxi-
mation into the right side. But this is irrelevant to the present point, which 
is that (the problem of the algebraically largest root of) the original cubic 
Eq.(2) has been replaced by (the problem of the algebraically largest root 
of) the quadratic equation x2 - 4 0, or more exactly x2 - (4 - 3e2x3 + ex) = 0, 
the quantity in parentheses being treated as known. 

In the HCE treatment of system (1) in the limit X-» 00, the original 
integro-differential equation in the seven independent variables t,  , v* gets 
replaced by the set of coupled partial differential (hydrodynamic) equations 

8t " Ü • ( P U ) ' 

9 , - ,   \ - 5 / 3 

9t      

in the four independent variables t, x; here, p, u, p are of course the usual 
velocity-space moments of f. 
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These examples clearly illustrate the first asymptotological principle, 
which is in fact largely the raison d'être of asymptotology. This Principle 
of Simplification states that an asymptotological (limiting) analysis tends to 
simplify the system considered. This can occur in at least three general 
ways. 

The basic way systems simplify is merely by the neglect of terms (or, 
in higher order analyses, at least treatment of small terms as if known, 
as in the case of the cubic equation earlier). Thus the polynomial equations 
x5 - ex + 1 =0 and x6 + ax4 + ex3 + 1 =0, without getting lower in degree as the 
cubic did, nevertheless become simple enough in the limit e->0 to be e x -
plicitly solvable algebraically. Differential equations in irregular domains 
approximating regular ones may in the limit become solvable by separation 
of variables. In other cases the coefficients may become so simple in the 
limit as to permit solution by Fourier or other transform. These are typical 
instances of perturbation theory; there are of course also many instances 
where the simplification which occurs does not appreciably facilitate the 
further analysis of the system. 

A derivative way in which systems simplify, sometimes striking in e f -
fect, is the decomposition of the system into two or more independent 
systems among which the solutions are divided, so that the particular s o -
lution of interest satisfies a system with fewer solutions and hence usually 
in some sense of lower order. Thus the cubic polynomial equation con -
sidered earlier split up into a quadratic equation and what is effectively a 
linear equation. That is, the root of order e '2 was obtained by neglecting 
the two last terms and writing   2 3 +X2 *»0, and although this is cubic it 
has two trivial unacceptable roots x ^ O (corresponding to the solutions of 
the quadratic for finite roots) and is therefore equivalent to the linear 
equation obtained by dividing through by x 2 . 

The third (also derivative) way systems simplify, often spectacularly, 
is through the splitting off of autonomous subsystems. By an autonomous 
subsystem of a system is meant a part of the system (part of the conditions 
together with part of the unknowns) which is complete in itself, i . e . , forms 
an applied mathematical system in its own right, so that it can (in principle, 
at least) be solved before the rest of the system is considered. The quali-
fier "autonomous" is by no means superfluous. Thus the system f (x, y) = 0, 
g(x) = 0 for the two va'riables x, y has the autonomous subsystem g(x) =0. 
It has also the non-autonomous subsystem f(x,  ) = 0 for y, non-autonomous 
because it is not definite (well-posed) until x has been determined, which 
requires the other part of the system. 

Systems with autonomous subsystems occur much more often than one 
may at first realize, since there is an instinctive tendency to concentrate 
attention on the subsystem and forget that it is part of a larger problem. 
A particularly contemporaneous illustration of this is provided by the gravi-
tationally determined motion of the sun, a planet, and an artificial satellite; 
the subsystem of the sun and planet alone is autonomous, since their motions 
are unaffected by the satellite and are naturally considered to be given and 
definite when its motion is under consideration. But there is a very c o m -
mon special kind of system having autonomous subsystems which do not get 
overlooked just bécause there are too many of them for any one to be singled 
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out naturally. Such are the initial value problems, which, if well posed for 
t0< t < t j with initial conditions at to, are also well posed for to < t <L Í2 
for any tz between to and t i , so that the autonomous subsystems constitute 
a continuous one-parameter family. 

For an illustration of the third way of simplifying, note that in HCE 
theory the five moments p, u, p satisfy (in the limit, of course) the auto-
nomous subsystem (4), which is vastly simpler than (1) in having only four 
independent variables instead of seven. Similarly the "general" (for finite e) 
pair of simultaneous equations f(x, y) = 0, g(x) + eh(x,  ) = 0 reduces for e -» 0 
to the system with an autonomous subsystem considered earlier. The sun-
planet subsystem split off only by virtue of the implied limit of (relatively) 
small satellite mass, as is apparent from the less extreme case of the earth 
and its natural (rather than artificial) satellite. 

The second and third ways both involve a reduction in the number of 
solutions from which the desired one must be singled out. This is a charac-
teristically asymptotic simplification and, as Friedrichs [1] has affirmed, 
it justifies the limiting process even though complications arise in other 
respects. For instance, a linear second order differential equation may 
reduce to one of first order but non-linear. The "number" of solutions must 
be counted in whatever way is appropriate to the instance: as an integer 
(e .g . , for the polynomial equation); as the dimensionality or number of para-
meters of a family of solutions (as for an ordinary differential equation); 
as the dimensionality of a parameter space, or number of independent 
variables of a function characterizing a solution (as with HCE, where seven 
reduces to four); etc. 

In carrying out asymptotic approximations to higher order terms we 
are aided by the (second) Principle of Recursion, which advises us to treat 
the non-dominant terms as if they were known (even though they involve the 
unknown solution). The simplified system then determines the unknown in 
terms of itself, but in an insensitive way suitable (in principle at least) for 
iterative generation of an asymptotic representation of the solution. This 
has already been illustrated for one of the finite roots of our cubic equation 
example. For the numerically large root of (2) we may obtain the recursion 
formula x = - (x2 - ex - 4) / (3e2 x 2 ) . However, this is far f rom unique; by 
grouping the terms differently we obtain x = - (x2 - 4 ) / ( 3 e 2 x2 - e), which is 
equally suitable, since x has still been solved for from the dominant terms. 
It would be folly to solve for x from a small term such as ex; iteration on 
x = (3e 2 x 3 +x 2 - 4 ) / e merely produces wilder and wilder e behaviour. If one 
solves from the dominant terms inappropriately, namely in a way which does 
not give the solution explicitly outright when the small terms are neglected, 
then one has a scheme which may or may not converge, but which, even 
if it does, converges at a "finite" rate, not improving the asymptotic order 
of the solution in each iteration. This is illustrated by putting (2) in the 
convergent but asymptotically inappropriate recursion form x= - [ - (x2 - ex - 4)/ 
(3e2x)]1/2, which is quité usable, however, f or numerical computation. 

This trivial example is so trivial that the emphasis on recursion f o r -
mulas seems forced. It is true that here and in many, many other cases 
one can simply write down an obvious power series in e and determine the 
terms order by order . This approach fails, however, whenever a more 
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general representation is required, as is by no means rare. For instance 
I recently encountered a case where the obvious series needed to be supple-
mented by a single logarithmic term (which was neither the dominant nor 
even the next-to-dominant term); the recursion relation generates all the 
right terms without prejudice as to their form. Generation of terms by 
recursion is often very clumsy for practical purposes, apart from leading 
to terms of unexpected form. However, it has a great theoretical advantage 
when properties of (all terms of) the series are to be derived, since the 
recursion relation is highly adapted naturally to the use of mathematical 
induction. (See the final reference for an example.) 

The limiting cases we keep referring to are conventionally, in asymp-
totics, formulated so as to be cases where a parameter (often denoted by X) 
approaches infinity. Since I intend asymptotology to embrace also situations 
where the limit system itself (not merely arbitrarily near ones) is meaning-
ful (perturbation problems), it is preferable now instead to use a small par-
ameter, conventionally denoted by e (= 1/X for conversion). In fact, it may 
not be known in advance whether the limit case is meaningful, and, whether 
or not it is meaningful physically, mathematically it may or may not be so 
depending on the description employed. This brings us to our third asymp-
totological principle, the Principle of Interpretation: it is a major task of 
asymptotological analysis to find variables in which the given problem b e -
comes a perturbation problem (has a meaningful limit situation). This may 
involve nothing more than recognizing that the original variables are such, 
as is the case for two roots of the cubic; for the third root, however, the 
formal limit of (2) is meaningless, but if transformation to the new variable 
y = e2 x is effected first, the equation obtained for y may be solved by per -
turbation analysis. 

The characteristic feature of asymptotic analyses proper, as opposed 
to perturbation analyses, is the appearance (in both senses) of o v e r -
determinism. Thus the cubic Eq. (2) with three roots apparently reduces 
in the limit to a quadratic with only two; the well behaved (for e f 0) pair of 
simultaneous linear equations x + y = 1, x + (l +e)y = 0 formally reduces to a 
mutually contradictory pair for e = 0; in the initial value problem 
e(d/dt)z + z = 0 (t > 0), z(0) =1, for the continuous function z(t), we seemingly 
have z(t) = 0 in the limit, contradicting the initial condition; and the same 
thing happens in many less trivial cases (such as the theories of shocks, 
of boundary layers, and of fast oscillations), as described in detail by 
Friedrichs [1]. In this connection we have the (fourth) Principle of Wild 
Behaviour, which tells us that apparent overdeterminism arises because 
(at least some of) the solutions behave wildly in the limit - wildly, that is, 
compared to our preconceptions, as embodied in the mathematical form of 
the expressions employed for representing the solutions. Thus in neglecting 
the cubic (in addition to the linear) term of (3) we have obviously made the 
implicit assumption that x is not too large (say bounded), which is correct 
for only two of the roots, while the third behaves "wildly" in becoming in-
finite (like e - 2 ); the solution of the simultaneous equations is similarly wild 
(like e"1 ); the solution of the initial value problem, z =exp(-t /e) , is wild 
in having a derivative which, though converging to zero for every fixed po -
sitive t, does so non-uniformly and actually becomes infinite for t approach-
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ing zero sufficiently rapidly; and similar wildnesses occur in the deeper 
examples mentioned. 

When overdeterminism occurs, if the solution we want is among those 
still permitted by the formal limit system, well and good: the loss of other 
solutions is our gain in simplicity (in the second way). If the solution we 
want is among those lost, then according to the Principle of Wild Behaviour 
we should allow for more general asymptotic behaviour of the solution. It 
is one of the most troublesome difficulties of asymptotological practice to 
find an appropriate asymptotic form. It is impossible to prescribe a priori 
all asymptotic representations that may ever prove useful, but among more 
general representations to try are two worth specific mention as frequently 
successful. The first is to supplement the originally expected series with 
new terms, such as smaller (more negative) powers, as in the case of the 
cubic equation, or logarithmic ones. The second, effective in many of the 
deeper problems, including those just referred to (see also a detailed 
example from my own experience [11], and illustrated by the initial value 
problem just exhibited (which may in fact be viewed as an elementary bound-
ary layer problem), is to write the unknown as the exponential of a new un-
known represented by a series, the dominant term of which must become 
infinite (at least somewhere) in the limit if anything is to be gained by so 
doing. 

If there can be overdeterminism there can also be underdeterminism, 
which means that the original well posed problem reduces formally in the 
limit to a problem with more than one solution. For instance, let A be a 
known j -by- j matrix, let b and x be j-by-1 matrices (vectors),respectively known 
and unknown, and consider the matrix equation Ax =b. Suppose that A and 
b depend on e and that the determinant of A is zero if and only if e = 0. Then 
the formal lowest order system A<°) x(°> =b(°> is certainly not well posed. 
Since A(°) is a singular matrix, there exists a 1-by- j matrix n ( / 0 ) such that 
nA(°) =0; for simplicity assume that n is unique (up to a constant factor) . 
If nb(0) / 0 the limit system obviously has no solution (overdeterminism, as 
in the previous example of simultaneous linear equations), so assume nb(°)=0. 
Then x(°) is not completely determined by the limit system, and we have an 
example of underdeterminism. 

Another excellent and rather typical example of underdeterminism is 
again the HCE problem. Letting X -» oo in (1) (after dividing through by X) 
leads to the information that f(°) is invariant under collisions, i . e . locally 
Maxwellian in some (local Galilean) co-ordinate system, which is very far 
from determining f(°), since there are five parameters (p, ü, p) needed to 
specify such a distribution and we are left unprovided with information on 
how the parameters at different points of space-t ime are related. (The 
CHEW-GOLDBERGER-LOW [7] theory is another such example [9]. 

In such straits we are rescued by the (fifth) Principle of Annihilation, 
which instructs us to find a complete set of annihilators of the terms which 
persist in the limit, apply them to the original system, and then go to the 
limit after multiplying by an appropriate function of e so that the now domi-
nant terms persist in the limit. By an annihilator of a mathematical entity 
is meant an operator which results in zero when applied to the entity. (Of 
course there are complicated cases in which this produces only some of the 
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missing information, and the same procedure must be re-applied, perhaps 
repeatedly. ) 

In the matrix example, the terms A  X<°) and b'0 ' which persist in the 
limit are annihilated by multiplication on the left by n. Applying this an-
nihilator to the original equation, dividing by e, and taking the limit gives 
what may be written 

lim { e"1 n [A - A'0) ]} x(0 ) = lim {e_1n[b "b(0 )]}, (5) 
e = 0 e=0 

or nA(D x<°) =nbW if A and b are expandable in integral powers of e. In the 
normal case this provides just the one extra condition needed to determine 
x<°), which by the condition A(°) x(°> = °) was determined only up to a s o -
lution p of A(°)p = 0. In the abnormal case that (5) is not an independent con-
dition, there is a linear combination of AC'xC1' =b(0) and (5) which gives 0 =0. 
The formation of this linear combination is then our new annihilator, the 
application of which to Ax =b and e"1 n [A - A(°) ]x = e_1n[b -  ° ) ] leads to a 
new extra condition which will normally be independent and provide the mis-
sing piece of information. 

In the HCE problem there are five scalars (mass, three components 
of momentum, and energy) which are preserved by collisions, so that taking 
the corresponding moments of (1) annihilates the right side. These are 
therefore annihilators of the dominant terms, which is why they are applied 
to (1) to obtain the five hydrodynamic equations relating the values of p, u, 
p (and therefore f which is expressed in terms of them) at different points 
of space-time. 

It is through the application of the Principle of Annihilation that the 
Principle of Simplification is maintained. The loss of solutions in a limit 
simplifies a system, while the gain of solutions, or loss of information*, 
would "complicate" it if we were not able to recover sufficient additional 
conditions to make up for the information lost. 

The basic way systems simplify is by the neglect of terms, as stated 
earlier. But it commonly happens that the relative asymptotic magnitude 
of two terms to be compared depends upon some knowledge not yet available 
or on some assumption or decision not yet made. According to the (sixth) 
Principle of Maximal Balance (or of Maximal Complication**), for maximal 
flexibility and generality we should keep both terms, i . e . , we should allow 
for the possibility or assume that they are comparable. In the case of in-
complete knowledge this is mere prudence; any term in an equation definite-
ly smaller in order of magnitude than another term may be considered 
negligible, but no term should be neglected without a good reason. In the 
case of a pending assumption or decision, the desire to balance two such 
competing terms helps to determine the choice. 

The most widely applicable and hence most informative ordering is that 
which simplifies the least, maintaining a maximal set of comparable terms. 
Quite often there is more than one possible maximal set of terms, with no 

* U se o f this t e r m i n o l o g y is j u s t i f i e d e v e n f r o m t h e t e c h n i c a l v i e w p o i n t o f i n f o r m a t i o n t h e o r y , 

s u g g e s t i n g t h e p o s s i b i l i t y o f a s s i g n i n g a m e a s u r e t o t h e d e c r e a s e in t h e n u m b e r o f so lu t i ons o c c u r r i n g in a 

l i m i t . 

* * I n o w f e e l that " M i n i m a l S i m p l i f i c a t i o n " is m o r e a p p r o p r i a t e h e r e . 
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set including all terms of any other. (Sets of terms form a lattice ordered 
by inclusion.) Each maximal set corresponds to different asymptotic b e -
haviour. The solutions may split up according to which behaviour they have 
(second way of simplifying), as with the cubic, or each solution may exhibit 
a variety of different behaviours, in different regions, as with a boundary 
layer phenomenon. 

For instance in the case of the cubic equation, how could we know that 
two solutions are finite and one of order e~2 ? p u t another way, why did we 
not assume the first and third terms to be the dominant ones, or the second 
and third, or so on? In this particular case there is an easy answer: if we 
had, we would have obtained a "solution" for which the neglected terms were 
not in fact negligible compared to the supposed dominant terms, i . e . , the 
"solution" found would not have been self-consistent. But suppose there 
were several more terms, would we have had to try every pair? (Or suppose 
there were two independent small parameters 5 and e instead of only one.) 
Clearly, no matter which terms are dominant x will behave predominantly 
as some power of e. We therefore assume the general representation x = ae4 
and wonder what value of q to take. One might in fact choose arbitrarily 
any value for q but will then generally find that for finite a only one term 
of (2) dominates, which is nonsensical, so that a = oo (if it was the constant 
term), which is not legitimate, or else a = 0 (if it was one of the others), 
which, if more legitimate, is certainly no more useful. A value of q will 
only be "proper" if we end up with a representation which is "maximally 
complicated" in that it really consists of one term     instead of "no terms" 
such as 0 or oo. If we put x ^ a e i into (2) the successive terms vary as e 
to the respective powers 3q+2, 2q, q + 1, 0, and it is easy to see that only 
q = 0 or q = - 2 makes two (or more) powers equal minima. 

On the side it might be of interest to mention a graphical method of find-
ing the proper values of q which apparently goes back to Newton. It is hard-
ly needed in the present simple illustration but can be a great time-saver in 
more involved examples (also those of higher dimensionality). We plot each 
term of (2) as a point on a graph, the abscissa being the exponent of x and 
the ordinate that of e (see four heavy points in Fig. 1); the coefficient 
is ignored so long as it is not zero. The specification of a definite relation-
ship between x and e ( i .e . of a definite value of q) leads to the identification 
of the asymptotic behaviour of all terms (present or not) corresponding to 
points which are on a common line with a definite slope. Thus, for x ~ e 
all points on the same down-slanting (from left to right) 45° line correspond 
to a common asymptotic behaviour, while for x ~ e-i the same holds for 
up-slanting 45° lines (see light dashed lines). Since the smaller the power of e 
the larger the term, we seek lines passing through (at least) two graphed 
points and having no graphed points below them. We may think of finding 
the lower convex support lines of the set of graphed points, perhaps kin-
esthetically by imagining pushing a line up from below until it f irst hits a 
graphed point and then rotating it around that point until it next hits a second 
graphed point. It is immediately apparent from Fig. 1 that there are just 
two such lines and that they correspond to q = 0 and q = - 2 (see heavy dashed 
lines). It is also clear that the point (1, 1), like all points in a semi-infinite 
vertical strip (see horizontally shaded area), are "shielded" by the points 
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Fig. 1 

G r a p h i c a l m e t h o d s o f f i n d i n g t h e p r o p e r v a l u e s q 

(0, 0) and (2, 0) and can never be on a support line; it is indeed obvious that 
ex is negligible with respect to either x2 or 4 no matter how x varies with 
e. Similarly there is a semi-infinite vertical strip shielded by the points 
(2, 0) and (3, 2) (see diagonally-shaded area). In more complicated cases 
we can thus exclude terms wholesale f rom competition. 

To return to our proper business, illustration of the Principle of 
Maximal Complication, consider the problem of finding the lowest frequency 
of vibration and the corresponding form of vibration of a uniform membrane 
stretched between two close wires lying in a plane, one of which we take 
straight for simplicity. The equation for the standing vibration of a mem-
brane is 

32u 32u   
9x2 (6) 

where u is the displacement normal to the (x, y) plane, which is the rest plane 
of the membrane (the plane containing the wires), and v is the frequency 
of vibration of the mode. Let the equations of the wires in the (x, y) plane 
be   = 0 and   = eY(x), where e of course is the small parameter of c l o se -
ness. We may suppose Y(xi ) =Y( x 2) = 0 so as to have to consider only the 
finite region xx < x < x 2 ) 0 < y < e Y ( x ) . Imposing the condition u = 0 on the 
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boundary of this region and (6) inside the region, we have an eigenvalue 
problem for the lowest eigenvalue v and its corresponding eigenfunction u. 
This is one common type of asymptotic problem, asymptotic rather than 
"perturbational" in that there is no limit problem because the region of in-
terest disappears in the limit. The remedy for this is well known [1]; we 
re -scale the variables appropriately, in this case introducing r¡ =  - 1 y so 
that the region in the (x, 17) plane becomes Xj <  <   , 0 < T 7<Y(x), and (6) 
becomes 

2 i^P V'u = 0 . (7) 

Taking the asymptotic behaviour of each term at its face value (but remem-
bering that v is not yet determined), we deem the first term negligible com-
pared to the second, and (by the Principle) assume v2 ~ e - 2 to balance the 
second and third terms. Introducing   = ev we write (7) as 

 2  2 
9 U , 9. J O U 

9nz w "    
(8)  

To lowest order we neglect the right side of (8), whereupon x degenerates 
from an independent variable to a mere parameter. The really proper treat-
ment at this point, by the Principle of Recursion, would be to treat the right 
side of (8) as known, solve for u on the left in the form of an integral r e -
presentation (involving the simple, well known, explicit Green's function), 
and try to obtain u iteratively. Instead we shall do something similar but 
simpler, more or less parallelling the lowest order version of the proper 
treatment. For each x we have, to lowest order, a simple eigenvalue 
problem with the lowest eigenstate u = A sin( wr¡ /Y ) and eigenvalue   = n /Y . 
But u so defined depends on x, which is impermissible, so we take A(x) 
to be a Dirac delta function, the location of whose singularity we take to be 
at the maximum of Y(x) in order to have the smallest u; for simplicity we 
assume the maximum of Y to be unique and to occur at x = 0. In a sense we 
have now solved the problem originally posed, but since our answer is sin-
gular it is not entirely satisfactory (see the next and final Principle to be 
formulated). Indeed, since our "solution" is singular in its x dependence, 
we ought to worry whether our earlier neglect of e2 (92u/9x2) was justified, 
and we might well be curious anyway about the true detailed x dependence 
which we have cavalierly expressed as a delta function. Since the significant 
behaviour occurs near x = 0 we introduce Ç= 6_1x, where   is a small para-
meter to be determined (related to e ) . We also write u = uo +Û, where 
Wo =-jt/Y(0) and û is small. Since 92u/9rj2»< - 2 Y(x)-2u, from (8) we obtain 

_2 
7 �  

T*r -U 2 
Y(6Ç)Z 

Let Y(ÔÇ) =Y(0 )+ i Y" (0)62?2+ . . . with Y" (0)<0, whereupon this becomes 

7 �  Y " ( 0 ) 2 2 . 
Y ( 0 ) 3 6 Ç 2 u 0 u 

  e2 d2A (10) 
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According to the Principle of Maximal Complication we choose the as yet 
undetermined asymptotic behaviours so as to keep all the terms in the' 
equation and are thus led to take 5 = e1''2 and u = e_ 1û, obtaining 

d 2 A 
d? ¿ Y(0) 

tY"( o y 
Y(0)2 ?2 +2u A ^ O . ( 1 1 ) 

On the ? distance scale A must vanish at "infinity", and we have a well known 
eigenvalue problem arising in the quantum theory of the harmonic oscillator. 

The lowest eigenfunction is the Gaussian A = exp Y(0)'3^2[-Y, , (0)]1/2 Ç2j-

with real eigenvalue u =? [ -Y l ' (0 ) /Y (0 ) ] 1 / ? 

Incidentally, if we should be interested in the behaviour of u for |x| 
not very small, where u decreases rapidly, a different procedure must be 
used. The right side of (8) cannot be neglected there, since u&ir/Y{0) does 
not even approximate the local eigenvalue w/Y{x) for which the left side can 
vanish with u f 0. The device mentioned earlier of representing the unknown 
as an exponential works here; with u = exp v, (8) becomes 

32v J 3v V 2   9v Y 
.  ? \     

(12) 

We may assume that v is expandable as a series in e, v = e-i[v(°) +ev(D + . . . ] , 
where the leading term has been taken large of order e"1 to permit the right 
side of (12) to contribute. We must have 3v(°)/9r) = 0 or the left side will 
dominate again, so vW is a function of x only, and to dominant terms (12) 
becomes 

32v ( 1 ) 

  rj2 
3v ( l )  

  7 
Í 3v (0)  

v    

Viewed as an equation for v'1 ' this can be linearized and "homogenized" by 
reversing the exponentiation procedure, namely by introducing w =expv(D, 
whence 

92w 
3 if 

w2 + 
3v \sn 

   / w = 0. 

Together with the boundary conditions on w (that it vanish at 17 = 0, Y(x)) this 
is an eigenvalue problem which determines the variation of v 

<4 + 3y(°) 
   

\2 2 
) = b / Y ( x ) ] , 

as well as the TJ dependence of w (sinusoidal). All that the device has 
amounted to in this case, of course, is factoring out (from u) a fast varying 
function of x, but the use of the exponential representation has led to that 
procedure in a natural and systematic way. 

We complete our list with the simple (seventh) Principle of Mathematical 
Nonsense: if, in the course of an asymptotological analysis, a mathemati-
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cally nonsensical expression appears, this indicates that the asymptotology 
has not been done correctly or at least not carried out fully (although even 
incomplete it may be satisfactory for one's purposes). One may come upon 
expressions such as 0/0, divergent sums or integrals, singular functions, 
etc . , and whether they are to be considered nonsensical sometimes depends 
on the use they are to be put to. In the membrane vibration problem just 
discussed the first instance of mathematical nonsense was the disappearance 
in the limit of the region over which the partial differential equation was to 
be solved, the second was perhaps the dependence of   on x, and the third 
was the response to this, the use of a singular (delta) function. 

Frequent in asymptotological analyses is the occurrence of pheno-
mena on different scales of distance or time. The HCE problem is a 
well-known case, since if if is not prescribed Maxwellian at the initial 
instant, there is a relatively short period of time (the order of a c o l -
lision time) during which f becomes Maxwellian, while the five moments 
remain approximately constant, and a relatively long period (of order 
X times as long) during which the five moments (hydrodynamic v a r i -
ables) vary but f maintains its Maxwellian form. For an extremely simple 
example of the same type, consider the familiar electric circuit equation 
V =RI + LÍ, where the voltage V(t) is an imposed function of time, the current 
I(t) is to be found, the resistance R and the inductance L are positive con-
stants, and we choose to examine the limit L-» 0. Treating LÍ as if it were 
known, we immediately obtain a recursion formula for I, 

I = | ( V - L I ) 

(13) 
2 , .3 

R VRy VR 

which is fine except for not in general satisfying the arbitrary initial con-
dition on I natural for the original first order differential equation. For 
short times (of order L) Í is large and V approximately constant, so that 
the difference of I f rom its quasi-equilibrium value V / R decays like 
exp( -Rt /L) ; after this transient has died out (13) holds. Incidentally, the 
expression in brackets in (13) is just like the Taylor expansion in powers 
of L of V evaluated at the argument t - L / R except for a factor of (n -1 ) ! in 
the denominator of the n-th term, which shows that the asymptotic series 
(13) for I cannot be expected to converge even if V is analytic (which does 
not stop it from being very useful). 

In phenomena with behaviour on two different time scales there is a 
widely pertinent distinction to be observed between finite conservative 
systems on the one hand and infinite or dissipative systems on the other. 
For instance, the well-known problem of the harmonic oscillator with slowly 
varying coefficient of restitution [12], x+k(et)x = 0, is an example of the first 
kind; on the short (finite) time scale   is approximately constant and the 
oscillator simply oscillates steadily, while on the long (~ e _ 1 ) time scale 
the frequency and amplitude of the oscillation vary in response to the 
variation in k. Contrast with this the behaviour of the dissipative electric 

25 
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circuit, where only initially the current I varies oi) the short time scale, 
swooping toward its quasi-steady value. The HCE example shows, that a 
conservative system can act the same way so long as it is infinite; in this 
case the decay comes about by a process of "phase mixing", and is possible 
because the Poincaré recurrence time is infinite. 

The asymptotic separation of time scales is the basis for an exciting 
recent approach in statistical mechanics [13]. Typically one obtains 
equations for the one-particle and the two-particle distribution functions f j 
and Í2 for a gas of appropriate characteristics, and finds that f i can vary 
only slowly, but that f2 can vary quickly so as to phase-mix towards a quasi-
steady distribution as t gets large on the short time scale while remaining 
small on the long time scale. The limiting distribution f2 is a functional of 
fj, which when substituted into the equationfor f   leads to an autonomous "kinetic 
equation" for f i . The irreversibil ity (timewise) of this kinetic equation 
comes about in a natural way, in that the limiting f 2 depends on which d i -
rection t is taken to the limit (on the short time scale), whether to plus or 
to minus infinity. It is a major triumph of this approach that the "Stoss-
zahlansatz" can for the first time be actually derived (under moderate 
smoothness assumptions). 

To return to the finite case, I am glad to take the opportunity of ad -
vertising a recent paper [14] in which I have elaborately worked out the 
asymptotic theory of finite systems of ordinary differential equations d e -
pending on a small parameter e which to lowest order have all solutions 
periodic. Applied to Hamiltonian systems the theory leads to the existence 
of adiabatic invariants which are constant (integrals) to all orders in e. 

We are all familiar with those rather unsatisfactory research papers 
in which the author makes a series of largely arbitrary ad hoc approxim-
ations throughout, often dubious without (sometimes even with) the author's 
intuitive grasp of the situation. These "ad-hoaxes" have their place and 
utility, but how much more desirable and convincing is a properly worked 
out and elegant asymptotological treatment, with any arbitrary assumptions 
(like remarkable coincidences in a well constructed mystery story) made 
openly and above board right at the beginning where anyone can assess their 
merits for himself, and with the later development unfolding naturally and 
inexorably once a definite problem and the limit in which it is to be c on -
sidered have been settled upon. 

The art of asymptotology lies partly in choosing fruitful limiting cases 
to examine - fruitful first in that the system is significantly simplified and 
second in that the results are qualitatively enlightening or quantitatively 
descriptive. It is also an art to construct an appropriate generic description 
for the asymptotic behaviour of the solution desired. The scientific element 
in asymptotology resides in the non-arbitrariness of the asymptotic be -
haviour and of its description, once the limiting case has been decided upon. 

One of Molière 's characters observes that for more than forty years 
he has been talking prose without knowing it. It is doubtful that he benefited 
from the discovery, but I hope that you will be more fortunate and not d is -
appointed in having by now discovered that asymptotology is what you have 
been practising all along. 

25* 
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